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A PROBLEM OF DIOPHANTUS MODULO A PRIME

JOSHUA HARRINGTON AND LENNY JONES

Abstract. A set S of k ≥ 2 positive rational numbers is called a
rational Diophantine k-tuple if the product of any two elements of S
increased by 1 is a perfect square. Around the third century A.D.,
Diophantus found infinitely many rational Diophantine triples, and
very recently, Dujella, Kazalicki, Mikić and Sziksza have proven
the existence of infinitely many rational Diophantine sextuples. It
is still unknown whether there exist any rational Diophantine sep-
tuples. In this note, we investigate this problem in Zp, the field of
integers modulo a prime p, where the situation is quite different.
We show, given any set S of k ≥ 2 positive integers, that there ex-
ist infinitely many primes p such that all elements of S are nonzero
squares modulo p, and furthermore, that the product of any t ele-
ments of S, where 1 ≤ t ≤ k, increased by 1 is also a nonzero square
modulo p.

1. Introduction

In Problem 19 of Book IV of the Arithmetica [7], Diophantus
asked:

To find three numbers indeterminately such that the
product of any two increased by 1 is a square.

He provided the solution

{x, x + 2, 4x + 4}, (1)

and he outlined a procedure using (1) to construct 4-element sets of
positive rational numbers such that the product of any two increased
by 1 is a square. As an example, he gave{
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}
.

In the literature, k-element sets S of positive rational numbers, such
that the product of any two increased by 1 is a square, are generally
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referred to as rational Diophantine k-tuples, or simply Diophantine
k-tuples if all the elements of S are integers. Since the time of
Diophantus, many mathematicians have searched for rational Dio-
phantine k-tuples and Diophantine k-tuples, where k ≥ 5. Very
recently, Dujella, Kazalicki, Mikić and Sziksza [4] have proven that
there exist infinitely many rational Diophantine sextuples, but it is
still unknown whether any rational Diophantine septuples exist. If
a certain conjecture of Lang [1] is true, then there exists an up-
per bound on k for the existence of a rational Diophantine k-tuple.
Along these lines, Dujella [3] has shown unconditionally that no Dio-
phantine sextuple exists, and that there are at most finitely many
Diophantine quintuples. Although it is still unknown as to whether
a single Diophantine quintuple exists, more recent work [5, 6, 10]
suggests that the answer is most likely negative. In this note, we
investigate this problem in the finite field of integers modulo a prime
p, which we denote as Zp. We see that the situation is quite different
in this setting. More precisely, we prove the following theorem.

Theorem 1.1. Let k ≥ 2 be a fixed integer, and let S be any set of k
positive integers. Then there exist infinitely many primes p for which
each element of S is a nonzero square modulo p, and furthermore,
that 1 plus the product of any t elements of S, where 1 ≤ t ≤ k, is
also a nonzero square modulo p.

Throughout this note, we say that a set S has property D if S
satisfies the conditions in the statement of Theorem 1.1.

2. Preliminary Material

To help establish Theorem 1.1, we recall some ideas from number
theory. A quadratic residue modulo the prime p is a nonzero element
a ∈ Zp such that there exists x ∈ Zp with x2 ≡ a (mod p). In other
words, a quadratic residue is a nonzero square in Zp. For any integer
a and any prime p, we define the Legendre symbol as(

a

p

)
=

 1 if a is a quadratic residue modulo the prime p
−1 if a is a quadratic nonresidue modulo the prime p

0 if a ≡ 0 (mod p).
(2)

It is easy to see from (2) that(
ab

p

)
=

(
a

p

)(
b

p

)
, (3)
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for any integers a and b. Although there are many celebrated the-
orems concerning the Legendre symbol, we require only two of the
more well-known results, which we state without proof.

Proposition 2.1. [8] Let p be an odd prime. Then(
2

p

)
= 1 if and only if p ≡ ±1 (mod 8).

The next remarkable theorem is due to Gauss [8].

Theorem 2.2 (Law of Quadratic Reciprocity). Let p and q be odd
primes. Then (

q

p

)
=

(
p

q

)
(−1)(p−1)(q−1)/4 .

Finally, we need a theorem due to Dirichlet [8].

Theorem 2.3 (Dirichlet’s Theorem of Primes in an Arithmetic Pro-
gression). Let r and m be positive integers with gcd(r,m) = 1. Then
there exist infinitely many positive integers n such that mn + r is
prime.

Remark 2.4. In other words, according to Theorem 2.3, if gcd(r,m) =
1, then there are infinitely many primes p such that p ≡ r (mod m).

3. Proof of Theorem 1.1

We are now in a position to give a proof of Theorem 1.1.

Proof of Theorem 1.1. Let L be the largest element of S, and let
m = 8

∏
qi∈Q qi, where Q is the set of all odd primes qi ≤ L! + 1.

By Theorem 2.3, there exist infinitely many primes p ≡ 1 (mod m).
Since p ≡ 1 (mod 8), it follows from Proposition 2.1 and Theorem

2.2 that
(
qi
p

)
= 1 for each qi ∈ Q. Let t be any integer with

1 ≤ t ≤ k, and let s be the product of any t elements from S. Since
s < L! + 1, all prime factors of s and s + 1 are contained in Q. In
particular, no element of S is divisible by p. Hence, by (3), it follows

that
(
s
p

)
=
(
s+1
p

)
= 1. Therefore, the set S has property D, and

the proof is complete. �
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4. An Example and Some Open Questions

As an illustration of Theorem 1.1, we provide the following exam-
ple.

Example 4.1. Let k = 4. Recall the sequence of Fibonacci numbers
(Fn) defined as

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2.

Let S = {F2, F3, F4, F5} = {1, 2, 3, 5}. According to the method
described in the proof of Theorem 1.1, we get in this situation that

Q = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113},

m = 126440218561670431152580825166174649973098747960,

and the smallest prime p ≡ 1 (mod m) is

p = 1011521748493363449220646601329397199784789983681.

Then S has property D since all elements of the set

{1, 2, . . . , 121 = F5! + 1}

are quadratic residues modulo p.

Remark 4.2. Call a Diophantine t-tuple T a Fibonacci Diophantine
t-tuple if all elements of T are Fibonacci numbers. It is easy to show
that the only Fibonacci Diophantine triple T containing F1 = F2 =
1 is T = {1, 3, 8} [9]. If the smallest index in T is larger than 1,
then it is conjectured that all such Fibonacci Diophantine triples
are of the form {F2k, F2k+2, F2k+4}. Dujella [2] has shown that if
{F2k, F2k+2, F2k+4, d} is a Diophantine 4-tuple, where k ≥ 1, then d
cannot be a Fibonacci number. This fact, combined with the truth
of the aforementioned conjecture, would establish that no Fibonacci
Diophantine 4-tuples exist.

To conclude, we raise a couple of questions.

Question 1. For each k ≥ 2, what is the smallest prime p such that
a set S with exactly k elements exists with property D?

The answer to Question 1 for k = 4 is p = 41, which is achieved
using S = {1, 4, 8, 9}.
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Question 2. For each k ≥ 2, does there exist a natural number Nk

such that for all primes p > Nk, there exists a set S with k elements
that has property D?
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