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INTEGRATION ISSUES IN PROBABILITY

PAT MULDOWNEY

Abstract. This essay explores the meaning of stochastic differen-
tial equations and stochastic integrals. It sets these subjects in a
context of Riemann-Stieltjes integration. It is intended as a com-
ment or supplement to [13].

1. Introduction

Famously, England and America are said to be divided by their
common language. Similarly, mathematical analysts and probability
theorists employ modes of expression which are superficially simi-
lar, but which may sometimes evoke different interpretations and
connotations in each camp. This can be illustrated by the formula∫ x

−∞
exp

(
−(y − µ)2

2σ2

)
dy

σ
√

2π
.

To the analyst this expression may signify an improper indefinite
integral, whereas the probabilist may see a cumulative normal dis-
tribution function. Aspects of the expression which are problematic
or challenging to one may be trivially obvious to the other.

Another symptom is the probability/measure issue. In a kind
of coup d’etat by mathematical analysis following the discoveries
of A.N. Kolmogorov, the impression is sometimes given that the
phenomenon of probability is now and forevermore to be understood
in terms of the theory of measure.

But it is an overstatement to say that probability can be reduced
to measure. Probability was a subject of interest long before modern
measure theory existed, and there are aspects of random variation
which are not amenable to explanation by the current methods of
measure theory. On the other hand, an expert in probability is not,
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by virtue of that alone, an expert in the theory of measure. Neither
subject encompasses the other.

This essay seeks to tease out some distinctive features of these two
mathematical disciplines in respect of topics such as Itô’s formula
and stochastic calculus. In particular, it aims to demonstrate how
the modern theory of integration can shed light on some challenging
aspects of random variation.

Mathematical analysis does not “own” probability theory. But,
after all these years, it can still contribute to it!

2. Itô’s formula

Itô’s formula is an example of a stochastic differential equation:

dYs =
∂f(Xs)

∂s
ds+

1

2

∂2f(Xs)

∂X2
s

ds+
∂f(Xs)

∂Xs
dXs. (1)

For Ys = f(Xs), this formula is an evocative, shorthand way of
writing

Yt−Y0 =

∫
T

dYs =

∫
T

∂f(Xs)

∂s
ds+

1

2

∫
T

∂2f(Xs)

∂X2
s

ds+

∫
T

∂f(Xs)

∂Xs
dXs.

(2)
If the various expressions in this equation represented ordinary num-
bers and functions, then the presence in the equation of various in-
tegration processes might incline us to call (2) an integral equation.

But, while the symbol “f” in both equations is actually an or-
dinary deterministic function (such as the operation of taking the
square of some operand), the symbols X and Y do not represent
“ordinary” functions or definite numbers. Instead, they are “ran-
dom variables”, that is, quantities which are indefinite or unknown,
to the extent that they can be predicted only within some margin
of error.

The presence of “=” in the equation indicates that it is an ex-
act statement about actual quantities. Itô’s formula can be best
regarded as an exact statement about margins of error in estimates
of uncertain quantities or measurements.

In other words, it deals with probability distributions of unpre-
dictable quantities which are obtained by means of various oper-
ations in the formula, such as the integration operation. So Itô’s
formula can be regarded as a kind of integral equation in which the
integrals are the type known as stochastic integrals.
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What is a stochastic integral? What is the meaning of Itô’s for-
mula? These questions are not trivial. They can be answered in a
loose or intuitive manner, but deeper and more exact understanding
can be challenging for non-specialists. And since they are a funda-
mental part of many important practical subjects, such as finance
and communications, an understanding of them which is merely
loose or hazy can be a serious barrier to competent practice in such
subjects.

This essay seeks to outline an introduction to stochastic inte-
grals which is less difficult than the standard textbook treatment
of this subject. It uses Henstock’s non-absolute integration instead
of Lebesgue integration. It explores, compares, and contrasts these
two methods of integration, with a view to assessing their role in
stochastic integrals.

3. Random variables

Broadly speaking—at the risk of haziness and looseness!—a ran-
dom variable is a mathematical representation of a measurement
(an experiment, trial, or observation) of some uncertain or unpre-
dictable occurrence or value. For instance, the random variable Z
could represent a single throw of a die, so Z represents possible
outcomes {z = 1, . . . , z = 6} with probabilities {1

6 , . . . ,
1
6}. Or it

could represent measurement of a standard normal variable whose
possible values are the real numbers z ∈ R, with standard normal
probability distribution N(0, 1).

Suppose the throw of the die yields a payoff or outcome y = f(z)
obtained by the following deterministic calculation:

y =

 −1 if z = 1,
+1 if z = 6,

0 otherwise.

This particular experiment or game depends on (is contingent on)
the outcome of the experiment Z, and can be denoted by Y = f(Z).
Where Z has six possible outcomes, with a uniform probability dis-
tribution, Y has three possible outcomes whose probability distribu-
tion can easily be deduced by means of the deterministic calculation



24 P. MULDOWNEY

f . The probability distribution1 of Y is y = −1 with probability 1
6 ,

y = +1 with probability 1
6 , and y = 0 with probability 2

3 .
We can easily invent such contingent random variables or gambling

games using more than one throw of the die, and with payoff Y
dependent on some calculation based on the joint outcome of the
successive throws.

This intuitive formulation is compatible with the formal and rig-
orous conception of a random variable as a P -measurable function
whose domain is a P -measurable sample space Ω. This twentieth
century injection of mathematical rigor by A.N. Kolmogorov and
others brought about a great extension of the depth and scope of
the theory of probability and random variation, including the devel-
opment of many new spheres of application of the theory.

These applications often involve stochastic processes. Suppose T
is some set of indexing elements {s}. For instance, T could be
an interval of real numbers [a, b]. A stochastic process Y = YT is
a family Y = (Y (s))s∈T , for which each element Y (s) = Ys is a
random variable. A sample path (y(s))s∈T of the process Y = YT
can be thought of as a function y : T 7→ R in which, for each s, y(s)
(or ys) is a possible outcome of the random variable (measurement,
experiment, trial) Y (s).

4. Stochastic integrals

Take T = [0, t]. Equation (2) above appears to be the result of
applying an integration operation

∫
T to the equation (1). If this is

the case, and if this step is justified, then comparison of (1) and (2)
implies (without delving into their actual meaning) that∫
T

dYs =

∫ t

0

dYs = Yt−Y0; or

∫
T

dY (s) =

∫ t

0

dY (s) = Y (t)−Y (0).

(3)

1The probability distribution (“margin of error”) carries the essential informa-
tion specifying the character of the random variable or experiment. It is often
convenient to include other “potential” values or outcomes which are not actu-
ally possible or “potential”. For instance, in the die-throwing experiment we can
declare that every real number is a potential outcome. In that case we assign
probability zero to the impossible outcomes. This does not change the random
variable or its probability distribution in any essential way that affects its math-
ematical meaning
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On the face of it, a clear and precise understanding of this simplest
of all possible stochastic integrals would seem to be the sine qua
non of this subject. Expressed as a stochastic differential equation,
it is the tautology dYs = dYs. Whatever (3) actually means, it
seems consistent enough with more familiar forms of integration of
the Stieltjes kind, in the somewhat loose and uncritical sense that
the integral (or sum) of increments dY gives an overall increment.

Advancing a little bit further, take a deterministic function f , and
consider

∫
T f(Ys)dYs (or

∫
T f(Y (s))dY (s)), which is a more general

version of
∫
T dYs. If y is a sample path of the process Y , the expres-

sion ∫
T

f(y(s))dy(s) or

∫
T

f(ys)dys (4)

is a Stieltjes-type integral, which, if it exists, may be thought of as
some limit of Riemann sums∑

f(y(s))∆y(s) or
∑

f(y(sj)) (y(tj)− y(tj−1)) ,

where the finite set of points tj form a partition of the interval
T = [0, t], with tj−1 ≤ sj ≤ tj for each j.

From the point of view of basic mathematical analysis, unlike
(3) which is about “margins of error” in probabilistic measurement,
there is nothing problematic about (4)—this Riemann-Stieltjes-type
integral may or may not exist for particular functions y and f ,
but it is a fairly familiar subject for anyone who has studied ba-
sic Riemann-type integration.

In the Riemann sums for (4), some applications require that sj =
tj−1 for each j. Cauchy’s approach to the theory of integration used
approximating sums with sj = tj−1 or sj = tj, so such sums can
be called Cauchy sums rather than Riemann sums. In any event,
there are various ways, including the Lebesgue method, in which
we can seek to define an integral

∫
T f(y(s))dy(s) for sample paths

yT = (y(s))s∈T of a stochastic process Y = YT .
Suppose a Stieltjes-type integral of f(y(s)) is calculated with re-

spect to the increments y(I) := y(tj) − y(tj−1) of the function yT .
For instance, if f is a function taking some fixed, real, constant value
such as 1, then a “naive” Riemann sum calculation on the domain
T = [0, t], with t0 = 0 and tn = 1 gives∑

f(y(s))y(I) =
n∑
j=1

y(I) =
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((y(t1)− y(0))+((y(t2)− y(t1))+· · ·+((y(1)− y(tn−1)) = y(1)−y(0)

for every sample outcome yT of the process YT . So it is reasonable—
in some “naive” way—to claim that, for this particular function f ,
the Riemann-Stieltjes integral exists for all outcomes yT :∫

T

f(ys)dys =

∫ t

0

dy(s) = y(t)− y(0).

One might then be tempted2 to apply such an argument to step
functions f , and perhaps to try to extend it to some class of con-
tinuous functions f , especially if we are only concerned with sample
paths yT which are continuous.

But the key point here is that, given a stochastic process Y = YT ,
and given certain deterministic functions f , real values∫
T f(y(s))dy(s) can be obtained for each sample path y = yT by

means of a recognizable Stieltjes integration procedure.
Can this class of real numbers or outcomes be related somehow to

some identifiable random variable Z which possesses some identifi-
able probability distribution (or “margin of error” estimates)?

If so, then Z might reasonably be considered to be the random
variable obtained by integrating, in some Stieltjes fashion, the ran-
dom variable f(Ys) with respect to the increments Y (I) = Y (tj) −
Y (tj−1) of the stochastic process YT .

In other words, Z is the stochastic integral
∫
T f(Ys)dYs.

To justify the latter step, a probability distribution (or “margin
of error” data) for Z must be determined. But, in the case of the
constant function f given above (f(ys) = 1), this is straightforward.
Because, with f(ys) = 1 for all outcomes ys in all sample paths
(or joint outcomes) yT , the distribution function obtained for the
Riemann sum values

∑
f(ys)y(I) is simply the known distribution

function of the outcomes y(t)− y(0) of the random variable Y (t)−
Y (0).

This distribution is the same for all partitions of T = [0, t]. So
it is reasonable to take it to be the distribution function of the
stochastic integral Z =

∫
T f(Ys)dYs. For constant f this seems to

provide meaning and rationale for (4).

2A warning against this temptation is provided in Example 8.3 below.
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What this amounts to is a naive or intuitive interpretation of sto-
chastic integration which seems to hold for some elementary func-
tions f . This approach can be pursued further to give a straightfor-
ward interpretation—indeed, a “proof”—of Itô’s formula, at least
for the unchallenging functions f mentioned above.

But what of the standard or rigorous theory of stochastic integra-
tion?

5. Standard theory of stochastic integration

Unfortunately, this theory cannot accommodate the naive or intu-
itive construction of the simple stochastic integrals described in the
preceding section. Broadly speaking, the elementary Riemann sum
type of calculation is not adequate for the kinds of analysis needed
in this subject. It is not possible, for instance, to apply a mono-
tone convergence theorem, or a dominated convergence theorem, to
simple Riemann and Riemann-Stieltjes integrals. Historically, these
kinds of analysis and proof have been supplied by Lebesgue-type
integrals which, while requiring a measure function as integrator,
cannot be simply defined by means of the usual arrangement3 of
Riemann sums.

And this is where the difficulty is located. Suppose, for instance,
that the stochastic process YT that we are dealing with is a standard
Brownian motion. In that case any sample path yT is, on the one
hand, almost surely continuous—which is “nice”; but, on the other
hand, it is almost surely not of bounded variation in every interval
J of the domain T = [0, 1]. And the latter is “nasty”.

This turns out to be very troublesome if we wish to construct
a Lebesgue-Stieltjes integral using the increments y(I) = y(tj) −
y(tj−1) of a sample path which is continuous but not of bounded
variation in any interval.

The problem is that, in order to construct a Lebesgue-Stieltjes
measure from the increments y(I), we must separate the
non-negative increments y+(I) from the negative-valued increments
y−(I),

y(I) = y+(I)− |y−(I)|,
and try to construct a non-negative measure from each of the compo-
nents. But, because y is not of bounded variation, the construction

3But Section 8 shows that Lebesgue integrals are essentially Riemann-Stieltjes
integrals.
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for each component diverges to infinity on every interval J . Thus
the standard theory of stochastic integration encounters a significant
difficulty at the very first step (4).

To summarize:

• In the standard Itô or Lebesgue integral approach, the most
basic calculation of the integral of a constant function f(YT ),
with respect to the increments dY of a Brownian process,
fails because the Lebesgue-Stieltjes measure does not exist.
• On the other hand, if Riemann sums of the increments of the

process YT are used, then, by cancellation, a finite result is
obtained for each Riemann sum—a result which agrees with
what is intuitively expected.

In the standard Lebesgue (or Itô) theory of stochastic integration—
in [16] for instance—this problem is evaded by postulating a finite
measure µy(J) for each sample path, and then constructing a weak
form of integral which, in the case of Brownian motion, is based on
certain helpful properties of this process.

The trouble with this approach is that it produces a quite difficult
theory which does not lend itself to the natural, intuitive interpre-
tation described above.

However, elementary Riemann-sum-based integration is not gener-
ally considered to have the analytical power possessed by Lebesgue-
style integration. And a great deal of analytical power is required in
the theory of stochastic processes. So at first sight it seems that we
are stuck with the standard theory of stochastic integration, along
with all its baggage of subtlety and complication.

But this is not really the case. The good news is that is actu-
ally possible to formulate the theory of stochastic integrals using
Riemann sums instead of the measures of Lebesgue theory.

6. Integration of functions

To see this, it is first necessary to review the various kinds of
integration which are available to us.

First consider the basic Riemann integral,
∫ b
a f(s)ds, of a real-

valued, bounded, continuous function f(s) on an interval [a, b]. Let
P be a partition of [a, b];

P : a = t0 < t1 < t2 < · · · < tn = b,



INTEGRATION ISSUES IN PROBABILITY 29

for any choice of positive integer n and any choice of tj, 1 ≤ j < n.
For any u < v and any interval I with end-points u and v, write
|I| = v − u. Denoting intervals ]tj−1, tj] by Ij let

UP =
n∑
j=1

Pj|Ij|, LP =
n∑
j=1

pj|Ij|

where

Pj = sup{f(s) : s ∈ Ij}, pj = inf{f(s) : s ∈ Ij}.
Definition 6.1. Define the upper Riemann integral of f by

U := inf{LP : all partitions P of [a, b]},
and the lower Riemann integral of f by

L := sup{lP : all partitions P of [a, b]}.
Then UP ≥ LP for all P , and if U = L we say that f is
Riemann integrable, with∫ b

a

f(s)ds := U = L.

Write the partition P as {I} where each I has the form
Ij = ]tj−1, tj], with |Ij| = tj − tj−1, and Riemann sum

(P)
∑

f(s)|I| =
n∑
j=1

f(sj)|Ij|.

Suppose g(s) is a real-valued, monotone increasing function of s ∈
[a, b], so g(s) ≥ g(s′) for s > s′. For any interval I with end-points
u and v (u < v), define the increment or interval function g(I) to
be g(v)− g(u).

Definition 6.2. If |I| and |Ij| are replaced by g(I) and g(Ij) in
Definition 6.1 of the Riemann integral, then the resulting integral is

called the Riemann-Stieltjes integral of f with respect to g,
∫ b
a f dg

or
∫ b
a f(s)dg(s).

In fact if we start with the latter definition the Riemann integral
is a special case of it, obtained by taking the point function g to be
the identity function g(s) = s.

If g(s) has bounded variation it can be expressed as the difference
of two monotone increasing, non-negative point functions,

g(s) = g+(s)− (−g−(s)),
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and the Riemann-Stieltjes integral of f with respect to g can then
be defined as the difference of the Riemann-Stieltjes integrals of f
with respect to g+ and −g−, respectively.

The following result is well known: if real-valued, bounded f is

continuous and if real-valued g has bounded variation then
∫ b
a f dg

exists.
As suggested earlier, the Lebesgue integral of a real-valued point

function k with respect to a measure µ can be viewed, essentially,
as a Riemann-Stieltjes integral in which the point-integrand k(ω)
satisfies the condition of measurability. To explain this statement
further, consider a measure space (Ω,A, µ) with non-negative mea-
sure µ on a sigma-algebra A of µ-measurable subsets of the arbi-
trary measurable space Ω. Thus, if µ(Ω) = 1, the measure space
is a probability space. Suppose the point-integrand k is a bounded
real-valued µ-measurable function on the domain Ω. Then there
exist real numbers c and d for which

c ≤ k(ω) ≤ d for all ω ∈ Ω.

Also, for each sub-interval J of [c, d], measurability of k implies
µ(k−1(J)) is defined. The basic definition of the Lebesgue integral
of k with respect to µ on Ω is as follows.

Definition 6.3. Let Q = {Jj} = {]vj−1, vj]} be a partition of [c, d],

Q : c = v0 < v1 < v2 < · · · < vn = d,

and let

LQ =
n∑
j=1

vj−1µ(k−1(Jj)), UQ =
n∑
j=1

vjµ(k−1(Jj)).

Let L := sup{LQ : Q}, U := inf{UQ : Q}, the supremum and
infimum being taken over all partitions Q of [c, d]. If L = U , then
their common value is the Lebesgue integral

∫
Ω k(ω)dµ.

An advantage of Lebesgue integration over Riemann integration
is that the former has theorems, such as the dominated and mono-
tone convergence theorems which, under certain condition, make it
possible for instance to change the order of integration and differ-
entiation. Also, Fubini’s and Tonelli’s theorems allow exchange of
order of multiple integrals.

What makes “good” properties such as these possible is measur-
ability of the integrand k. But the Lebesgue integral itself is, by
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definition, a Riemann-Stieltjes-type integral. To see this, for each
u ∈ [c, d] define the monotone increasing function

g(u) = µ
(
k−1([c, u])

)
, (5)

and take the point function h(u) to be the identity function h(u) =
u. Then the construction4 in Definition 6.3 shows that∫

Ω

k(ω)dµ =

∫ d

c

h(u) dg(u), =

∫ d

c

u dg. (6)

In other words, when combined with the measurability property of
the point-integrand, this particular Riemann-Stieltjes construction
gives the “good” properties required in the integration of functions.

7. Riemann definition

But in fact a Riemann construction can give these “good” prop-
erties without postulating measurability in the definition5 of the
integral. To see this, we start again by considering a more general
and more flexible definition of basic Riemann and Riemann-Stieltjes
integration which generalizes the construction of these integrals as
given above in Definitions 6.1 and 6.2.

The proposed, more general, definition of the Riemann-Stieltjes in-
tegral is applicable to real- or complex-valued functions f (bounded
or not); and to real- or complex-valued functions g, with or without
bounded variation.

Definition 7.1. The function f is Riemann-Stieltjes integrable with
respect to g, with integral α, if, given ε > 0, there exists a constant
δ > 0 such that, for every partition P = {I} of [a, b] satisfying
|I| < δ for each I ∈ P , the corresponding Riemann sum satisfies∣∣∣α− (P)

∑
f(s)g(I)

∣∣∣ < ε,

so α =
∫ b
a f dg.

4The integral of a point function h(u) with respect to a point function g(u) can
be addressed either as a Riemann-Stieltjes construction or as a Lebesgue-Stieltjes
construction. When h(u) = u and g(u) = µ (k−1([c, u])) the former approach gives
the Lebesgue integral

∫
Ω
k(ω)dµ. On the other hand, if the Lebesgue-Stieltjes

construction is attempted with h(u) = u and g(u) = µ (k−1([c, u])), we simply
replicate the Riemann-Stieltjes construction of the Lebesgue integral

∫
Ω
k(ω)dµ,

and nothing new emerges.
5And if measurability is redundant in the definition, then so is the measure

space structure.
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If g is the identity function g(s) = s then Definition 7.1 reduces

to the ordinary Riemann integral of f ,
∫ b
a f(s)ds.

Definition 7.1 does not embody conditions which ensure the ex-
istence of the integral. Such integrability conditions are not postu-
lated but are deduced, in the form of theorems, from the definition
of the integral.

Thus, if the function properties specified, respectively, in Defini-
tions 6.1, 6.2, and 6.3 above are assumed, the integrability in each
case follows from Definition 7.1; and Definitions 6.1, 6.2, and 6.3
become theorems of Riemann, Riemann-Stieltjes, and Lebesgue in-
tegration, respectively.

Definition 6.3 can now be expressed in terms of Definition 7.1,
using the formulations (5) and (6), and assuming measurability of
the integrand f with respect to measure space (Ω,A, µ).

Definition 7.2. The function f is Lebesgue integrable with respect
to measure µ, with integral

∫
Ω f(ω)dµ = α, if, given ε > 0, there

exists a constant δ > 0 such that, for every partition Q = {J} of
[c, d] satisfying |J | < δ for each J ∈ Q, the corresponding Riemann
sum satisfies ∣∣∣α− (Q)

∑
h(u)g(J)

∣∣∣ < ε,

where h(u) = u is the identity function on [c, d]; so α =
∫ d
c h(u)dg(u)

=
∫ d
c u dg.

Thus, by definition, the Lebesgue integral
∫

Ω f(ω)dµ, with domain

Ω, is the Riemann-Stieltjes integral
∫ d
c u dg, with domain [c, d].

The following result is an obvious consequence of Definition 7.1.
If f has constant value β and if g is an arbitrary real- or complex-

valued function, then
∫ b
a f dg exists and equals β(g(b)− g(a)). This

follows directly from Definition 7.1 since, for every partition P of
[a, b], cancellation of terms gives

(P)
∑

f(s)g(I) = β

n∑
j=1

(g(tj)− g(tj−1)) = β (g(b)− g(a)) .

This result does not in general hold for Lebesgue-Stieltjes integra-
tion, as the latter requires that g(s) be resolved into its negative and
non-negative components, g(s) = g+(s)−(−g−(s)), and convergence
may fail when the integral is calculated with respect to each of these
components separately.
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Example 8.3 below shows that, though constant functions f are
Riemann-Stieltjes integrable with respect to any integrator function
g, this does not necessarily extend to step functions f .

Definition 7.1 of the Riemann or Riemann-Stieltjes integral does
not postulate any boundedness, continuity, measurability or other
conditions for the integrand f . But, as already stated, in the ab-
sence of integrand measurability and the construction in Definition
6.3, this method of integration does not deliver good versions of
monotone and dominated convergence theorems, or Fubini’s theo-
rem.

8. -Complete integration

Developments in the subject since the 1950’s—developments which
were originated independently by R. Henstock and J. Kurzweil—
have made good this deficit in the basic Riemann and Riemann-
Stieltjes construction. In this new development of the subject, Def-
inition 7.1 of the Riemann-Stieltjes integral is amended as follows.

Definition 8.1. A function f is Stieltjes-complete integrable with
respect to a function g, with integral α if, given ε > 0, there exists
a function δ(s) > 0 such that∣∣∣α− (P)

∑
f(s)g(I)

∣∣∣ < ε

for every partition P such that, in each term f(s)g(I) of the Rie-
mann sum, we have s− δ(s) < u ≤ s ≤ v < s+ δ(s), where u and v
are the end-points of the partitioning interval I.

In other words, where |I| is less than a constant δ in the basic
Riemann-Stieltjes definition, we have |I| < δ(s) in the new def-
inition. Write α =

∫
[a,b] f(s)g(I), or

∫
[a,b] f dg, for the Stieltjes-

complete integral whenever it exists.
Again, if the integrator function g is the identity function g(s) = s,

the resulting integral (corresponding to the basic Riemann integral),
is the Riemann-complete integral of f , written α =

∫
[a,b] f(s)|I|, or∫

[a,b] f(s)ds. The latter is also known as the Henstock integral, the

Kurzweil integral, the Henstock-Kurzweil, the generalized Riemann
integral, or the gauge integral since in this context the function
δ(s) > 0 is called a gauge.

It is obvious that every Riemann (Riemann-Stieltjes) integrable
integrand is also Riemann-complete (Stieltjes-complete) integrable,
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as the gauge function δ(s) > 0 of Definition 7.1 can be taken to be
the constant δ > 0 of Definition 6.1 and Definition 6.2.

This argument indicates a Lebesgue-complete extension of the
Lebesgue integral, by replacing the constant δ > 0 of Definition 7.2
with a variable gauge δ(u) > 0:

Definition 8.2. Let h(u) = u be the identity function on [c, d].
The function f is Lebesgue-complete integrable with respect to
measure µ, with integral

∫
Ω f dµ = α, if, given ε > 0, there exists a

gauge δ(u) > 0 for c ≤ u ≤ d, such that∣∣∣α− (Q)
∑

h(u)g(J)
∣∣∣ < ε,

for every partition Q = {J} of [c, d] satisfying

u− δ(u) < vj−1 ≤ u ≤ vj < u+ δ(u)

for each J = ]vj−1, vj] ∈ Q.

In that case α =
∫

[c,d] h(u)g(J) =
∫

[c,d] u g(J), and the Lebesgue-

complete integral is a special case of the Stieltjes-complete integral—
a special case in which a measure space structure exists and for which
the integrand is measurable. So it is again clear that every Lebesgue
integrable integrand is Lebesgue-complete integrable; since the for-
mer is, in effect, a Riemann-Stieltjes integral, the latter is a Stieltjes-
complete integral, and every Riemann-Stieltjes integrable function
is also Stieltjes-complete integrable. (No special notation has been
introduced here to distinguish the Lebesgue integral

∫
Ω f dµ from

its Lebesgue-complete counterpart.)
If the measurable domain Ω is a real interval such as [a, b], then

some ambiguity arises in the interpretation of the Lebesgue integral
as an integral of the gauge, or generalized Riemann, kind. The rea-
son for the ambiguity is as follows. Assuming the existence of the
Lebesgue integral

∫
Ω f(ω)dµ,=

∫
[a,b] f(ω)dµ, where ω now represents

real numbers in the domain [a, b], then we are assured of the exis-
tence of the Stieltjes and Stieltjes-complete (or Lebesgue-complete)

integrals
∫ d
c u dg and

∫
[c,d] u g(J), respectively, with∫

[a,b]

f(ω)dµ =

∫ d

c

u dg =

∫
[c,d]

u g(J),

where the values u = h(u) are elements of [c, d] and h is the identity
function on [c, d].
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But in this case, letting ω = s denote points of the domain [a, b]
and with I denoting subintervals of [a, b], the function µ(I) is de-
fined on intervals I, and two different Stieltjes-type constructions
are possible.

First, there is the Riemann-Stieltjes integral
∫ d
c u dg which defines

the Lebesgue integral
∫

Ω f(ω)dµ,=
∫

[a,b] f(ω)dµ. Secondly, there

is the gauge integral
∫

[a,b] f(s)µ(I) which has a Stieltjes-complete
construction.

It is then meaningful to consider whether, with f measurable,
existence of the Lebesgue integral

∫
[a,b] f(ω)dµ implies existence of

the Stieltjes-complete integral
∫

[a,b] f(s)µ(I), and whether∫ d

c

u dg =

∫
[a,b]

f(s)µ(I)

holds,6 the first of these integrals being the Lebesgue integral∫
[a,b] f(ω)dµ, which, by Definition 7.2, is interpreted as the Riemann-

Stieltjes integral
∫ d
c u dg.

To see that these two integrals coincide, take f to be a bounded,
measurable function on [a, b]. This can be expressed as the difference
of two non-negative, bounded, measurable functions f+ and f−. Ac-
cordingly, and without loss of generality, take f to be non-negative,
bounded, measurable. Then the Lebesgue integrable function f is
the µ-almost everywhere point-wise limit of a monotone increasing
sequence of step functions fj. With ω = s, each step function fj
is Lebesgue integrable, with Lebesgue integral

∫
[a,b] fj(ω) dµ; and

each step function fj is Stieltjes-complete integrable, with Stieltjes-
complete integral

∫
[a,b] fj(s)µ(I), and∫
[a,b]

fj(ω) dµ =

∫
[a,b]

fj(s)µ(I)

for each j. (This statement is also true if “Lebesgue integral” and
“Lebesgue integrability” are replaced by “Lebesgue-complete inte-
gral” and “Lebesgue-complete integrability”.)

6There is a considerable literature on this question, which is usually answered
as: “Every Lebesgue integrable function on an interval of the real numbers R is
also Henstock-Kurzweil integrable.” If the domain of the integrand is a measur-
able space Ω which is not a subset of R or Rn, then the appropriate way to
formulate the corresponding Henstock-Kurzweil (or -complete) integral is in the
form

∫
[c,d]

u g(J) described in Definition 8.2.
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By the monotone convergence theorem of Lebesgue integration
(or, respectively, by the monotone convergence theorem of Lebesgue-
complete integration),∫

[a,b]

fj(ω)dµ→
∫

[a,b]

f(ω)dµ

as j → ∞. By the monotone convergence theorem of Stieltjes-
complete integration, f(s)µ(I) is Stieltjes-complete integrable and∫

[a,b]

fj(s)µ(I)→
∫

[a,b]

f(s)µ(I)

as j → ∞. Since corresponding integrals of the pair of sequences
are equal, their limits are equal:∫

[a,b]

f(ω)dµ =

∫
[a,b]

f(s)µ(I).

This is the gist of a proof that existence of a Lebesgue integral (or
of a Lebesgue integral) on a real domain implies existence of the
corresponding Stieltjes-complete integral on the same domain, and
equality of the two.

Thus the above argument can be applied to either the Lebesgue
or the Lebesgue-complete integral on Ω = [a, b] in conjunction, re-
spectively, with the corresponding Stieltjes-complete integral on the
same domain. In effect, if the domain Ω is a subset of R, and if f
is Lebesgue integrable or Lebesgue-complete integrable with respect
to µ, then f(s)µ(I) is also Stieltjes-complete integrable and the two
integrals are equal.

The specific properties of the Lebesgue-complete integral have not
been investigated.

As mentioned earlier, constant functions f are Riemann-Stieltjes
integrable, and hence Stieltjes-complete integrable, with respect to
any integrator function g. But as the following counter-example
shows, this does not necessarily extend to step functions f , or any
other functions which are not constant.

Example 8.3. Dirichlet function: For 0 ≤ s ≤ 1 let D(s) be 1 if
s is rational, and 0 otherwise. For I = ]u, v] let D(I) = D(v)−D(u).
Let D([0, v]) = D(v) − D(0). The point function D(s) is dis-
continuous everywhere, and has infinite variation on every interval
J ⊆ [0, 1]. If f(s) is constant for 0 ≤ s ≤ 1, then the Riemann-

Stieltjes integral
∫ 1

0 f(s) dD exists and equals D(1)−D(0); that is,
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0 f(s) dD = 0. But if f is not constant on [0, 1], then the
Riemann-Stieltjes integral of f with respect to D does not
exist. What about Stieltjes-complete integrability of f(s)D(I)? In
fact, if f is not constant on [0, 1], then the Stieltjes-complete in-
tegral of f with respect to D does not exist. This is proved in
Theorem 1 of [6], and the proof is reproduced in Theorem 67 of [13].
Thus f(s)D(I) is Riemann-Stieltjes integrable and Stieltjes-
complete integrable on [0, 1] if and only if f(s) is constant
for 0 ≤ s ≤ 1.

Historically this is the first published result (Theorem 1 of [6]) in
the theory of -complete integration.

9. -Complete approach to stochastic integrals

Returning to stochastic integrals, the -complete method of in-
tegration allows us to construct Stieltjes-type Riemann sums for
highly oscillatory expressions which include both positive and neg-
ative terms. Cancellation of terms can occur in the Riemann sum
approximations, so the possibility of convergence is preserved by this
construction.

The Lebesgue construction, on the other hand, requires integral
convergence, separately and independently, of the positive and neg-
ative components of the integrand. The difficulty this presents is
illustrated in the alternating or oscillating series

∑∞
j=1(−1)jj−1. If

the positive and negative terms of the series are considered as two
separate series then each of them diverges. But the series itself is
conditionally (or non-absolutely) convergent. Similarly, for sample
paths y(s) of a stochastic process YT the integral

∫
[0,t] dy(s) does

not generally exist when considered as a Lebesgue-Stieltjes integral.
But it exists for all sample paths yT , with value y(t) − y(0), when
considered as a Stieltjes-complete integral.

There is no analytical cost or disadvantage in relinquishing the
Lebesgue construction in favor of the -complete method. This is
because the important theorems of Lebesgue integration, such as
monotone and dominated convergence, are also valid for the -com-
plete approach. Furthermore, there are other convergence theorems
of a similar kind, specifically designed to deal with highly oscilla-
tory functions such as those which occur in the theory of stochastic



38 P. MULDOWNEY

processes but which are beyond the scope of the Lebesgue method.
See [13] for details of these.

However, stochastic integration includes novelties and challenges
which have not yet been addressed in this essay.

For Brownian motion processes XT , one of the most important
stochastic integrals is

∫ t
0 dX

2
s = t. The corresponding integral for

a sample path x(s) (0 ≤ s ≤ t) is “
∫ t

0 (dx(s))2”. But this expres-
sion does not have the familiar form of a Stieltjes-type integral:∫ b
a f(s)dg, which, when g is the identity function, reduces to the

even more familiar
∫ b
a f(s)ds.

In Riemann sum approximation we are dealing with expressions∑
(x(I))2, where, for I = ]u, v], x(I) = x(v) − x(u). But tradi-

tionally, while a Riemann sum for a Stieltjes integral involves terms
f(s)x(I) with integrator function x(I) (in which f(s) can be identi-
cally 1), we do not usually expect to see integrators such as (x(I))2

or dX2
s .

Another important stochastic integral in Brownian motion theory
is ∫ t

0

XsdXs =
1

2
X2
t −

1

2
t.

For a sample path x(s) of Brownian motion, this involves
∫ t

0 x(s)dx(s),
or, in Riemann sum terms,

∑
x(s)x(I). The latter, as it stands, is a

finite sum of terms x(s)(x(v)−x(u)) where I = ]u, v] and u ≤ s ≤ v.
And if we are using the Stieltjes-complete approach as described
above, then we might suppose that each s in the Riemann sum is
the special point used in partitions which are constrained by a gauge
δ(s),

s− δ(s) < u ≤ s ≤ v < s+ δ(s).

But in fact this is not what is required in the stochastic integral∫ t
0 XsdXs. In Riemann sum format, what is required is∑

x(u)x(I), or
∑

x(u) (x(v)− x(u)) ,

where the first factor x(u) in the integrand is a point function eval-
uated at the left hand end-point u of the interval I = ]u, v].

Sometimes the form
∑
x(w)(x(v) − x(u)) is used, with w = u +

1
2(v − u).

In a way, integrands of form x(I)2, x(u)x(I), or x(w)x(I), are an
unexpected innovation. Their value is calculated from the numbers
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u and v which specify the interval I. So they can be thought of as
functions h(I) of intervals I.

But these functions are not additive7 on intervals. In that regard
they are unlike the integrators |I| and x(I) which are themselves
functions of I but are finitely additive on intervals, in the sense
that, if J = I1 ∪ . . . ∪ In is an interval, then

|J | =
n∑
j=1

|Ij|, x(J) =
n∑
j=1

x(Ij).

Broadly speaking, integration is a summation process in which the
summed terms involve functions of intervals. Up to this point in this
essay, the only integrands to be considered included a factor which
was an additive function of intervals I, such as the length function
|I| or the Stieltjes-type functions g(I) or x(I). But there is nothing
inherent in the definition of -complete integrals that requires any
I-dependent factor in the integrand to be additive.

With this in mind, consider again the definition of the -complete
integral on an interval [a, b].

Firstly, a gauge is a function δ(s) > 0, a ≤ s ≤ b. Given s, an
interval I = ]u, v] for which s is either an end-point or an interior
point, is δ(s)-fine if s−u < δ(s) and v−s < δ(s). A finite collection
D = {(s1, I1), . . . , (sn, In)} is a division of [a, b] if each sj is either an
interior point or end-point of Ij and the intervals Ij form a partition
of [a, b]. Given a gauge δ, a division D is δ-fine if each (sj, Ij) ∈ D
is δ-fine.

Now suppose h is a function of elements (s, I). Examples in-
clude: h(s, I) = h1(I) = |I|, h(s, I) = h2(s) = s, h3(s, I) =
s2|I|, h4(I) = |I|2. Given a division D = {(s, I)} of [a, b] whose
intervals I form a partition P , the corresponding Riemann sum is

(D)
∑

h(s, I),=
∑
{h(s, I) : I ∈ P}.

Definition 9.1. A function h(s, I) is integrable on [a, b], with inte-
gral

∫
[a,b] h(s, I) = α, if, given ε > 0. there exists a gauge δ(s) > 0

so that, for each δ-fine division D of [a, b],∣∣∣α− (D)
∑

h(s, I)
∣∣∣ < ε.

7If h(I) were finitely additive on intervals I it could be used to define a point
function h(s) := h([0, s]), and vice versa. Integrals with respect to finitely additive
integrators are therefore representable as Stieltjes-type integrals, and vice versa.
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Applying this definition to the examples, h1 is integrable with
integral b − a, h2 is not integrable, h3 is integrable with integral
1
3(b3 − a3), and h4 is integrable with integral 0. If h(s, I) = h5(I) =
u2|I| where, for each I, u is the left hand end-point of I, then it is
not too hard to show that h5 is integrable with integral 1

3(b3 − a3).
Actually, it is the traditional custom and practice in this subject

to only consider integrands h(s, I) = f(s)p(I) where the integrator
function p(I) is a measure function or, at least, finitely additive on
intervals I; and where the evaluation point s of the point function
integrand f(s) is the point s of (s, I) for each (s, I) ∈ D. When
p(I) = |I|, this convention is needed in order to prove the Funda-
mental Theorem of Calculus.8.

But, while the Fundamental Theorem of Calculus is important
in subjects such as differential equations, it hardly figures at all
in some other branches of mathematics such as probability theory
or stochastic processes. And we have seen that stochastic integra-
tion often requires point integrands f(s) to be evaluated, not at
the points s of (s, I) ∈ D, but at the left hand end-points of the
partitioning intervals I.

So, with I = ]u, v], f(u) is, in fact, an integrand function which
depends, not on points s but on intervals ]u, v].

These are a few of the “unexpected innovations” to be encountered
in stochastic integration, giving it a somewhat alien and counter-
intuitive feel to anyone versed in the traditional methods of calculus.
Indeed, these are further examples of probability and analysis losing
contact with each other.

For instance, the stochastic integral
∫ t

0 XdX is given the value
1
2X(t)2 − 1

2t when the process X(s) (with X(0) = 0) is a Brownian
motion. Introductory treatments of this problem sometimes contrast
the expression

∫ t
0 XdX with the elementary calculus integral

∫
xdx

whose indefinite integral is 1
2x

2, in which the use of symbols X and x
can, in the mind of an inexperienced reader, set up an inappropriate
and misleading analogy.

In terms of sample paths, the stochastic integral
∫ t

0 X(s)dX(s)

has representative sample form
∫ t

0 x(s)dx(s) which is a Stieltjes-type
integral with integrator function x(I) = x(v)− x(u), formed from a
typically “zig-zag” Brownian path x(s), 0 < s ≤ t, with x(0) = 0.

8The Fundamental Theorem of Calculus states that if F ′(s) = f(s) then f(s)
is integrable on [a, b] with definite integral equal to F (b)− F (a)
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Then the notation for the contrasting elementary calculus integral is
not

∫
x dx, but

∫
s ds, with value 1

2s
2. Putting the latter in Stieltjes

terms,
∫
s ds is the Stieltjes integral

∫ t
0 x(s)dx(s) where the sample

path path or function x is the identity function x(s) = s, 0 ≤ s ≤ t.
Clearly a Stieltjes integral involving a “typical” Brownian path

x(s) (which though continuous is, typically, nowhere differentiable)
is a very different beast from a Stieltjes integral involving the straight
line path x(s) = s. So in reality it is not surprising that there is a
very big difference between the two integrals∫

X(s)dX(s) =
1

2
X(t)2 − 1

2
t, and

∫
s ds =

1

2
s2. (7)

The first integral typically involves Stieltjes integrals using very
complicated and difficult Brownian paths x(s). It should be dis-
tinguished sharply from the more familiar and simpler Stieltjes in-
tegrals in which, for instance, the point function component of the
integrand is a continuous function, and the integrator or interval
function is formed from increments of a monotone increasing or
bounded variation function.

It is easy to overlook this distinction. Example 60 of [13] illustrates
the potential pitfall. In this Example, XT is an arbitrary stochastic
process and, with a fixed partition of T = ]0, t], 0 = τ0 < τ1 < · · · <
τm = t, the function σ(s) is constant for τj−1 < s ≤ τj. Example 60
claims, in effect, that the stochastic integral

∫ τj
τj−1

σ(s)dXs exists for

each j in the same way that, for constant β,
∫ τj
τj−1

β dXs exists and

equals β(X(τj)−X(τj−1)).
But Example 8.3 above shows that this claim is false. As a step

function, σ(τj−1) is not generally equal to the constant β = σ(s)
when s > τj−1. So if the sample path x(s) is the Dirichlet function
D(s), the Stieltjes integral

∫ τj
τj−1

σ(s)dx(s) does not exist, and the

claim in Example 60 is invalid.
However, if XT is a Brownian motion process, then each of the

significant sample paths x(s) satisfies a condition of uniform conti-
nuity. In that case Example 60 is valid. But it requires some proof,
similar to the proof of Theorem 229 on the succeeding page.

So what is truly surprising in (7) is, not that the two integrals give
very different results, but that any convergence at all can be found
for the first integral.
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Why is this so? This essay has avoided giving any precise mean-
ing to expressions such as

∫ t
0 XdX—or even to a random variable

Xs. But the meaning of the random variable
∫ t

0 XsdXs is somehow
representative of a Stieltjes-type integral which can be formulated
for every sample path {x(s) : 0 < s ≤ t}. These sample paths
may consist of joined-up straight line segments (as in the archetyp-
ical jagged-line Brownian motion diagram), or smooth paths, or
everywhere discontinuous paths (like the Dirichlet function). Thus
any claim that all of the separate and individual Stieltjes integrals∫ t

0 x(s)dx(s) of the class of such sample paths x—a very large class
indeed—have integral values 1

2x(t)2− 1
2t must be somehow challeng-

ing and dubious.
The integrals

∫ t
0 dX(s) = X(t),

∫ t
0 dx(s) = x(t), show that each

member of a large class of Stieltjes integrals can indeed yield a
common, single, simple result. Our discussion of the Riemann sum
calculation of these integrals illustrates how this happens: regardless
of the values of x(s) for s < t, adding up increments ensures that
all values x(s) cancel out, except the terminal value x(t).

Thus, if f(s) takes constant value β for 0 ≤ s ≤ t, then, for ev-
ery sample path x(s), the Riemann-Stieltjes (and Stieltjes-complete)

integral
∫ t

0 f(s)dx(s) exists, and
∫ t

0 f(s)dx(s) = βx(t) (or β(x(t) −
x(0)) if x(0) 6= 0. This is the basis of the claim that the stochastic

integral
∫ t

0 f(s)dX(s) exists, and is the random variable βX(t).
However, Example 8.3 demonstrates that caution must be exer-

cised in pursuing further the logic of Riemann sum cancellation.
Because if the sample path x(s) is the function D(s) of Example
8.3, the expression f(s)D(I) is not integrable on [0, t], in either the
Riemann-Stieltjes sense or the Stieltjes-complete sense, even when
f(s) is a step function (non-constant).

It is indeed possible to take the Riemann sum cancellation idea
further. Theorem 229 of [13] shows how this can be done.

But many important stochastic integrands are not actually inte-
grable in the basic sense of the Definition 9.1. If various sample
paths x(s) are experimented with in the integral

∫ t
0 dX

2
s , many dif-

ferent results will be found. So what is the meaning of the result∫ t
0 dX

2
s = t?

While, for different sample paths x,
∫ t

0 dx
2
s is not generally conver-

gent to any definite value, there is a weak sense of convergence of the



INTEGRATION ISSUES IN PROBABILITY 43

integral which makes “
∫ t

0 dX
2
s = t” meaningful. Most importantly

in this case, the weak limit t is a fixed quantity rather than a ran-
dom or unpredictable quantity such as x(t). But this question goes
beyond the scope of the present essay, whose aim is to explore some
of the basic concepts of this subject, and hopefully to illuminate
them a little. A more extensive exploration is presented in [13].
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