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A Class of Weakly Nil-Clean Rings

PETER V. DANCHEV

Abstract. We completely describe the structure of weakly nil-
clean rings with the strong property. The main characterization
theorem somewhat improves on results of Diesl in J. Algebra (2013)
concerning strongly nil-clean rings and Breaz-Danchev-Zhou in J.
Algebra Appl. (2016) concerning abelian weakly nil-clean rings.

1. Introduction and Background

Throughout the present paper all rings R considered shall be as-
sumed to be associative and unital with identity element 1. As
usual, U(R) denotes the set of all invertible elements of R, Id(R)
the set of all idempotents of R and Nil(R) the set of all nilpotents
of R. Traditionally, J(R) will always denote the Jacobson radical of
R. All other notions and notations, not explicitly stated herein, are
standard and may be found in [10].

The following concept appeared in [11].

Definition 1.1. A ring R is called clean if each r ∈ R can be
expressed as r = u + e, where u ∈ U(R) and e ∈ Id(R).

If, in addition, the existing idempotent is unique, then R is said
to be uniquely clean. A clean ring R with ue = eu is said to be
strongly clean. If again the existing idempotent is unique, the ring
is called uniquely strongly clean (see [4]).

It is well known that uniquely clean rings, being abelian clean
rings, are strongly clean. The converse, however, does not hold
in general. Nevertheless, uniquely clean rings are uniquely strongly
clean, which containment cannot be reversed. However, [4, Example
4] demonstrates that uniquely clean rings are exactly the abelian
uniquely strongly clean rings.
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In particular, in [9] the following concept was introduced:

Definition 1.2. A ring R is called nil-clean if each r ∈ R can be
written as r = q + e, where q ∈ Nil(R) and e ∈ Id(R).

If, in addition, the existing idempotent is unique, then R is said
to be uniquely nil-clean. A nil-clean ring R with qe = eq is said to
be strongly nil-clean. If again the existing idempotent is unique, the
ring is called uniquely strongly nil-clean.

It is well known that uniquely nil-clean rings, being abelian nil-
clean rings, are strongly nil-clean. This implication is not reversible,
however. Nevertheless, it follows from [3, Theorem 4.5] and [7] that
uniquely nil-clean rings are precisely the abelian nil-clean rings (see
[9, Theorem 5.9] as well). Also, commutative nil-clean rings are
always uniquely nil-clean (compare with [8, Proposition 1.6]), and
even it was proved in [9, Corollary 3.8] that strongly nil-clean rings
and uniquely strongly nil-clean rings do coincide in general.

On the other hand, the latter concept of nil-cleanness was ex-
tended in [8] and [2], respectively, by defining the notion of weak
nil-cleanness as follows:

Definition 1.3. A ring R is called weakly nil-clean if every r ∈ R
can be presented as either r = q + e or r = q− e, where q ∈ Nil(R)
and e ∈ Id(R).

If, in addition, the existing idempotent is unique, then R is said to
be uniquely weakly nil-clean. A weakly nil-clean ring with qe = eq
is said to be weakly nil-clean with the strong property. If again the
existing idempotent is unique, the ring is called uniquely weakly nil-
clean with the strong property.

It was established in [2] and [8] that weakly nil-clean rings are
themselves clean. Likewise, in [2] was established a complete char-
acterization of abelian weakly nil-clean rings as those abelian rings
R for which J(R) is nil and R/J(R) is isomorphic to a Boolean ring
B, or to Z3, or to B × Z3. We notice also that uniquely weakly
nil-clean rings were classified in [5] as abelian weakly nil-clean rings.

The objective of this article is to continue these two explorations
by giving a complete description of the structure of the above-defined
weakly nil-clean rings having the strong property. As an application,
we will characterize the class of rings equipped with the strong nil-
involution property, defined as follows:
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Definition 1.4. We will say that a ring R has the nil-involution
property if, for any r ∈ R, we have either r = v+1+w or r = v−1+w,
where v ∈ Nil(R) and w2 = 1.

If, in addition, vw = wv, then we call that R has the strong nil-
involution property.

The motivation for considering and exploring the sum of an invert-
ible plus an idempotent, as well as other such variations of elements
as above, is illustrated in details via concrete examples in [11], [9]
and [2], respectively.

2. The Main Result

We come now to our main result in which we give a comprehensive
characterization of weakly nil-clean rings enabled with the strong
property.

Theorem 2.1. A ring R is weakly nil-clean with the strong property
if, and only if, R is either a strongly nil-clean ring, or R/J(R) is
isomorphic to Z3 with J(R) nil, or R is a direct product of two such
rings.

Proof. We show that for any such weakly nil-clean ring R will follow
that R ∼= R1×R2, where R1/J(R1) is Boolean with J(R1) nil, and R2

is either {0} or R2/J(R2) ∼= Z3 with J(R2) nil. In fact, in accordance
with [2], we write that R ∼= R1 × R2, where R1 is a nil-clean ring
and R2 is a weakly nil-clean ring for which 2 is invertible. Since
R has the “strong” property, it follows at once that R1 is strongly
nil-clean. Thus, appealing to [7], R1/J(R1) must be Boolean with
nil J(R1).

As for the second direct factor, we claim that all units of R2 are
the sum or the difference of a nilpotent and 1, that is, they belong
to Nil(R2)±1. In fact, if u is an arbitrary unit in R2, then being an
element in R, one can write that u = q + e or u = q − e, where q is
a nilpotent of R2 and e is an idempotent of R2 which commute, i.e.,
qe = eq. Thus, uq = (q ± e)q = q2 ± eq = q2 ± qe = q(q ± e) = qu.
Therefore, u−q = e and q−u = e are again units and simultaneously
idempotents. This means that e = 1 in both cases, hence u = q ± 1
as claimed. Moreover, in view of [2], 6 being a central nilpotent
in R2 lies in J(R2) which is nil. Since 2 inverts in R2, it follows
immediately that 3 lies in J(R2), so that R/J(R2) is of characteristic
3. Furthermore, for any idempotent e ∈ R2, the element 1−2e is an
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involution because (1− 2e)2 = 1 and thus, by what we have already
shown, either 1− 2e = q + 1 or 1− 2e = q− 1 for some q ∈ Nil(R).
Hence one of the following equalities 2e = −q or 2(1− e) = q holds,
so that e = −q

2 or 1− e = q
2 . Since these are both idempotents and

nilpotents, it follows at once that e = 0 or e = 1. Consequently,
R2 being indecomposable is abelian and, by [2], we deduce that
R2/J(R2) has to be isomorphic to Z3, as stated. �

As a consequence to the above fact, we have the following gener-
alization of the corresponding fact from [9].

Corollary 2.2. If R is a weakly nil-clean ring with the strong prop-
erty, then for any idempotent e of R the corner ring eRe is a weakly
nil-clean ring with the strong property. In particular, if Mn(R) is a
weakly nil-clean ring having the strong property, then so is the ring
R.

Proof. First of all, we apply Theorem 2.1. Next, one observes that
Id(R) = {0, 1}, provided R/J(R) is isomorphic to Z3. To that goal,
if r ∈ Id(R), then r + J(R) ∈ Id(R/J(R)) = {J(R), 1 + J(R)}. So,
either r ∈ J(R) or r ∈ 1 + J(R) ≤ U(R) which ensures that r = 0
or r = 1, respectively. This substantiates our assertion. Henceforth,
the proof goes on utilizing the fact that, if R has all unipotent units,
then eRe also has only unipotent units (see [7]).

For the second part, one sees that R ∼= E1nMn(R)E1n for the
idempotent matrix E1n with (1, n)-entry 1 and the other entries 0,
so we are finished. �

Dropping off the “strong” condition, it is unknown at this stage
whether or not if R is weakly nil-clean, then so does eRe for any
idempotent e of R. Adapting some results from [2], we can conclude
that the validity of the converse implication for the corner problem
cannot be happen.

We are now ready to proceed by proving of the following.

Theorem 2.3. Suppose that R is a ring equipped with the strong
nil-involution property. Then R/J(R) ∼= Z3 and J(R) is nil. The
converse is also true.

Proof. We shall show that such a ring R is weakly nil-clean with
the strong property, for which 3 ∈ J(R). To that purpose, given
r ∈ R, we write r = q + 1 + v or r = q − 1 + v for some existing
nilpotent q and involution v which commute. Thus q + v is again a
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unit, say u, and r = u + 1 or r = u− 1. Since 1 cannot be written
as u + 1, it follows that 1 = u − 1. So, 2 = u is a unit whence 2
inverts in R. Moreover, it is elementary to check that both 1+v

2 and
1−v
2 are idempotents. Since 2r ∈ R, one sees that 2r = q + 1 + v

or 2r = q − 1 + v = q − (1 − v) which implies that r = q
2 + 1+v

2

or that r = q
2 −

1−v
2 . Since q

2 remains a nilpotent, it is now clear
that R is weakly nil-clean having the strong property, as asserted.
In conjunction with [2], it follows that 6 belongs to J(R) and hence
3 lies in J(R). We furthermore need apply the idea for proof in
Theorem 2.1 to get the wanted claim.

Reciprocally, if r ∈ R, then r+J(R) can be written as one of J(R),
1+J(R) or −1+J(R). Since J(R) ⊆ Nil(R), one derives that either
r = q or r = q+1 or r = q−1, for some nilpotent q. Since 3 ∈ J(R)
is a nilpotent, we infer that either r = q + 1 + (−1) = q − 1 + 1 or
r = (q + 3)− 1 + (−1) or r = (q − 3) + 1 + 1. But q ± 3 remains a
nilpotent and (−1)2 = 12 = 1, so we are set. �

Remark. It is worthwhile noticing that it follows from the proof of
Theorem 2.1 above in a combination with [2] that a ring satisfies the
(strong) nil-involution property if and only if it is a weakly nil-clean
ring (with the strong property) for which 2 is invertible.

We are now in a position to obtain an element-wise characteriza-
tion of weakly nil-clean elements with the strong property. To that
aim, similarly to above, an element a of a ring R is called clean
if a = u + e where u ∈ U(R) and e ∈ Id(R). If a = q + e with
q ∈ Nil(R) and e ∈ Id(R), a is said to be nil-clean, while a is said
to be weakly nil-clean provided a = q + e or a = q − e. In addition,
if q and e commutes, we will say that a is either strongly nil-clean
or weakly nil-clean with the strong property.

It is in principle known and easy to prove that a ∈ R is strongly
nil-clean ⇐⇒ a2−a ∈ Nil(R). This can be substantially extended
to the following:

Proposition 2.4. An element a ∈ R is weakly nil-clean having the
strong property if, and only if, either a2 − a ∈ Nil(R) or a2 + a ∈
Nil(R).

Proof. “⇒”. Writing a = q + e or a = q − e with qe = eq, we have
a2 − a = q2 − q + 2qe or a2 + a = q2 + q − 2qe. In both cases, these
are nilpotents, as expected.
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“⇐”. First, suppose that a2 + a ∈ Nil(R) whence (a2 + a)n = 0
for some n ∈ N. Setting e = (1−(1+a)n)n, by the Newton binomial
formula we deduce that e = kan = 1−m(1 + a)n for some k,m ∈ R
depending only on a, and thus 1−e = m(1+a)n. It is immediate that
ae = ea because ak = ka as well as am = ma whence we observe
that e ∈ Id(R) since e(1− e) = kan ·m(1 + a)n = km(a + a2)n = 0.
Furthermore, a + e = a(1 − e) + e(1 + a) and hence (a + e)n =
an(1− e) + e(a + 1)n = anm(1 + a)n + kan(1 + a)n = m(a + a2)n +
k(a + a2)n = 0. Finally, this means that a + e ∈ Nil(R) and,
therefore, a = (a+e)−e ∈ Nil(R)− Id(R) with (a+e)e = e(a+e).
We can process in a similar way letting a2 − a ∈ Nil(R) (see cf.
[12] too) to conclude that a = (a − e) + e ∈ Nil(R) + Id(R) with
(a − e)e = e(a − e), so that in both cases a is a weakly nil-clean
element with the strong property, as asserted. �

Remark. This can also be directly deduced, because a is a weakly
nil-clean element with the strong property ⇐⇒ either a or −a is a
strongly nil-clean element. In fact, a2−a ∈ Nil(R) or (−a)2−(−a) =
a2 + a ∈ Nil(R).

Recollect that a ring R is called weakly Boolean if each element of
R is idempotent or minus idempotent. Since it is self-evident that
the element a or −a is nil-clean ⇐⇒ a is weakly nil-clean ⇐⇒
−a is weakly nil-clean, adapting the idea from [12, Proposition 3.9]
along with [6], one can infer an other confirmation of Theorem 2.1
in a more convenient form. Namely, R is a weakly nil-clean ring
with the strong property ⇐⇒ J(R) is nil and R/J(R) is weakly
Boolean ⇐⇒ J(R) is nil and either R/J(R) ∼= B, or R/J(R) ∼= Z3,
or R/J(R) ∼= B × Z3, where B is a Boolean ring.

Generally, if R/J(R) is a reduced weakly nil-clean ring having the
strong property and J(R) is nil, then R is a weakly nil-clean ring
having the strong property. In fact, by what we have proved above
in Proposition 2.4, the relation (a+ J(R))2 + (a+ J(R)) = a2 + a+
J(R) ∈ Nil(R/J(R)) = J(R) tells us that a2 + a ∈ J(R) ⊆ Nil(R),
as required. Same for a2− a ∈ Nil(R), and so again with the aid of
Proposition 2.4 we are finished.

On the other side, in [1] was proven that there is a nil-clean element
which is not clean. However, every strongly nil-clean element has to
be clean. In fact, even much more is true:

Proposition 2.5. Each weakly nil-clean element having the strong
property is clean.
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Proof. Writing b = n+e or b = n−e with ne = en for some nilpotent
n and idempotent e, we have either b = (n + 2e − 1) + (1 − e) or
b = (n − 1) + (1 − e). In both cases, b is a clean element because
(2e − 1)2 = 1 and 2e − 1 commutes with n, so that n + 2e − 1 is a
unit as well as so is n− 1, whereas 1− e is an idempotent. �

3. Concluding Discussion

We close the work with the following challenging problem.

Conjecture 1. A ring R is weakly nil-clean if, and only if, R is
either a nil-clean ring or R/J(R) is isomorphic to Z3 with J(R) nil
or R is a direct product of these two rings.

We notice that this question will be resolved in the affirmative
provided that the following holds:

Conjecture 2. A ring R satisfies the nil-involution property if, and
only if, R/J(R) ∼= Z3 and J(R) is nil.

Indeed, to show that the “and only if” part of Conjecture 1 is
true, we decompose R as the direct product of a nil-clean ring and
a ring with the nil-involution property. In fact, since by [2] we know
that 6n = 0 for some n ∈ N and since (2n, 3n) = 1, i.e., there exist
non-zero integers u, v such that 2nu + 3nv = 1, it plainly follows
that R = 2nR ⊕ 3nR because 2nR ∩ 3nR = {0}. In fact, to show
that this intersection is really zero, given x = 2na = 3nb for some
a, b ∈ R, we then have 2nau = 3nbu. However, a(1 − 3nv) = 3nbu
whence 3n(av+bu) = a. Multiplying both sides by 2n, we derive that
0 = 2na = x, as required. So, with the Chinese Reminder Theorem
at hand, or directly by the above-given direct decomposition of R
into the sum of two ideals, we deduce that R ∼= L × P , where
L ∼= R/2nR ∼= 3nR and P ∼= R/3nR ∼= 2nR. Utilizing [2], it follows
that both L and P are weakly nil-clean as epimorphic images of R.
But it is obvious that 2 ∈ J(L), so appealing once again to [2], we
conclude that L is nil-clean, as claimed.

As for P , we may assume that P 6= 0. Thus 3 ∈ J(P ) and,
in addition, 2 ∈ U(P ). Applying [2] and [9], we infer that P is
indecomposable and not nil-clean. Moreover, a new application of [2]
implies that J(P ) is nil. Letting now a ∈ P , there exist b ∈ Nil(P )
and e ∈ Id(P ) such that a = b + e or a = b − e. In the first case,
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a = ((b + 3e) − 1) + (1 − 2e) with (1 − 2e)2 = 1. Moreover, as
bm = 0 for some integer m > 0 and 3 ∈ J(P ), it readily follows
that (b + 3e)m ∈ J(P ), whence b + 3e is a nilpotent because J(P )
is nil. Next, if a = b − e, then a = ((b − 3e) + 1) + (−1 + 2e)
with (−1 + 2e)2 = 1. As above, since bm = 0 and 3 ∈ J(P ), it
easily follows that (b− 3e)m ∈ J(P ), so that b− 3e is a nilpotent as
J(P ) is nil. This finally enables us that P satisfies the nil-involution
property, as claimed. We furthermore apply Conjecture 2 to get the
desired claim.

To demonstrate now that the “if” part of Conjecture 1 is valid,
exploiting [2] and Conjecture 2, it is enough to prove that any ring
equipped with the nil-involution property is weakly nil-clean. In
fact, one easy sees that 3 ∈ J(R) and hence 2 ∈ U(R). Let now
a ∈ R. Then −2a = v + w, where v ∈ Nil(R) ± 1 and w2 = 1. If
v = b + 1 with b ∈ Nil(R), then a = (− b

2)− 1+w
2 with − b

2 ∈ Nil(R)

and 1+w
2 an idempotent. If now v = b − 1 with b ∈ Nil(R), then

a = (− b
2) + (1−w)

2 with − b
2 ∈ Nil(R) and 1−w

2 an idempotent. So, R
is weakly nil-clean, as needed.

This completes the proof.

Note also that it is not too hard to verify that the sufficiency in
Conjecture 2 is always fulfilled, so that it suffices to establish only
the necessity.
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