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A LEISURELY ELEMENTARY TREATMENT OF
STIRLING’S FORMULA

FINBARR HOLLAND

Abstract. A self-contained account of Stirling’s formula for n!
is presented that is based on definitions of the constants e and π
that appear in it, and uses only the rudiments of the analysis of
the convergence of numerical sequences, infinite series, and infinite
products.

1. Introduction

Stirling’s formula tells us that n! is asymptotically equal to
nne−n

√
2πn, implying that

lim
n→∞

n!

nn+
1
2e−n

=
√

2π. (1)

This formula is remarkable because it provides an approximation of
n! that consists of a non-integral expression involving the irrational
numbers e and π. In this respect, to somebody seeing it for the
first time, it must be just as amazing as Euler’s identity linking the
numbers −1, i, e and π via the equation eiπ = −1.

Over the years, many proofs of equation 1 have been published,
and the literature is replete with ones of many different kinds. A
sample of these can be found in [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].
With one exception—and the present offering is no different in this
regard—these articles contain ad-hoc proofs of equation 1. Reference
[6] is the exception: it is Walter Hayman’s most cited article, and
his proof illustrates a powerful method for asymptotically estimating
the coefficients of a class of power series of analytic functions, termed
admissible by him.
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In this note we outline a derivation of equation 1 that could be
taught at the end of a first course of analysis that includes a thor-
ough treatment of the theory of convergence of sequences, series
and infinite products, and the basic properties of the exponential
and trigonometrical functions. It eschews integration completely.

We begin by establishing that there are positive constants a, b such
that

ann+
1
2e−n ≤ n! ≤ bnn+

1
2e−n, n = 1, 2, . . . . (2)

This is very often all that is needed for many applications. Next,
we show that the positive sequence

Sn =
n!

nn+
1
2e−n

, n = 1, 2, . . .

is decreasing, and so convergent; thereafter, we concentrate on show-
ing that

√
2π is its limit. This is the heart of the matter, and, to

deal with it, we establish Wallis’s product formula for π from first
principles. Along the way we encounter the central binomial coeffi-
cients and derive an asymptotic expression for them; whence, as an
application, we evaluate

∫∞
0 e−s

2

ds.

2. Proof of statement 2

A rigorous course on sequences and series would surely include a
definition of the number e, and proofs that the sequences

un = (1 + 1/n)n, vn = (1− 1/n)n, n = 1, 2, . . .

are both strictly increasing, and converge to e and e−1, respectively,
and hence that

(1 +
1

n
)n < e < (1 +

1

n
)n+1, n = 1, 2, . . .

By considering the Geometric Means of the two lists of positive
numbers u1, u2, . . . , un, and v2, v3, . . . , vn, and utilising the last pair
of displayed inequalities, it can be confirmed that the following crude
estimates hold for n!, viz.,

(n+ 1)ne−n < n! < enn+1e−n, n = 1, 2, . . . ,

which go someway towards explaining the presence of e in equation
1. In particular, 1√

n
< Sn < e

√
n, n = 1, 2, . . ..

To obtain a sharper lower bound for Sn, we use the power series
expansion of the exponential function.
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Lemma 2.1.

Sn > e−1, n = 1, 2, . . . .

Proof. Fix n ≥ 1. Using the power series expansion for expx with
x = n, we have that, for any natural number m,

en >
n+m∑
k=n

nk

k!
=
nn

n!

(
1 +

m∑
k=1

nk∏k
j=1(n+ j)

)
.

Now, if 1 ≤ k ≤ m,

nk∏k
j=1(n+ j)

=
1∏k

j=1(1 + j
n)

≥
k∏
j=1

exp(− j
n

)

= exp(−k(k + 1)

2n
)

≥ exp(−m(m+ 1)

2n
).

Hence, for any integer m ≥ 1,

en n!

nn
> (m+ 1) exp(−m(m+ 1)

2n
).

The stated result now follows from this upon setting m = b
√
nc. �

Theorem 2.2. The sequence (Sn) is strictly monotonic decreasing
and converges to a positive number.

Proof. Evidently, (Sn) is strictly monotonic decreasing if and only if

e < (1 +
1

n
)n+

1
2 , n = 1, 2, . . . . (3)

But, 2n−1 ≤ n!, n = 1, 2, . . ., and so, if 0 ≤ x < 1, then

e2x = 1 + 2
∞∑
n=1

2n−1

n!
xn ≤ 1 + 2

∞∑
n=1

xn =
1 + x

1− x
,

with equality if and only if x = 0. Hence, inequality 3 follows on
setting x = 1/(2n + 1). Thus, (Sn) is monotonic decreasing. Since
it is bounded below by e−1, it converges to a positive number as
claimed. �
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Corollary 2.3.

e−1nn+
1
2e−n ≤ n! ≤ enn+

1
2e−n, n = 1, 2, . . . . (4)

Proof. This is an immediate consequence of Lemma 2.1, and the fact
that Sn ≤ S1 = e, n = 1, 2, . . .. �

This result implies statement 2, and suffices in many situations
where one is interested in crude but tight estimates for sequences
involving the factorial function. For instance, one can use it to
obtain good bounds for the sequence of central binomial coefficients(
2n
n

)
, n = 1, 2, . . .. Indeed, it easily follows from statement 4 that

e−3
√

2 4nn−
1
2 ≤

(
2n

n

)
≤ e3
√

2 4nn−
1
2 , n = 1, 2, . . . .

In passing, we note that the sequence (Cn) defined by

Cn =

√
n
(
2n
n

)
4n

, n = 1, 2, . . .

is strictly increasing, and so converges to a positive number, which
we denote by C; we’ll determine its value in Section 4.

3. The limit of the sequence (CnSn)

It follows from Theorem 2.2 that the limit S ≡ limn→∞ Sn exists,
and S ≥ e−1. We proceed to identify the product CS.

Theorem 3.1. CS =
√

2.

Proof. To see this, note that

S2n =
(2n)!

(2n)2ne−2n
√

2n

=
(2n)!

√
n

(n!)222n+1/2

(
n!

nne−n
√
n

)2

=
CnS

2
n√

2
.

Hence, by the product and subsequence rules for limits of se-
quences, S = CS2

√
2

, and so CS =
√

2, as claimed. �

Thus, once we know C, we know S, and vice versa.
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4. The value of C

Starting with the definition of π as the smallest positive root of
the sine function, in this section we determine C by relating it to
the value of the Wallis product.

4.1. The Wallis product. Since, for every positive integer n,

C2
n =

(
(2n)!

√
n

(n!)222n

)2

=
n

2n+ 1

((2n)!)2 (2n+ 1)

24n(n!)4

=
n

2n+ 1

n∏
k=1

(1− 1

4k2
),

we have that

2C2 =
∞∏
k=1

(1− 1

4k2
).

We proceed to relate the value of this infinite product 1 to the limit of
another sequence, which comes from a factorisation of sin(2n+ 1)x.
To obtain this, fix the positive integer n, and let m = 2n + 1, for
convenience. Let ω = e2πi/m. Then, for any complex number z,

z2m − 1 =
m∏
r=1

(z2 − ωr)

= (z2 − 1)
n∏
r=1

(z2 − ωr)
2n∏

r=n+1

(z2 − ωr)

= (z2 − 1)
n∏
r=1

(z2 − ωr)(z2 − ω̄r)

= (z2 − 1)
n∏
r=1

(z4 − 2z2<ωr + 1).

1Of course, if, at this point, we accept as known that this is 2/π, we can delete
the rest of this section. However, rather than do so, we prefer to prove this result
ab initio.
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Hence, letting z = eix, where x is any real number, it follows that

sin(mx) = 2n sinx
n∏
r=1

(cos(2x)− cos(2rπ/m))

= 22n sinx
n∏
r=1

(sin2(rπ/m)− sin2 x).

In particular, we conclude from this that, first of all,

m = 22n
n∏
r=1

sin2(rπ/m),

and thence that

sin(mx) = m sinx
n∏
r=1

(
1− sin2 x

sin2(rπ/m)

)
.

Choose x = π/2m, and consider the limiting behaviour of

1

m sin(π/2m)
=

n∏
r=1

(
1− sin2(π/2m)

sin2(rπ/m)

)
as n → ∞. Clearly, the sequence on the left side converges to
2/π. To handle the sequence on the right side, we need a variant
of Tannery’s theorem [1, 3], tailored to the situation in hand. Since
this may not be familiar to many people, we include a proof for
completeness.

Lemma 4.1. Suppose am(n), m, n = 1, 2, . . ., is a double sequence
of complex numbers, with the following properties:

(1) there is a sequence of positive numbers mr, r = 1, 2, . . ., such
that

∏∞
r=1(1 +mr) is convergent, and

sup
n≥1
|ar(n)| ≤ mr, r = 1, 2, . . . ;

(2) for each m, the sequence am(n), n = 1, 2, . . ., converges to
am;

(3) the sequence Pn, defined by

Pn =
n∏

m=1

(1 + am(n)), n = 1, 2, . . . ,

converges to P , say.
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Then

P =
∞∏
m=1

(1 + am).

Proof. Fix m and let n > m. Then∣∣∣Pn − m∏
r=1

(1 + ar(n))
∣∣∣ =

∣∣∣ m∏
r=1

(1 + ar(n))
∣∣∣ ∣∣∣ n∏

r=m+1

(1 + ar(n))− 1
∣∣∣

≤
m∏
r=1

(1 +mr)

(
n∏

r=m+1

(1 +mr)− 1

)
= Qn −Qm,

where

Qn =
n∏
r=1

(1 +mr), n = 1, 2, . . .

Under our assumptions, the sequence Qn converges to the infinite
product

Q =
∞∏
m=1

(1 +mr),

while limn→∞ am(n) = am, and limn→∞ Pn = P . Hence, letting
n→∞, we deduce from the inequality just established that

|P −
m∏
r=1

(1 + ar)| ≤ Q−Qm, m = 1, 2, . . . ,

whence the result follows. �

We apply Lemma 4.1 with

ar(n) = −sin2(π/2m)

sin2(rπ/m)
, r = 1, 2, . . . , n, n = 1, 2, . . . .

Since 2x/π ≤ sinx ≤ x, if 0 ≤ x ≤ π/2, it follows that

sup{|ar(n)| : n = 1, 2, . . .} ≤ π2

16r2
, r = 1, 2, . . . .

Also

lim
n→∞

ar(n) = − 1

4r2
.

Hence

lim
n→∞

n∏
r=1

(
1− sin2(π/2m)

sin2(rπ/m)

)
=
∞∏
r=1

(1− 1

4r2
).
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Combining our results we may conclude that

2C2 =
∞∏
r=1

(1− 1

4r2
) =

2

π
,

and so C = 1/
√
π. It follows that S =

√
2π.

5. The value of the integral
∫∞
0 e−s

2

ds

As a quick look at the references reveals, many proofs of equation
1 rely on knowing the value of this integral. Here, we reverse mat-
ters and essentially derive its value from equation 1, by identifying
it directly with Cπ/2. Conversely, of course, making this identifica-
tion, we can dispense entirely with the previous section and obtain
equation 1 very quickly.

Since
(
2n
n

)
is the constant term in the trigonometrical polynomial

(eix + e−ix)2n, it’s clear that

1

2π

∫ π

−π
cos2n x dx = 2−2n

(
2n

n

)
, n = 0, 1, . . . .

Hence, for n = 1, 2, . . .,

Cn =

√
n
(
2n
n

)
22n

=

√
n

2π

∫ π

−π
cos2n x dx

=
2
√
n

π

∫ π/2

0

(1− sin2 x)n dx

=
2
√
n

π

∫ 1

0

(1− t2)n−
1
2 dt

=
2

π

∫ √n
0

(1− s2

n
)n−

1
2 ds.

But, if 0 ≤ s ≤
√
n, then

(1− s2

n
)n−

1
2 ≤ e−(n−

1
2 )s

2/n = e−s
2

es
2/2n ≤ e−s

2√
e.

Furthermore,

lim
n→∞

(1− s2

n
)n−

1
2 = e−s

2

.
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Hence, by the variant of Tannery’s theorem for integrals, or by
Lebesgue’s dominated convergence theorem,

C = lim
n→∞

Cn =
2

π

∫ ∞
0

e−s
2

ds.
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