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EDITORIAL

We have agreed a new exchange, with the Jaen Journal of Approx-
imation. Please send expressions of interest in housing the exchange
copies to me at the address below. The IMS Committee will then
decide on the allocation.

This issue of the Bulletin has an account by Fiacre Ó Cairbre
that documents the growing awareness of Hamilton among the gen-
eral public, as well as research articles on algebra and number the-
ory, a few book reviews, and the problem page. It is a pleasure to
acknowledge the work of Ian Short on this ever-popular page.

Members are reminded that the next Annual Scientific Meeting of
the Society will take place at Queen’s University, Belfast. Details
will be found at http://ims2014.martinmathieu.net/

The Newsletter of the EMS (and more) may be accessed online at

http://www.ems-ph.org/journals/journal.php?jrn=news

AOF. Department of Mathematics and Statistics, NUI, Maynooth,
Co. Kildare
E-mail address : ims.bulletin@gmail.com
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Applying for I.M.S. Membership

(1) The Irish Mathematical Society has reciprocity agreements
with the American Mathematical Society, the Deutsche Math-
ematiker Vereinigung, the Irish Mathematics Teachers Asso-
ciation, the New Zealand Mathematical Society and the Real
Sociedad Matemática Española.

(2) The current subscription fees are given below:

Institutional member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e160
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means of a cheque drawn on a bank in the Irish Republic, a
Eurocheque, or an international money-order.

(3) The subscription fee for ordinary membership can also be
paid in a currency other than euro using a cheque drawn on
a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is
US$ 30.00.
If paid in sterling then the subscription is £20.00.
If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$ 30.00.

The amounts given in the table above have been set for the
current year to allow for bank charges and possible changes
in exchange rates.

(4) Any member with a bank account in the Irish Republic may
pay his or her subscription by a bank standing order using
the form supplied by the Society.

(5) Any ordinary member who has reached the age of 65 years
and has been a fully paid up member for the previous five
years may pay at the student membership rate of subscrip-
tion.
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(6) Subscriptions normally fall due on 1 February each year.

(7) Cheques should be made payable to the Irish Mathematical
Society. If a Eurocheque is used then the card number should
be written on the back of the cheque.

(8) Any application for membership must be presented to the
Committee of the I.M.S. before it can be accepted. This
Committee meets twice each year.

(9) Please send the completed application form with one year’s
subscription to:

The Treasurer, IMS
School of Mathematics, Statistics and Applied Mathematics

National University of Ireland
Galway
Ireland
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MATHEMATICS EDUCATION AND THE PUBLIC’S
INTERACTION WITH THE HAMILTON STORY

FIACRE Ó CAIRBRE

Abstract. The life and works of William Rowan Hamilton have
produced a lot of public interest over many years. Consequently,
Hamilton’s story has contributed greatly to mathematics education
in relation to the general public. This paper illustrates the wide
diversity of ways that the general public has interacted with the
Hamilton story.

1. Introduction

This paper discusses some of the rich diversity of public interac-
tions with the Hamilton story and also illustrates the wide appeal
of the Hamilton story in the general public. The main motivation
for this article comes from the fact that many people, mainly from
outside mathematics, frequently contact me wishing to know about
Hamilton and then many of them want to create something related
to Hamilton. Consequently, the list of art works, media events, ac-
tivities and more, related to Hamilton has been growing a lot over
the years. I felt it was time to write about this abundance of items
related to Hamilton and also to write about some of the background
stories. In writing this article, I decided to go back the whole way
rather than just cover what was done during my time. As you will
see, many people have been inspired by the Hamilton story to create
works of art. Such people include poets, sculptors, painters, novel-
ists, a songwriter and many more. Hamilton’s life and works have
been written about in many places. For those who wish to read
more about Hamilton, see [1], [2], [3], [4], [5], [7]. In particular, the
story about his creation of quaternions along the banks of the Royal
Canal on October 16, 1843, appears in many of the examples of the
public’s interaction with Hamilton below.

I also believe that many of the items in the list below are connected
to mathematics education in relation to the general public. From
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my experience in promoting mathematics in the general public, I
find that the Hamilton story (and other stories from the history of
mathematics) often changes people’s perception of mathematics for
the better. I believe this change of perception can be crucial in any
form of positive mathematics education because after the change
in perception, people are then more likely to enhance their under-
standing, awareness and appreciation of mathematics. I see this
happening frequently when I promote mathematics in the general
public. Also, the general public plays a significant part in mathe-
matics education in second and third level because parents, policy
makers and the media are all members of the general public and can
exert great influence on the attitude of young people and society
at large towards mathematics. Jack Gannon, from Cabra, put it
well when he said, “On account of the walk, Hamilton is in the folk
consciousness of the local people”.

I find that the “big picture”approach is very successful in changing
people’s perception of mathematics for the better [6]. The Hamilton
story (combined with the annual Hamilton walk) is a great example
of something that has all the big picture items. Some of the big
picture items are, in no particular order: history of mathematics,
stories, human element and famous characters, beauty, drama, mo-
tivation, practical power and applications, freedom, creativity, Irish
connection, outdoor activity, research, word origins, humour, deduc-
tive reasoning, abstraction, cultural connections, tricks/magic and
puzzles.

The fact that about half of the items in the list below relate to the
last ten years shows that the Hamilton story is alive and very vibrant
today. Also, it’s a great example of something from the history of
mathematics that continues to inspire people (many of whom are
outside mathematics) to respond to the story. The response can
take different forms including the creation of works of art.

The criterion for inclusion in the list below is that (a) the item was
created by somebody outside mathematics or (b) the item (or the
main part of the item) is easily accessible to the general public or
(c) there is a good chance that the general public will interact with
the item. The reason for this criterion is that I am looking at the
Hamilton story in relation to the general public. Consequently, there
are many important and interesting mathematical items related to
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Hamilton that are not on the list below. I also decided to omit many
fine books that contain chapters or sections about Hamilton even if
they are accessible to the general public, because there are just too
many such books.

2. Public interactions with the Hamilton story

1. 1830 – Thomas Kirk sculpted a marble bust of Hamilton. It
was acquired by the National Gallery of Ireland in 1982. It’s in-
teresting to note that Hamilton was only 25 in 1830. The curator
of the National Gallery of Ireland, Brendan Rooney, told me that
the bust is currently in storage. Typically, only about a quarter of
the gallery’s pieces are on public display and the rest are in storage.
However, the bust was part of a public exhibition in the National
Gallery recently.

2. 1833 – Terence Farrell executed a bust of Hamilton. A picture of
this bust appears in the frontispiece of [1].

3. 1842 – There was a portrait of Hamilton in the Dublin University
Magazine.

4. 1865 – Shortly before his death, Hamilton was elected as the First
Foreign Associate of the newly established National Academy of
Sciences of the US. This meant that the Academy deemed Hamilton
to be the greatest living scientist.

5. 1867 – John Henry Foley sculpted a bust of Hamilton. This bust
is on display in the Long Room in Trinity College.

6. 1882 – 1891 Robert Graves wrote a biography of Hamilton in
three volumes [1].

7. 1894 – The Royal Irish Academy acquired a portrait of Hamil-
ton. It was an oil painting by Sarah Purser and was donated by
Hamilton’s descendant, John O’Regan. Hamilton was President of
the RIA from 1837 to 1846. The RIA librarian, Petra Schnabel, also
told me that there is a bust of Hamilton in the RIA. However, it’s
not known who sculpted the bust or when it was done.

8. 1910 – A statue of Hamilton was finished in the Royal College of
Science in order to be ready for the College’s inauguration in 1911.
The statue is now in a niche on the facade of Government Buildings
on Merrion St. If you stand on Merrion St. and look through the
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gates, you will see Hamilton on the left in the distance. The statue
was designed by Oliver Sheppard and executed, at least in part, by
an anonymous Bavarian sculptor.

9. 1924 – Éamon De Valera scratched Hamilton’s quaternion for-
mulas on the wall of his prison cell when he was in Kilmainham jail.
He was paying homage to Hamilton who scratched the quaternion
formulas on the bridge in Cabra on October 16, 1843. I suppose
one could say that Hamilton’s action was, “One small scratch for a
man, one giant leap for mathematics”, because his quaternions liber-
ated algebra from the shackles of arithmetic. Hamilton opened up a
whole new landscape in mathematics. Also, there are many applica-
tions of quaternions today, including computer animation, computer
games, special effects in movies, space navigation and much more.
There is no trace of De Valera’s formulas. However, in 1966, when
he visited Kilmainham jail, he wrote the quaternion formulas on an
envelope. This envelope is now on display in the museum in Kil-
mainham jail. De Valera was a mathematician and greatly admired
Hamilton. He lectured in mathematics in Maynooth during 1912–
14. Stephen Buckley told me that, during the war of independence
in 1920–21, some of the general public would say that De Valera was
one of the few people in the world who understood what a quarter
of onions were!

10. 1939 – On July 6, while introducing the Bill to establish the
Dublin Institute of Advanced Studies, Taoiseach Éamon De Valera
said in the Dáil, “This is the country of Hamilton, a country of great
mathematicians”.

11. 1939 – Hamilton’s quaternions were mentioned in James Joyce’s
Finnegans Wake. The line is, “wondering was it hebrew set to him-
meltones or the quicksilversong of qwaternions; his troubles may be
over but his doubles have still to come”. Hamilton was mentioned
in at least two other places in Finnegans Wake. Sam Slote told me
that Joyce is conflating Hamilton with two other Hamiltons in this
line. James Archibald Hamilton was the first astronomer at Armagh
Observatory and he observed the transit of Mercury, i.e. quicksilver.
James Hamilton was a Scottish clergyman who published a book of
psalms.

12. 1943 – Two stamps were produced to celebrate the centenary of
Hamilton’s creation of quaternions. Both the 21

2p and 1
2p stamps
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show the same picture of Hamilton and were designed by Sean
O’Sullivan.

13. 1943 – Seán Keating painted a portrait of Hamilton. Éimear
O’Connor, who has written a book on Keating, told me that it is
unknown where this painting is. Éimear has never seen this portrait.

14. 1943 – Flann O’Brien (aka Myles na Gopaleen) commemorated
the centenary of Hamilton’s creation of quaternions with several
references in his Cruiskeen Lawn piece in the Irish Times on June 18.
In the references below, the house in Merrion Square is the Dublin
Institute of Advanced Studies. The first mention of quaternions is
in, “And what’s the book about, says I. It’s about quateernyuns,
says the brother. That’s a quare one”. Two references appear in,
“Of course all the brother’s sums isn’t done in the digs. He does be
inside in a house in Merrion Square doin sums as well. If anybody
calls, says the brother, tell them I’m above in Merrion Square workin
at the quateernyuns, says he, and take any message. There does be
other lads in the same house doin sums with the brother. The
brother does be teachin them sums. He does be puttin them right
about the sums and the quateernyuns”. Another reference is in,
“I do believe the brother’s makin a good thing out of the sums
and the quateernyuns. Your men couldn’t offer him less than five
bob an hour and I’m certain sure he gets his tea thrown in”. A
final reference appears in, “Begob the sums and the quateernyuns
is quickly shoved aside when the alarm for grub is sounded and all
hands piped to the table. The brother thinks there’s a time for
everything”.

15. 1946 – Seán Keating painted a picture of Hamilton scratching
the quaternion formulas on the bridge at Broombridge in Cabra.
This painting is now in Dunsink Observatory. The painting was
commissioned by Felix Hackett.

16. 1958 – On November 13, Taoiseach Eamon De Valera, unveiled
a plaque at Broombridge to commemorate Hamilton’s creation of
quaternions. The unveiling received substantial coverage in the
newspapers the following day. It appeared with a photograph on
the front page of the Irish Times and was also prominently featured
in the Irish Independent and Irish Press. De Valera started his
speech with, “I am glad, as head of the Government, to be able to
honour the memory of a great scientist and a great Irishman, It is a
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great personal satisfaction for me to be present, because it was well
over fifty years ago since I had heard the story of the bridge and
the birth of quaternions”. De Valera also said, “On many occasions
since I first heard this story I have come to this place as a holy
place”. See [4] for the rest of what De Valera said. Michael Biggs
designed the plaque.

17. 1958 – The name of the bridge over the Royal Canal at Broom-
bridge, where Hamilton scratched his quaternion formulas, was of-
ficially changed to Hamilton Bridge. See [4] for more details on
this.

18. 1962 – Gerry Brady submitted a poem about Hamilton to the
Irish Times and it was published on June 13.

19. 1963 – A crater on the moon was named after Hamilton.

20. 1970 – Annraoi de Paor told me that he named his son, Liam
Ruán, after Hamilton.

21. 1974 – The local Fianna Fáil Cumann in Cabra West was called
after Hamilton. Tom Breen told me that the idea for the name came
from Vivion De Valera who was a local TD at the time. Vivion was
a son of Éamon De Valera.

22. 1980 – Thomas Hankins wrote a biography of Hamilton [2].

23. 1983 – A stamp was produced as part of the Europa series
which celebrated the great works of the human genius. It was a 29p
stamp and showed Hamilton’s quaternion formulas. The stamp was
designed by Peter Wildbur.

24. 1983 – Sean O’Donnell wrote a biography of Hamilton [7].

25. 1988 – Mike O’Regan set up the Hamilton Trust in England.
Mike is a great–great grandson of Hamilton. The Hamilton Trust
develops mathematics resources for teachers and students.

26. 1990 – Anthony G. O’Farrell initiated an annual walk to com-
memorate Hamilton’s creation of quaternions. The walk takes place
on October 16 and retraces Hamilton’s steps by starting at Dun-
sink Observatory, where he lived, and ending up at Broombridge,
where he created quaternions. The walk takes about forty–five min-
utes. I organise the walk now and it typically attracts about 200
people from a wide diversity of backgrounds, including many from
the general public and second level schools. The large number of
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participants from the general public indicates that there is a sub-
stantial public interest in Hamilton and the walk. Furthermore, I
receive many calls from the media (television, radio and newspaper)
and other bodies every year expressing an interest in doing a piece
on Hamilton and the walk. Consequently, Hamilton’s story and the
walk have appeared many times on a variety of television and radio
programmes and in lots of newspaper articles. See [4] for more on
the walk.

27. 1991 – Henry O’Brien asked James J. Cox to paint a portrait
of Hamilton. The portrait is now on display at Broombridge during
the annual Hamilton walk.

28. 1991 – David Simms coined the term, Broomsday, for October
16 because Hamilton created quaternions at Broombridge on that
day. Coincidentally, Broomsday and Bloomsday are on the sixteenth
(of different months).

29. 1992 – The Hamilton building opened in Trinity College and it
contained the School of Mathematics.

30. 1995 – There was a reference to Hamilton’s creation of quater-
nions in Act One of Sebastian Barry’s play, The Only True History
of Lizzie Finn. Sebastian e-mailed me to say that he saw the plaque
at Broombridge while he was walking his dogs around 1990.He went
on to write that there was something quite intoxicating about the
plaque to him, especially marooned in the very altered landscape
of that part of the northside – it put Hamilton on the path beside
him, and he himself was forever scratching bits of speeches on scraps
of paper when they occurred to him, stimulated by the walk, but
usually without a handy pencil. The reference in the play appears
when Robert says, “Can I tell you a very strange thing? William
Rowan Hamilton, the mathematician, was walking along the Royal
Canal near Finglas, puzzling the secret of quaternion multiplication,
when suddenly a kingfisher came firing out of the green bank, like a
blue bullet, a blue revelation. And in that moment of strange blue
fire, jolted by it, it came to him: i2 = j2 = k2 = ijk = −1. And he
scratched it hurriedly on the stone of the bridge nearby. Blue fire,
Lizzie Finn, blue fire”.

31. 1990s – Anthony O’Farrell put up a portrait of Hamilton in the
Department of Mathematics at NUI, Maynooth. The portrait is a
photograph of Sarah Purser’s painting in the RIA above.
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32. 1997 – A new housing estate in Trim was named after Hamil-
ton because he spent his early youth in Trim. The estate is called
Hamilton Court. I suppose one could call Hamilton a meathamati-
cian because of his Meath connections!

33. 1999 – LMFM (Louth Meath FM) radio asked me to do a show
on Hamilton.

34. 1999 – Éigse na Mı́ (Meath heritage festival weekend) invited
me to give a talk on Hamilton in Trim.

35. Annually since the 1990s – The Irish Times produces a piece that
promotes the Hamilton walk. Dick Ahlstrom typically writes the
piece based on my press release. Sometimes, other journalists write
substantial pieces on Hamilton based on my interaction with them.
For example, Arminta Wallace wrote a piece for An Irishwoman’s
Diary in the Irish Times in 2011. Other newspapers cover the walk
from time to time. I also promote the walk on my annual radio show
about mathematics on LMFM.

36. 2000 – Séamus MacGabhann of Ŕıocht na Midhe (Meath Ar-
chaeological and Historical Society) invited me to write a paper on
Hamilton. The Society was interested in Hamilton because he spent
his early youth in Trim, Co. Meath. The paper appeared in the
annual journal [5].

37. 2001 – The Hamilton Institute at NUI, Maynooth was founded
under the leadership of Robert Shorten and Doug Leith.

38. 2001 – Slane Historical Society invited me to give a talk on
Hamilton.

39. 2001 – Gary McGuire and I wrote a paper about the walk and
Hamilton [3].

40. 2002 – The Royal Irish Academy awarded an annual Hamilton
Prize to mathematics students in nine of the Higher Education In-
stitutions in Ireland. Each mathematics department is invited to
nominate its best student in the penultimate year of undergradute
study. The awards are presented to all the students as part of the
RIA’s Hamilton Day activities on or around October 16.

41. 2002 – The Royal Irish Academy initiated an annual public
Hamilton lecture which occurs as part of its Hamilton Day activities
on or around October 16. The lectures are given by internationally
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renowned speakers. Fields Medallists and Nobel Prize winners have
been among those that have given the RIA Hamilton lecture. Luke
Drury and Rebecca Farrell also usually bring the speaker on the
Hamilton walk.

42. 2003 – Jack Gannon was inspired by the Hamilton walk to write
a song called the Ballad of Rowan Hamilton. The song has been
played many times on programmes about Hamilton and the walk on
radio and television since then. See [4] for more details on the song.

43. 2003 - The Hamilton Mathematics Institute was founded at
Trinity College.

44. 2003 – A television crew covered the Hamilton walk and the walk
appeared on the Six One news on RTÉ 1 television that evening.

45. 2004 – A plaque was erected on the house in Trim where Hamil-
ton spent his early youth. The house is called St. Mary’s Abbey
and is beautifully situated on the banks of the Boyne across from
the spectacular ruins of Trim Castle. Peter Higgins now lives in
the house and he put the plaque up after it was proposed by the
National Committee for Science and Engineering Commemorative
Plaques.

46. 2005 – The Government designated the year as Hamilton Year –
Celebrating Irish Science, because it was the bicentenary of Hamil-
ton’s birth. Many events were held all over Ireland to celebrate
Hamilton year, some of which are listed below.

47. 2005 – On August 4 the Cabra Community Council celebrated
Hamilton’s birthday by organising a huge party and a barge trip
along the Royal Canal.

48. 2005 – June Robinson wrote a poem about Hamilton called the
Benefactor. See [4] for more on this.

49. 2005 – Léargas produced a thirty minute television documentary
on Hamilton and it was shown on RTÉ 1 on November 14.

50. 2005 – A housing area in Cabra was named Rowan Hamilton
Court. Hugh Flanagan and Liam O’Neill lobbied Dublin City Coun-
cil to have the housing area named after Hamilton and they were
successful.

51. 2005 – Cieran Perry and Henry O’Brien purchased, on behalf of
the Cabra Community, a large banner in celebration of Hamilton.
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The idea for the banner was proposed by the Cabra Community
Council. It creates a very festive atmosphere at the end of the
Hamilton walk where it is draped across the bridge.

52. 2005 – The Central Bank of Ireland launched a new 10 euro
collector’s coin to celebrate the bicentenary of Hamilton’s birth. The
coin was designed by Michael Guilfoyle.

53. 2005 – An Post produced a Hamilton stamp to celebrate the
bicentenary of Hamilton’s birth. It was designed by Ger Garland.

54. 2005 – St. Declan’s College, in Cabra, named one of its classes
after Hamilton. It also awarded the new Hamilton coins to the
students who obtained the best results in the Junior and Leaving
Cert exams.

55. 2006 – Eoin Gill and Sheila Donegan of Calmast in Waterford
IT founded Maths Week Ireland. The key day of the week is Oc-
tober 16 when Hamilton created quaternions. Consequently, Maths
Week is always the week including October 16. The aim of Maths
Week is to enhance the awareness, appreciation and understanding
of mathematics among schoolchildren and the general public. Maths
Week Ireland is now the most successful Maths Week in the world
with over 200,000 participating directly in 2013.

56. 2006 – Mary Mulvihill’s radio crew covered the Hamilton walk
and it appeared on her radio show, Quantum Leap, on RTÉ 1 later
in the week.

57. 2006 – Mick and Maureen Kelly founded a company called Sci-
ence Heritage Ireland. Mick had participated in the 2005 Hamilton
walk and he wrote, “That walk had a profound effect on me. Hear-
ing not only a Nobel laureate and a professor of mathematics sing
Hamilton’s praises, but also local poets, school children, balladeers
and the Cabra Community Council, spurred me to turn my desire to
celebrate Ireland’s Science Heritage into action. That action turned
out to be a family run business called Science Heritage Ireland selling
placemats and coasters celebrating Hamilton”.

58. 2006 – Neville Henderson painted a picture of Hamilton scratch-
ing the quaternion formulas on the bridge and it was used in a
brochure for the above Science Heritage Ireland company. Susan
Waine also produced a design concept for the Hamilton placemat
and coaster.
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59. 2007 and 2008 – Mick and Maureen Kelly set up a stall at
Broombridge at the end of the Hamilton walk. They sold their
Hamilton placemats and coasters mentioned above.

60. 2008 – Joey Burns created a bog oak sculpture in Trim with some
of Hamilton’s equations on it. Trim town council had commissioned
a piece of art for Castle St. in the town. Joey told me that he
was inspired by the Hamilton television documentary in 2005 above
to create something related to Hamilton. His sculpture shows the
salmon of knowledge rising from the water and reaching for the
hazelnuts. Hamilton’s equations lie in the waves near the base of
the sculpture. In Celtic Mythology, the salmon gains all the world’s
knowledge when it eats the hazelnuts from the trees surrounding the
well at the source of the River Boyne. The well is in Cairbre (aka
Carbury in Co. Kildare) and the Boyne flows through Trim near
the sculpture.

61. 2008 – Conn Ó Muineachain asked me to contribute a piece on
Hamilton for a show on Raidió na Gaeltachta.

62. 2008 – James J. Cox painted his second portrait of Hamilton.
This is also on display at Broombridge during the annual Hamilton
walk.

63. 2009 – Joey Burns created several oak log benches along the
banks of the Boyne in Trim. There are some lines from Hamilton’s
poetry on the benches. Trim Town Council had commissioned a
piece of art for the banks of the river. Hamilton was also a poet and
won the Chancellor’s Prize twice in Trinity College and published
his literary work in journals and magazines. Hamilton’s motivation
for doing mathematics was the quest for beauty. He once wrote,
“Mathematics is an aesthetic creation, akin to poetry, with its own
mysteries and moments of profound revelations”. See [5] for more
on Hamilton’s poetry.

64. 2009 – Philip Bromwell asked me to appear on the Capital
D programme on RTÉ 1 television. The show went out in early
October in order to promote the annual walk and the Hamilton
story.

65. 2009 – Eleanor Burnhill invited me to contribute to a radio
piece about Hamilton and the walk. The piece appeared on Morning
Ireland on RTÉ 1 on the morning of the walk.
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66. 2009 – There was a display related to Hamilton in the National
Wax Museum which opened in Dublin.

67. 2009 – The South Fingal Heritage Society invited me to give a
talk on Hamilton because of his Fingal connections.

68. 2009 – Elmgreen Golf Club created the Rowan Hamilton Sin-
gles Matchplay Trophy. The golf club is adjacent to Dunsink Ob-
servatory where Hamilton lived. Richard Wilson proposed that the
trophy be named after Hamilton.

69. 2009 – Mick and Maureen Kelly produced T-shirts with the
Quaternion formulas and a Hamilton slogan.

70. 2010 – In order to mark the twentieth anniversary of the Hamil-
ton walk, I wrote a paper called Twenty Years of the Hamilton Walk
[4]

71. 2010 – I was invited to appear on the Seán Moncrieff show on
Newstalk radio to talk about Hamilton and to promote the Hamilton
walk.

72. 2010 – A radio crew from Phoenix FM covered the walk and the
show went out later in the week.

73. 2011 – Mary Mulvihill produced a one hour audio walking tour
that was recorded during the Hamilton walk.

74. 2012 – Daniel Doyle created a giant sand sculpture that showed
Hamilton scratching his quaternion formulas on the bridge in Cabra.
The sculpture was in the courtyard of Dublin Castle as part of the
annual exhibition of sand sculptures. The theme for the exhibition
was Bright Sparks to coincide with the fact that Dublin was the
European City of Science. Daniel chose Hamilton because his par-
ents were from Cabra and they used to tell him the Hamilton story
when he was young. Daniel is part of a trio of artists called Duthain
Dealbh which means Fleeting Sculpture. They create ephemeral
works of art for events all over the world using sand, ice and snow.

75. 2012 – Simone Corr was a student in the Dún Laoghaire In-
stitute of Art, Design and Technology and she wanted to produce
a work of art related to Hamilton as part of her student project.
Simone contacted me and we collaborated on a video installation
about Hamilton and mathematics. The piece was selected to appear
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in an exhibition called The Flaneur at the Olivier Cornet Gallery in
Temple Bar in Dublin.

76. 2012 – Kathryn Maguire was creating a piece of art for the
Five Lamps Festival in Dublin. She wanted to do something related
to the Royal Canal. This led her to Hamilton. She contacted me
and we discussed various ideas. Subsequently, Kathryn and her
team produced some grafitti art which was on display along the
Royal Canal at Croke Park during the festival. I thought graffiti art
would be appropriate because Hamilton did his own graffiti when he
scratched his quaternion formulas on the bridge. Hamilton’s piece
of mathematical vandalism would change the world of mathematics
forever. Maurice O’Reilly also gave a talk along the canal as part of
the festival.

77. 2012 – Des Gunning invited me to give a talk on Hamilton
for Phizzfest which is the Phibsborough Community Arts Festival.
They were interested in Hamilton because of his connection with
the Royal Canal which passes through Phibsborough.

78. 2012 – John Coll sculpted a bust of Hamilton which is now in
Ballinaclough House near Nenagh. Ballinaclough house is connected
to Hamilton’s wife, Helen Bayly, who was from the Nenagh area.
Helen lived in another house nearby called Bayly Farm. Desmond
Bayly, who lives in Bayly Farm, told me that Bayly Farm is the
house where Hamilton and Helen spent their honeymoon. Desmond
is related to Helen and the Bayly Farm Country House Accommo-
dation website mentions the Hamilton connection.

79. 2012 – The sixteenth hole at Elmgreen Golf Club was renamed
as the Rowan Hamilton Corner. Richard Wilson came up with this
idea. Richard told me that this hole is unique in the world of golf
because it’s the only hole named after a mathematician! The golf
club is adjacent to Dunsink Observatory where Hamilton lived.

80. 2012 – Eoin Gill and Sheila Donegan produced T–shirts with
Hamilton’s Icosian Game on them.

81. 2013 - There was an interview with me about the Hamilton walk
on the Six One news on RTÉ 1 television, on the Nuacht on TG4
and on News Today on RTÉ 2 television.

82. 2013 – Iggy McGovern wrote a book of poetry called A Mystic
Dream of 4. The book comprises sixty four sonnets about the life
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and times of Hamilton. The sonnets are mainly in the voices of
relatives, friends and colleagues of Hamilton.

83. 2013 – The Director of Poetry Ireland, Joe Woods, read a piece
on Hamilton on the RTÉ 1 radio show, Sunday Miscellany. Joe had
come on the walk previously.

84. 2014 – John Coll sculpted a bronze bust of Hamilton for the
School of Mathematics, Statistics and Applied Mathematics in NUI,
Galway. Aisling McCluskey told me that the school wanted to have
a gallery of art and they commissoned John Coll to do the bust.

85. 2014 – Seán Duke invited me to contribute to an RTÉ radio 1
show called What’s it All About. It was an hour long show about
mathematics and Hamilton featured prominently.

3. Some current items related to Hamilton

There always seems to be a variety of ongoing items related to
Hamilton. Here are four current examples:

(a) Liam O’Neill and Jack Gannon have submitted proposals for
the inclusion of Hamilton’s name on the new Luas station at Broom-
bridge. I plan to get more involved in the attempt to put Hamilton’s
name on the new station.

(b) The Kavaleer animation company contacted me because they
were interested in producing an animated movie about Hamilton.
They were aware that Hamilton’s quaternions are important in com-
puter animation and they wanted to kind of reverse that and do some
computer animation on Hamilton himself!

(c) Dick Ahlstrom is writing a fictional novel based on Hamilton’s
life.

(d) Clare Tuffy from Newgrange has invited me to give a talk on
Hamilton as part of Heritage Week later this year.
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[6] F. Ó Cairbre: The power of the short story and the big picture in mathemat-
ics education in schools, universities and for the general public, Proceedings
of the Third National Conference on Research in Mathematics Education,
MEI3, St. Patrick’s College, Drumcondra, (2009), 400–411.

[7] S. O’Donnell: William Rowan Hamilton, Boole Press, 1983.
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TWO TRIGONOMETRIC IDENTITIES

HORST ALZER AND WENCHANG CHU

Abstract. We show that the trigonometric identities
n−1∏

k=1

{
1− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m) n`n+2m

and
n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m)
{sin(nθ)

sin θ

}`n+2m

are valid for all `,m ∈ Z and 2 ≤ n ∈ N. They extend the results
due to Baica and Gregorac, who proved the identities for the special
case ` = 1, m = −1. Moreover, we determine all `,m, n such that
the first trigonometric product just displayed is an integer.

In 1986, Baica [1] applied methods from cyclotomic fields to provide
a rather long and complicated proof for the following interesting
trigonometric identity:

n−1∏

k=1

{
1− cos

2kπ

n

}n−k−1
= 2(1−n)(n/2−1) nn−2 (1)

where n = 2, 3, 4, · · · . Baica also remarked that “any proof avoiding
cyclotomic fields could be very difficult, if not insoluble” [1, P. 705].

In 1989, Gregorac [3] used properties of Chebyshev polynomials to
present a new proof of (1). Actually, he proved the identity

n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}n−k−1
= 2(1−n)(n/2−1)

{sin(nθ)

sin θ

}n−2
(2)

for n = 2, 3, 4, · · · , which, letting θ tend to 0, leads to (1).
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Here, we extend (1) and (2). First, we offer an elementary short
and simple proof of a generalization of Baica’s identity. In order to
verify our result we only make use of three well-known properties of
sine and cosine,

1− cos(2θ) = 2 sin2 θ, (3)

sin(π − θ) = sin θ, (4)
n−1∏

k=1

sin
kπ

n
= 21−n n. (5)

Formula (5) as well as many related formulas involving trigonometric
functions can be found in [2, Eq. 4.14].

We have the following extension of identity (1).

Theorem 1. Let `,m be integers and let n ≥ 2 be a natural number.
Then,

n−1∏

k=1

{
1− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m) n`n+2m. (6)

Proof. Applying (3) yields

n−1∏

k=1

{
1− cos

2kπ

n

}(n−k)`+m

= 2(n−1)(`n/2+m)
n−1∏

k=1

{
sin

kπ

n

}2[(n−k)`+m]

.

(7)
From (4) we conclude that

n−1∏

k=1

{
sin

kπ

n

}(n−k)`+m

=
n−1∏

k=1

{
sin

(n− k)π

n

}k`+m

=
n−1∏

k=1

{
sin

kπ

n

}k`+m

.

(8)
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Using (8) and (5) gives

n−1∏

k=1

{
sin

kπ

n

}2[(n−k)`+m]

=
n−1∏

k=1

{
sin

kπ

n

}(n−k)`+m
n−1∏

k=1

{
sin

kπ

n

}(n−k)`+m

=
n−1∏

k=1

{
sin

kπ

n

}(n−k)`+m
n−1∏

k=1

{
sin

kπ

n

}k`+m

=
n−1∏

k=1

{
sin

kπ

n

}`n+2m

=
(
21−n n

)`n+2m
. (9)

Combining (7) and (9) leads to (6). �

Next, we extend Gregorac’s identity (2). We need the following
formulas:

sin
(π

2
− θ
)

= cos θ, (10)

sin(2θ) = 2 sin θ cos θ, (11)

cos y − cosx = 2 sin
x+ y

2
sin

x− y
2

, (12)

sin(nθ)

sin θ
= 2n−1

n−1∏

k=1

{
cos θ − cos

kπ

n

}
. (13)

Identity (13) is the well-known product representation for the Cheby-
shev polynomials of the second kind.

Theorem 2. Let `,m be integers and let n ≥ 2 be a natural number.
Then, for θ ∈ R,

n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

= 2(1−n)(`n/2+m)
{sin(nθ)

sin θ

}`n+2m

.

(14)

Proof. Using (10) gives

n−1∏

k=1

sin
(kπ

2n
−θ

2

)
=

n−1∏

k=1

sin
((n− k)π

2n
−θ

2

)
=

n−1∏

k=1

cos
(kπ

2n
+
θ

2

)
. (15)
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Now, we apply (12), (15) and (11). Then we have

n−1∏

k=1

{
cos θ − cos

kπ

n

}
=

n−1∏

k=1

{
2 sin

(kπ
2n

+
θ

2

)
sin
(kπ

2n
− θ

2

)}

=
n−1∏

k=1

{
2 sin

(kπ
2n

+
θ

2

)
cos
(kπ

2n
+
θ

2

)}

=
n−1∏

k=1

sin
(kπ
n

+ θ
)
. (16)

From (4) and (12) we obtain

n−1∏

k=1

sin2
(kπ
n

+ θ
)

=
n−1∏

k=1

{
sin
(kπ
n

+ θ
)

sin
((n− k)π

n
− θ
)}

=
n−1∏

k=1

{
sin
(kπ
n

+ θ
)

sin
(kπ
n
− θ
)}

=21−n
n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}
. (17)

Applying (13), (16) and (17) yields

{sin(nθ)

sin θ

}2m

=22m(n−1)
n−1∏

k=1

{
cos θ − cos

kπ

n

}2m

=22m(n−1)
n−1∏

k=1

sin2m
(kπ
n

+ θ
)

=2m(n−1)
n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}m

. (18)
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From (4) and (12) we get

n−1∏

k=1

sinn
(kπ
n

+ θ
)

=
n−1∏

k=1

{
sinn−k

(kπ
n

+ θ
)

sink
(kπ
n

+ θ
)}

=
n−1∏

k=1

{
sink

((n− k)π

n
+ θ
)

sink
(kπ
n

+ θ
)}

=
n−1∏

k=1

{
sink

(kπ
n
− θ
)

sink
(kπ
n

+ θ
)}

=2(1−n)n/2
n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}k

. (19)

Combining (13), (16) and (19) gives

{sin(nθ)

sin θ

}n

= 2(n−1)n/2
n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}k

. (20)

Finally, (18) and (20) lead to

{sin(nθ)

sin θ

}2m+`n

= 2(n−1)(`n/2+m)
n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}m+k`

= 2(n−1)(`n/2+m)
n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

.

This is equivalent to (14). �

Remark 1. Setting ` = 1 and m = −1 in (6) and (14), respectively,
gives (1) and (2).

Remark 2. Let `,m ∈ Z and 2 ≤ n ∈ N with `n + 2m > 0.
Applying (14) and the well-known inequality

∣∣∣sin(nθ)

n sin θ

∣∣∣ ≤ 1 (n = 1, 2, 3, ...)

we obtain for all θ ∈ R:

n−1∏

k=1

{
cos(2θ)− cos

2kπ

n

}(n−k)`+m

≤ 2(1−n)(`n/2+m)n`n+2m. (21)
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Setting θ = 0 we conclude from (6) that the given upper bound is
sharp. If `n+ 2m < 0, then (21) holds with “≥” instead of “≤”.

The representation (6) reveals that if `,m ∈ Z, 2 ≤ n ∈ N, then the
product

Pn(`,m) =
n−1∏

k=1

{
1− cos

2kπ

n

}(n−k)`+m

is a rational number. In view of this result it is natural to ask
whether there exist numbers `,m, n such that Pn(`,m) is an integer.
The next theorem answers this question.

Theorem 3. Let `,m be integers and n ≥ 2 a natural number. The
product Pn(`,m) is an integer if and only if `n+ 2m = 0

or `n+ 2m > 0 with n = 2r (r = 1, 2); (22)

or `n+ 2m < 0 with n = 2r (3 ≤ r ∈ N). (23)

Proof. Using (6) we obtain:
if `n+ 2m = 0, then Pn(`,m) = 1;
if n = 2r (r = 1, 2) and `n+ 2m > 0, then

Pn(`,m) = 2(`n+2m)/2 ∈ Z;

if n = 2r (r ≥ 3) and `n+ 2m < 0, then

Pn(`,m) = 2−(2
r−2r−1)(`n+2m)/2 ∈ Z.

Now, let Pn(`,m) ∈ Z. We asssume (for a contradiction) that none
of (22), (23) and `n+ 2m = 0 is satisfied. We have

P2(`,m) = 2`+m,

P3(`,m) =
{3

2

}3`+2m

,

P4(`,m) = 22`+m,

P5(`,m) =
{5

4

}5`+2m

.

Case 1. `n+ 2m > 0.
Then, P3(`,m) /∈ Z and P5(`,m) /∈ Z. Let n ≥ 6. From

2(n−1)(`n+2m)/2 ·K = n`n+2m (K ∈ N) (24)
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we conclude that 2 divides n`n+2m. This implies that n is even. Let
n = 2rq, where r ≥ 1 and q is odd. Then, (24) leads to

2((n−1)/2−r)(`n+2m) ·K = q`n+2m.

Since q is odd, we obtain

n− 1

2
− r ≤ 0. (25)

Hence,
2r ≤ 2rq = n ≤ 2r + 1.

If follows that r = 1 or r = 2. However, this contradicts (25), since
n ≥ 6.

Case 2. `n+ 2m < 0.
Then, Pn(`,m) /∈ Z for n = 2, 3, 4, 5. Let n ≥ 6. From (24) we
obtain

n−(`n+2m) ·K = 2−(n−1)(`n+2m)/2.

This yields n = 2r with r ≥ 3. A contradiction. The proof is
complete. �
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INFINITELY MANY POSITIVE INTEGER
SOLUTIONS OF THE QUADRATIC DIOPHANTINE

EQUATIONS x2 − 8Bnxy − 2y2 = ±2r

OLCAY KARAATLI, REFİK KESKİN, AND HUILIN ZHU

Abstract. In this study, we consider the quadratic Diophantine
equations given in the title and determine when these equations
have positive integer solutions. Moreover, we find all positive inte-
ger solutions of them in terms of Balancing numbers Bn, Pell and
Pell-Lucas numbers, and the terms of the sequence {vn} , where
{vn} is defined by v0 = 2, v1 = 6, and vn+1 = 6vn − vn−1 for n ≥ 1.

1. Introduction

A Diophantine equation is an equation in which only integer so-
lutions are allowed. The name “Diophantine” comes from Diophan-
tos, an Alexandrian mathematician of the third century A. D., who
proposed many Diophantine problems; but such equations have a
very long history, extending back to ancient Egypt, Babylonia, and
Greece. In general, a quadratic Diophantine equation is an equation
in the form

ax2 + bxy + cy2 + dx+ ey + f = 0, (1)

where a, b, c, d, e, and f are fixed integers. There has been much
interest in determining all integer solutions to Diophantine equations
among mathematicians. In particular, several papers [30, 6, 29, 2, 3,
4, 17, 33, 7, 12, 10] deal with such equations. The principal question
when studying a given Diophantine equation is whether a solution
exists; and in the case they exist, how many solutions there are and
whether there is a general form for the solutions. For more details
on Diophantine equations, see [21, 31, 23, 8, 14, 32, 20].

In [11], Keskin and Yosma considered the Diophantine equations

x2 − Lnxy + (−1)ny2 = ±5r, (2)
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where n > 0, r > 1, and Ln denotes the nth Lucas number. The
authors determined when (2) have positive integer solutions. Later,
applying some properties of Fibonacci and Lucas numbers, they gave
all positive integer solutions of (2) in terms of Fibonacci and Lucas
numbers. In [13], Keskin, Karaatlı, and Şiar determined when the
equations

x2 − 5Fnxy − 5(−1)ny2 = ±5r, (3)

where Fn denotes the nth Fibonacci number, have positive integer
solutions under some assumptions that n ≥ 1, r ≥ 0, using some
basic properties of Fibonacci and Lucas sequences and also some
cases in which Fibonacci and Lucas sequences have square terms.
Then the authors found all positive integer solutions of (3). In this
study, we are interested in determining explicitly all positive integer
solutions (x, y) of the equations

x2 − 8Bnxy − 2y2 = ±2r, (4)

where Bn denotes the nth balancing number, in terms of balanc-
ing numbers, Pell and Pell-Lucas numbers, and the terms of the
sequence {vn}.

2. Close Relations Between Balancing Sequence, Pell
and Pell-Lucas Sequences, and the sequence {vn}

Before we can explain about the sequences mentioned in the ti-
tle above, we need to recall the generalized Fibonacci and Lucas
sequences.

Let P and Q be non-zero integers. We consider the generalized
Fibonacci sequence {Un}

U0 = 0, U1 = 1, Un+1 = PUn −QUn−1 for n ≥ 1 (5)

and the generalized Lucas sequence {Vn}
V0 = 2, V1 = P, Vn+1 = PVn −QVn−1 for n ≥ 1. (6)

The numbers Un and Vn are called the nth generalized Fibonacci and
Lucas numbers, respectively. Moreover, generalized Fibonacci and
Lucas numbers for negative subscripts are defined as

U−n =
−Un

Qn
and V−n =

Vn
Qn

(7)
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with n ≥ 1. If α = (P +
√
P 2 − 4Q)/2 and β = (P −

√
P 2 − 4Q)/2,

assuming P 2 − 4Q 6= 0, are zeros of x2 − Px+Q, then we have the
well known Binet formulas

Un = (αn − βn)/(α− β) and Vn = αn + βn (8)

for all n ∈ Z. When P = 1 and Q = −1, {Un} = {Fn} and
{Vn} = {Ln} are the familiar sequences of Fibonacci and Lucas
numbers, respectively. For P = 2 and Q = −1, {Un} and {Vn} are
the familiar Pell sequence {Pn} and Pell-Lucas sequence {Qn} , re-
spectively. Furthermore, when Q = 1, we represent {Un} and {Vn}
by {un} and {vn} . It clearly follows from (3) that

u−n = −un and v−n = vn (9)

for all n ≥ 1. For further details on generalized Fibonacci and Lucas
sequences, we refer the reader to [9, 22, 25, 26].

The terms of a sequence {Un} may be partitioned into disjoint
classes by means of the following equivalence relation:
Um ∼ Un if and only if there exist non-zero integers x and y

satisfying x2Um = y2Un, or equivalently UmUn is a square. If Um ∼
Un, then Um and Un are said to be in the same square-class. A
square-class containing more than one term of the sequence is called
non-trivial. Similarly, we can define the square-class of {Vn} .

Balancing numbers were introduced by Behera and Panda [1], by
considering natural numbers b and r satisfying the equation

1 + 2 + ...+ (b− 1) = (b+ 1) + (b+ 2) + ...+ (b+ r). (10)

Here, r is the balancer corresponding to the balancing number b.
The nth balancing number is denoted by Bn and the balancing num-
bers Bn for n ≥ 2 are obtained from the recurrence relation

B0 = 0, B1 = 1, Bn+1 = 6Bn −Bn−1 for n ≥ 1. (11)

Actually, substituting P = 6 and Q = 1 into (5) and (6) gives that
un = Bn and the sequence {vn} , which is mentioned in the title
of this section. This means that both balancing sequence and the
sequence {vn} are special cases of the generalized Fibonacci and
Lucas sequences for the case when P = 6 and Q = 1. Now we state
some well known definition, theorems, and identities regarding the
sequences {Pn} , {Qn} , {Bn} , and {vn} that will be needed later.
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Definition 2.1. Let a and b be integers, at least one of which is not
zero. The greatest common divisor of a and b, denoted by (a, b), is
the largest integer which divides both a and b.

Theorem 2.2. Let γ and δ be the roots of the equation x2−2x−1 =

0. Then we have Pn =
γn − δn

2
√

2
and Qn = γn + δn for all n ∈ Z.

Theorem 2.3. Let α and β be roots of the characteristic equation

x2−6x+1 = 0. Then un =
αn − βn

4
√

2
and vn = αn +βn for all n ∈ Z.

From the theorems above, it is easily seen that Bn = P2n/2 and
vn = Q2n for n ≥ 0. We assume from this point on that P = 6 for
the sequence {vn} .

Most of the properties below for {Pn} , {Qn} , {Bn} , and {vn} are
well known (see, for example [28]). Properties (17) to (22) can be
easily obtained by using Binet’s formulas. Properties (23) to (26)
can be found in [26, 27]. Properties (31) and (32) were proved in
[18]. The proofs of the others are easy and will be omitted.

Q2
n − 8P 2

n = 4(−1)n, (12)

v2n − 32u2n = 4, (13)

P2n = PnQn and B2n = Bnvn, (14)

vn = Bn+1 −Bn−1, (15)

Q2n = Q2
n − 2(−1)n, (16)

vmvn + 32BmBn = 2vm+n, (17)

vmvn − 32BmBn = 2vm−n, (18)

Bmvn +Bnvm = 2Bm+n, (19)

Bmvn −Bnvm = 2Bm−n, (20)

v2m+n − 32BmBnvn+m − 32B2
m = v2n, (21)

32B2
m+n − 32BnBm+nvm − v2m = −v2n, (22)

(Bn, vn) = 1 or 2, (23)

Bm|Bn ⇔ m|n, (24)

vm|vn ⇔ m|n and n/m is odd, (25)

vm|Bn ⇔ m|n and n/m is even, (26)

2|Bn ⇔ 2|n⇔ 2|Pn, (27)

2 - Bn ⇔ 2 - n⇔ 2 - Pn, (28)

2|Qn and 2|vn. (29)
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Moreover, from (12) and (13), it is clear that

4 - Qn and 4 - vn, (30)

respectively.
If d = (m,n), then

{
(Pm, Qn) = Qd if m/d is even

(Pm, Qn) = 1 otherwise.
(31)

Let m = 2am
′
, n = 2bn′, m

′
, n

′
are odd, a, b ≥ 0, and d = (m,n).

Then

(Vm, Vn) =

{
Vd if a = b

1 or 2 if a 6= b.
(32)

3. Some Theorems and Lemmas

In this section, we shall need some new theorems, lemmas, and
corollaries. The following theorem gives us some information about
the sum of the squares of balancing numbers. Since it is readily
proved by using Binet’s formulas, we omit the details.

Theorem 3.1. Let Bk denotes the kth balancing number. Then
n∑

k=1

B2
k =

1

32
(B2n+1 − (2n+ 1)) (33)

Hence, we have the following immediate corollary.

Corollary 3.2. Let n be an odd positive integer. Then

Bn ≡ n(mod32). (34)

Since the proof of the following lemma is straightfoward induction,
we omit the details.

Lemma 3.3. Let n be an even positive integer. Then

Bn ≡ 3n(mod32). (35)

Now we can give the similar property for vn as a result of Corollary
3.2, Lemma 3.3, and the identity (15).

Corollary 3.4. Let n be a nonnegative integer. Then

vn ≡
{

2(mod 32) if n is even
6(mod 32) if n is odd

. (36)
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In the equations x2 − 8Bnxy − y2 = ±2r, replacing x by x2 and y
by y2, we come across the square terms of balancing sequence, Pell
and Pell-Lucas sequences, and the sequence {vn} . So, we must state
some theorems concerning the square terms of these sequences.

The following theorem is given by Ljunggren [15] and also by Cohn
[5].

Theorem 3.5. If n ≥ 1, then the equation Pn = x2 has positive
solutions (n, x) = (1, 1) or (7, 13).

We state the following theorem from [24].

Theorem 3.6. Let P > 0 and Q = −1. If Un = wx2 with w ∈
{1, 2, 3, 6} , then n ≤ 2 except when (P, n, w) = (2, 4, 3), (2, 7, 1),
(4, 4, 2), (1, 12, 1), (1, 3, 2), (1, 4, 3), (1, 6, 2), or (24, 4, 3).

The following theorem is given by [19].

Theorem 3.7. Let P > 2 and Q = 1. If un = cx2 with c ∈
{1, 2, 3, 6} and n > 3, then (P, n, c) = (338, 4, 1) or (3, 6, 1).

The proof of the following theorem can be obtained from Theorem
3.7, but we here give a different proof.

Theorem 3.8. Let n be a positive integer. There is no balancing
number except 1 satisfying the equation Bn = x2.

Proof. Assume that Bn = x2 for some x > 0. Suppose n is even.
Then n = 2k for some k > 0. By (14), it follows that

Bn = B2k = Bkvk = x2. (37)

Firstly, let k be odd. Then by Corollaries 3.2 and 3.4, it is seen that
Bk ≡ k(mod 32) and vk ≡ 6(mod 32). Substituting these into (37)
gives x2 ≡ 6k(mod 32), implying that x2 ≡ 6k(mod 8). Since k is
odd, k ≡ 1, 3, 5, 7(mod 8). Hence, we immediately have

x2 ≡ 6k ≡ 2, 6(mod 8), (38)

which is impossible since x2 ≡ 0, 1, 4(mod 8). Secondly, let k be
even. Then by (27), (29), and (23), it is clear that (Bk, vk) = 2.
Thus, x is even. Taking Bk = 2a and vk = 2b with (a, b) = 1,
we get x2 = Bkvk = 4ab, implying that ab = (x/2)2. Then a = u2

and b = v2 for some u, v > 0. Hence, we have Bk = 2a2. Using the
fact that Bk = P2k/2 gives P2k = (2u)2. By Theorem 3.5, we obtain
2k = 1 or 7. But both of them are impossible in integers. Now
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suppose n is odd. Since Bn = P2n/2, we have P2n = 2x2. By (14),
it is clear that PnQn = 2x2. Furthermore, by the help of (12), (28),
and (29), it can be seen that (Pn, Qn) = 1. Then either

Pn = u2, Qn = 2v2 (39)

or
Pn = 2u2, Qn = v2 (40)

for some u, v > 0.
If (39) holds, then by Theorem 3.5, we obtain n = 1 or 7. When

n = 1, B1 = 1 = x2 and therefore x = 1 is a solution. When n = 7,
there is no integer x such that B7 = 40391 = x2. If (40) holds, then
from (29), we see that v is even. This implies that 4|Qn, which is
impossible by (30). This completes the proof. �
Theorem 3.9. There is no positive integer x such that vn = x2.

Proof. Assume that vn = x2 for some x > 0. By Corollary 3.4, it
follows that vn ≡ 2, 6(mod 8). Hence, x2 ≡ 2, 6(mod 8), which is
impossible. This completes the proof. �
Theorem 3.10. If n ≥ 0 and x > 0 are integers such that vn = 2x2,
then (n, x) = (0, 1).

Proof. Assume that vn = 2x2 for some x > 0. Clearly, n is not odd,
if it were then by Corollary 3.4, we get 2x2 ≡ 6(mod 8), which is
impossible. So, n is even. Also, by Theorems 2.2 and 2.3, we see
that vn = Q2n and by (16), Q2n = Q2

n−2. Hence, we get vn = Q2
n−2.

On the other hand, by (12), since Q2
n − 8P 2

n = 4, we immediately
have vn = 8P 2

n + 2 = 2x2, implying that 4P 2
n + 1 = x2. This shows

that x2−(2Pn)2 = 1. Solving this equation gives x = 1. Thus, n = 0.
This completes the proof. �
Theorem 3.11. There is no positive integer x such that Bn = vmx

2.

Proof. Assume that Bn = vmx
2 for some x > 0. Since vm|Bn, it

follows from (26) that m|n and n = 2km for some k > 0. This
implies by (14) that

Bn = B2km = Bkmvkm = vmx
2. (41)

Let k be odd. Then Bkm
vkm
vm

= x2. Clearly, from (23),

d =
(
Bkm,

vkm
vm

)
= 1 or 2. If d = 1, then Bkm = a2, vkm = vmb

2

for some a, b > 0. By Theorem 3.8, we have km = 1. This yields
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that k = 1, m = 1, and therefore n = 2. Hence, we conclude that
B2 = v1x

2, i.e., 6 = 2x2, which is impossible in integers. If d = 2,
then Bkm = 2a2, vkm = 2vmb

2 for some a, b > 0. From (29) and (30),
since vm is even and 4 - vm, it is seen that vkm = 2vmb

2 is impossible.
Now let k be even. Then from (41), we have Bkm

vm
vkm = x2. Using

the fact that
(
Bkm

vm
, vkm

)
= 1 or 2, we get

Bkm = vma
2, vkm = b2 (42)

or

Bkm = 2vma
2, vkm = 2b2 (43)

for some a, b > 0. Assume (42) is satisfied. Since k is even, it
follows from Corollary 3.4 that vkm = b2 ≡ 2(mod 8), which is
impossible. Assume (43) is satisfied. Then by Theorem 3.10, we get
km = 0, implying that n = 0, which is impossible. This completes
the proof. �

Theorem 3.12. There is no positive integer x such that Bn =
2vmx

2.

Proof. Assume that Bn = 2vmx
2 for some x > 0. Since vm|Bn, it

follows from (26) that m|n and n = 2km for some k > 0. This
implies from (14) that

Bn = B2km = Bkmvkm = 2vmx
2. (44)

Let k be even. Then Bkm

vm
vkm = 2x2. Clearly, from (25), d =(

Bkm

vm
, vkm

)
= 1 or 2. If d = 1, then either

Bkm = vma
2, vkm = 2b2 (45)

or

Bkm = 2vma
2, vkm = b2 (46)

for some a, b > 0. It is obvious by Theorems 3.11 and 3.9 that both
(45) and (46) are impossible. If d = 2, then either

Bkm = 2vma
2, vkm = (2b)2 (47)

or

Bkm = vm(2a)2, vkm = 2b2 (48)

for some a, b > 0. From (30), since 4 - vm, it is seen that (47) is
impossible. It is obvious by Theorem 3.11 that (48) is impossible.
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Now let k be odd. Then from (44), we have Bkm
vkm
vm

= 2x2. Clearly,

from (25), d =
(
Bkm,

vkm
vm

)
= 1 or 2. If d = 1, then

Bkm = a2, vkm = 2vmb
2 (49)

or

Bkm = 2a2, vkm = vmb
2 (50)

for some a, b > 0. If (49) holds, then by Theorem 3.8, it follows that
km = 1, i.e., k = 1 and m = 1. This implies that v1 = 2v1b

2, which
is impossible in integers. It is clear from Theorem 3.7 that (50) is
impossible.

If d = 2, then

Bkm = 2a2, vkm = vm(2b)2 (51)

or

Bkm = (2a)2, vkm = 2vmb
2 (52)

for some a, b > 0. (51) is impossible by Theorem 3.7. If (52) holds,
then by Theorem 3.8, it follows that km = 1, i.e., B1 = 1 = (2a)2,
which is impossible. This completes the proof. �

Theorem 3.13. (Theorem 2 of [16]) The generalized Lucas sequence
has at most one non-trivial square-class. Furthermore, if P ≡
2(mod 4), then we have not non-trivial square-class except (v1, v2) =
(338, 114242) when P = 338, Q = 1. If P ≡ 0(mod 4), then we have
not non-trivial square-classes when 2 - mn or 2|(m,n).

4. Positive Integer Solutions of the Equations
x2 − 8Bnxy − 2y2 = ±2r in Terms of Balancing Numbers,
Pell and Pell-Lucas Numbers, and the Terms of the

Sequence {vn}
In this section, we determine when the equations x2 − 8Bnxy −

2y2 = ±2r, x2− 8Bnxy
2− 2y4 = ±2r, and x4− 8Bnx

2y− 2y2 = ±2r

have positive integer solutions under the assumptions that n, r ≥
0. Moreover, we give all positive integer solutions of the equations
above.

We omit the proof of the following theorem, as it is based a
straightforward induction.
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Theorem 4.1. Let k ≥ 0 be an integer. Then all nonnegative inte-
ger solutions of the equation u2 − 2v2 = 2k are given by

(u, v) =

{
(2

k−2
2 vm, 2

k+2
2 Bm) if k is even

(2
k+1
2 P2m+1, 2

k−3
2 Q2m+1) if k is odd

with m ≥ 0 and all nonnegative integer solutions of the equation
u2 − 2v2 = −2k are given by

(u, v) =

{
(2

k−2
2 Q2m+1, 2

k
2P2m+1) if k is even

(2
k+3
2 Bm, 2

k−3
2 vm) if k is odd

with m ≥ 0.

Theorem 4.2. If k is even, then all positive integer solutions of
the equation x2 − 8Bnxy − 2y2 = 2k are given by (x, y) = (2

k
2
vn+m

vn
,

2
k+4
2

Bm

vn
) with m ≥ 1, n|m and m = 2rn for some r > 0. If k is odd,

then the equation x2−8Bnxy−2y2 = 2k has positive integer solutions
only when n = 0 and the solutions are given by (x, y) = (2

k+1
2 P2m+1,

2
k−3
2 Q2m+1) with m ≥ 0.

Proof. Assume that x2 − 8Bnxy − 2y2 = 2k for some x, y > 0.
Multiplying both sides of the equation by 4 and completing the
square give (2x − 8Bny)2 − (64B2

n + 8)y2 = 2k+2. It is clear from
(13) that 64B2

n + 8 = 2v2n. Hence, the preceding equation becomes
(2x − 8Bny)2 − 2(vny)2 = 2k+2. Let k be even. Then by Theo-

rem 4.1, we obtain |2x− 8Bny| = 2
k
2vm and vny = 2

k+4
2 Bm. Since

4 - vn and vn is even, it follows that (4, vn) = 2 and therefore
vn
2 y = 2

k+2
2 Bm. It can be easily seen that (vn2 , 2

k+2
2 ) = 1. Thus, we get

vn
2 |Bm, that is vn

2 |2Bm

2 for even m. Since (vn2 , 2) = 1, vn
2 |Bm

2 , implying
that vn|Bm. Therefore, we get from (26) that n|m and m = 2rn

for some r > 0. Hence, we conclude that y = 2
k+4
2

Bm

vn
. Suppose that

2x − 8Bny = 2
k
2vm. Substituting the value of y into the preced-

ing equation gives x = 2
k
2
vmvn+32BmBn

2vn
. This implies from (17) that

x = 2
k
2
vm+n

vn
. Now suppose that 2x − 8Bny = −2

k
2vm. In a similar

manner, we readily obtain x = 2
k
2
32BmBn−vmvn

2vn
. This gives from (18)

x = −2
k
2
vm−n
vn
. But in this case, x is negative and so we omit it. As

a consequence, we get (x, y) = (2
k
2
vn+m

vn
, 2

k+4
2

Bm

vn
). Now let k be odd.

Then by Theorem 4.1, we have vny = 2
k−1
2 Q2m+1. Since vn = Q2n and

vn|vny, it follows that Q2n|2
k−1
2 Q2m+1, implying that Q2n|2

k+1
2

Q2m+1

2 .
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It can be easily seen from (32) that (Q2n, Q2m+1/2) = 1. Hence,

Q2n|2
k+1
2 and this is possible only when n = 0. Thus, the main equa-

tion x2 − 8Bnxy − 2y2 = 2k turns into the equation x2 − 2y2 = 2k,
whose solutions are (x, y) = (2

k+1
2 P2m+1, 2

k−3
2 Q2m+1) by Theorem

4.1.
Conversely, if k is even and

(x, y) = (2
k
2
vn+m

vn
, 2

k+4
2 Bm

vn
)

with m ≥ 1, n|m and m = 2rn for some r > 0, then by (21), it
follows that x2 − 8Bnxy − 2y2 = 2k. And if k is odd and (x, y) =

(2
k+1
2 P2m+1, 2

k−3
2 Q2m+1) with m ≥ 0, then x2 − 8Bnxy − 2y2 = 2k

with n = 0. This completes the proof. �

Theorem 4.3. If k is even, then the equation x2 − 8Bnxy − 2y2 =
−2k has positive integer solutions only when n = 0 and the solutions
are given by (x, y) = (2

k−2
2 Q2m+1, 2

k
2P2m+1) with m ≥ 0. If k is odd,

then all positive integer solutions of the equation x2−8Bnxy−2y2 =
−2k are given by (x, y) = (2

k+5
2

Bn+m

vn
, 2

k−1
2

vm
vn

) with m ≥ 1, n|m and

m = (2r + 1)n for some r > 0.

Proof. When k is even, the method is similar to that used in The-
orem 4.2 for the case when k is odd. So, we immediately have
vny = 2

k+2
2 P2m+1. Since 4 - vn by (30) and vny = 2

k+2
2 P2m+1, it

clearly follows that vn|2
k+2
2 P2m+1. Since vn = Q2n, it can be easily

seen from (31) that (vn, P2m+1) = 1. So, vn|2
k+2
2 and this is possible

only when n = 0. Hence, the main equation x2−8Bnxy−2y2 = −2k

turns into the equation x2−2y2 = −2k, whose solutions are (x, y) =

(2
k−2
2 Q2m+1, 2

k
2P2m+1) by Theorem 4.1. Now let k be odd. Multi-

plying both sides of the equation x2− 8Bnxy− 2y2 = −2k by 4 and
completing the square give (2x − 8Bny)2 − (64B2

n + 8)y2 = −2k+2.
Using the fact that 64B2

n + 8 = 2v2n by (13), the previous equation
becomes (2x− 8Bny)2 − 2(vny) = −2k+2. Then by Theorem 4.1, we

obtain |2x− 8Bny| = 2
k+5
2 Bm and vny = 2

k−1
2 vm. Since 4 - vn and vn

is even, it follows that (4, vn) = 2 and therefore vn
2 y = 2

k−1
2

vm
2 . It can

be easily seen that (vn2 , 2
k−1
2 ) = 1. Thus, we get vn

2 |vm2 , that is vn|vm.
This implies from (25) that n|m and m = (2r+ 1)n for some r > 0.

Hence, we get y = 2
k−1
2

vm
vn
. Assume first that 2x − 8Bny = 2

k+5
2 Bm.

Substituting the value of y into the previous equation, we have
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x = 2
k+5
2

Bnvm+Bmvn
2vn

. Then by (19), we conclude that x = 2
k+5
2

Bm+n

vn
.

Now assume that 2x − 8Bny = −2
k+5
2 Bm. In a similar manner, we

get x = 2
k+3
2

Bnvm−Bmvn
2vn

. By (20), we conclude that x = 2
k+3
2

Bn−m
vn

.

But in this case since n−m < 0, it follows from (9) that Bn−m < 0
and therefore we see that x is negative. So, we omit it. Conversely,
if k is even and (x, y) = (2

k−2
2 Q2m+1, 2

k
2P2m+1) with m ≥ 0, then

by (12), x2 − 8Bnxy − 2y2 = −2k with n = 0. And if k is odd and

(x, y) = (2
k
2
Bn+m

vn
, 2

k+4
2

vm
vn

) with m ≥ 1, n|m and m = (2r + 1)n for

some r > 0, then by (22), x2− 8Bnxy− 2y2 = −2k . This completes
the proof. �

Now we consider the equations x2 − 8Bnxy
2 − 2y4 = ±2k and

x4 − 8Bnx
2y − 2y2 = ±2k, respectively.

Theorem 4.4. If k ≡ 0, 2, 3(mod 4), then the equation x2−8Bnxy
2−

2y4 = 2k has no solutions x and y. If k ≡ 1(mod 4), then the
equation x2 − 8Bnxy

2 − 2y4 = 2k has positive integer solutions only
when n = 0 and the solution is given by (x, y) = (2

k+1
2 , 2

k−1
4 ).

Proof. Firstly, assume that k is even in x2 − 8Bnxy
2 − 2y4 = 2k.

Then by Theorem 4.2, it follows that (x, y2) = (2
k
2
vn+m

vn
, 2

k+4
2

Bm

vn
)

with m ≥ 1, n|m and m = 2rn for some r > 0. Hence, we obtain

y2 = 2
k+4
2

Bm

vn
. Now we divide the proof into two cases.

Case 1 : Let k ≡ 0(mod 4). Then the equation y2 = 2
k+4
2

Bm

vn
clearly

follows that Bm = vnu
2, which is impossible by Theorem 3.11.

Case 2 : Let k ≡ 2(mod 4). Then the equation y2 = 2
k+4
2

Bm

vn
yields

that Bm = 2vnu
2, which is impossible by Theorem 3.12.

Secondly, assume that k is odd. Then by Theorem 4.2, it follows
that (x, y2) = (2

k+1
2 P2m+1, 2

k−3
2 Q2m+1) with m ≥ 0. This shows that

y2 = 2
k−3
2 Q2m+1. Again dividing the remainder of the proof into two

cases, we have
Case 1 : Let k ≡ 3(mod 4). Then we obtain Q2m+1 = u2 for some

u > 0. By (29), since Q2m+1 is even, it follows that u is even and
therefore 4|Q2m+1, which is impossible by (30).

Case 2 : Let k ≡ 1(mod 4). Then we have Q2m+1 = 2u2 for some

u > 0. By Theorem 3.6, we get m = 0. Thus y2 = 2
k−1
2 , implying

that y = 2
k−1
4 and x = 2

k+1
2 . This completes the proof. �

Theorem 4.5. If k ≡ 2, 3(mod 4), then the equation x2−8Bnxy
2−

2y4 = −2k has no solutions x and y. If k ≡ 0(mod 4), then all
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positive integer solutions of the equation x2−8Bnxy
2−2y4 = −2k are

given by (x, y) = (2
k
2 , 2

k
4 ) or (x, y) = (239 · 2k

2 , 13 · 2k
4 ). If k ≡ 1(mod

4), then there is only one positive integer solution of the equation

x2 − 8Bnxy
2 − 2y4 = −2k given by (x, y) = (2

k+5
2 Bn, 2

k−1
4 ).

Proof. Assume that k is even in x2 − 8Bnxy
2 − 2y4 = −2k. Then

by Theorem 4.3, it follows that (x, y2) = (2
k−2
2 Q2m+1, 2

k
2P2m+1) with

m ≥ 0. Hence, we obtain y2 = 2
k
2P2m+1. Dividing the proof into two

cases, we have
Case 1 : Let k ≡ 0(mod 4). Then from the equation y2 = 2

k
2P2m+1,

we obtain P2m+1 = u2 for some u > 0. By Theorem 3.5, we get
2m + 1 = 1 or 2m + 1 = 7. This implies that m = 0 or m = 3. If
m = 0, then we immediately have x = 2

k
2 and y = 2

k
4 . If m = 3,

then we obtain x = 239 · 2k
2 and y = 13 · 2k

4 .
Case 2 : Let k ≡ 2(mod 4). Then the equation y2 = 2

k
2P2m+1

becomes P2m+1 = 2u2, which is impossible since 2 - P2m+1 by (28).
Now assume that k is odd. Then by Theorem 4.3, we have

(x, y2) = (2
k+5
2

Bn+m

vn
, 2

k−1
2 vm

vn
)

with m ≥ 1, n|m and m = (2r + 1)n for some r > 0. Hence, we

obtain y2 = 2
k−1
2

vm
vn
. Now we divide the remainder of the proof into

two cases.
Case 1 : Let k ≡ 1(mod 4). Then the equation y2 = 2

k−1
2

vm
vn

implies

that vm = vnu
2 for some u > 0. By Theorem 3.13, this is possible

only when n = m. Hence, we get x = 2
k+5
2

B2n

vn
. Also using (14)

for the value of x gives that x = 2
k+5
2 Bn. Thus, we conclude that

(x, y) = (2
k+5
2 Bn, 2

k−1
4 ).

Case 2 : Let k ≡ 3(mod 4). So, we immediately have vn+m = 2vnu
2

for some u > 0. Since vn is even by (29), it is clear that 4|vn+m. But
this is impossible by (30). This completes the proof. �
Theorem 4.6. If k ≡ 0, 1, 2(mod 4), then the equation x4−8Bnx

2y−
2y2 = 2k has no positive integer solutions x and y. If k ≡ 3(mod 4),
then all positive integer solutions of the equation x4−8Bnx

2y−2y2 =
2k are given by (x, y) = (2

k+1
4 , 2

k−1
2 ) or (x, y) = (13 · 2k+1

4 , 239 · 2k−1
2 ).

Proof. Assume that x4−8Bnx
2y−2y2 = 2k for some positive integers

x and y. If k is even, then by Theorem 4.2, we have (x2, y) =

(2
k
2
vn+m

vn
, 2

k+4
2

Bm

vn
) with m ≥ 1, n|m and m/n is even. Hence, we get

x2 = 2
k
2
vn+m

vn
.
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Case 1 : Let k ≡ 0(mod 4). We readily obtain from x2 = 2
k
2
vn+m

vn

that vn+m = vnu
2 for some u > 0. By Theorem 3.13, this is possible

only when n + m = n, implying that m = 0, which contradicts the
fact that m ≥ 1.

Case 2 : Let k ≡ 2(mod 4). So, we immediately have vn+m = 2vnu
2

for some u > 0. Since vn is even by (29), we see that 4|vn+m, which
is impossible by (30).

If k is odd, then by Theorem 4.2, we have

(x2, y) = (2
k+1
2 P2m+1, 2

k−3
2 Q2m+1)

with m ≥ 0. This implies that x2 = 2
k+1
2 P2m+1.

Case 1 : Let k ≡ 1(mod 4). Then form x2 = 2
k+1
2 P2m+1, we obtain

P2m+1 = 2u2, which is impossible since 2 - P2m+1 by (28).

Case 2 : Let k ≡ 3(mod 4). Then the equation x2 = 2
k+1
2 P2m+1

gives that P2m+1 = u2 for some u > 0. By Theorem 3.5, we get
2m + 1 = 1 or 2m + 1 = 7, implying that m = 0 or m = 3.
Substituting these values of m into (x2, y) = (2

k+1
2 P2m+1, 2

k−3
2 Q2m+1),

we conclude that (x, y) = (2
k+1
4 , 2

k−1
2 ) or (x, y) = (13·2k+1

4 , 239·2k−1
2 ).

This completes the proof. �

Theorem 4.7. If k ≡ 1, 2, 3(mod 4), then the equation x4−8Bnx
2y−

2y2 = −2k has no positive integer solutions x and y. If k ≡ 0(mod
4), then there is only one positive integer solution of the equation

x4 − 8Bnx
2y − 2y2 = −2k given by (x, y) = (2

k
4 , 2

k
2 ).

Proof. Assume that x4 − 8Bnx
2y − 2y2 = −2k for some positive

integers x and y. If k is even, then by Theorem 4.3, it follows that
(x2, y) = (2

k−2
2 Q2m+1, 2

k
2P2m+1) with m ≥ 0. Hence, we get x2 =

2
k−2
2 Q2m+1.
Case 1 : Let k ≡ 0(mod 4). Hence, we immediately have from

x2 = 2
k−2
2 Q2m+1 that Q2m+1 = 2u2. By Theorem 3.6, we get m = 0.

This yields that (x, y) = (2
k
4 , 2

k
2 ).

Case 2 : Let k ≡ 2(mod 4). Hence, we readily obtain Q2m+1 = u2

for some u > 0. Since Q2m+1 is even by (29), it is clear that u is even
and therefore 4|Q2m+1, which is impossible by (30).

If k is odd, then by Theorem 4.3, it follows that
(x2, y) = (2

k+5
2

Bn+m

vn
, 2

k−1
2

vm
vn

) with m ≥ 1, n|m and m = (2r+ 1)n for

some r > 0. This implies that x2 = 2
k+5
2

Bn+m

vn
.
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Case 1 : Let k ≡ 1(mod 4). Then from 2
k+5
2

Bn+m

vn
, we obtain Bn+m =

2vnu
2, which is impossible by Theorem 3.12.

Case 2 : Let k ≡ 3(mod 4). Then we have Bn+m = vnu
2, which is

also impossible by Theorem 3.11. This completes the proof. �
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THE NUMBER OF QUADRATIC SUBFIELDS

JEAN B NGANOU

Abstract. We use elementary field theory to compute the num-
ber of intermediate fields of degree 2 of any finite extension of fields
of characteristic not 2. This leads to necessary and sufficient con-
ditions for such extensions to have no intermediate fields of degree
2, or to have a unique intermediate field of degree 2. We obtain
several applications including the number of quadratic subfields of
cyclotomic extensions.

1. Introduction

The Fundamental Theorem of Galois Theory is by far the most
important connection between field and group theory. It asserts that
for finite Galois extensions, there is a one-to-one correspondence
between the intermediate fields and the subgroups of the Galois
group. Moreover, under this correspondence subgroups of index
n correspond to intermediate fields of degree n. Therefore, this
produces an indirect method for finding the number of intermediate
fields of a given degree. One would use group-theoretic facts to find
the number of subgroups of the correspoding index. Unfortunately,
for non Galois extensions, there is no obvious relationship between
the intermediate fields of the extensions and the subgroups of their
Galois groups.

The aim of this note is to find a field-theoretic formula for the num-
ber of intermediate fields of degree 2 for an arbitrary finite extension
K/F with F of characteristic not 2. Such a formula would allow
us to answer questions about the existence of subfields of degree 2
without having to compute the Galois group, even for non Galois
extensions. Our strategy consists in the following steps: starting
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with a finite extension K/F , we create a new extension Q/F that is
finite Galois such that K/F and Q/F have the same intermediate
fields of degree 2. We can now apply the Fundamental Theorem of
Galois Theory to compute the number of subfields of degree 2 of the
extension Q/F , and therefore those of K/F . We also obtain that
the extension Q is the fixed field of the subgroup of squares of the
Galois group of K/F . In all that follows, F will denote a field of
characteristic different from 2 and K/F a finite extension(K is a fi-
nite dimensional vector space over F ). In addition, for every integer
k ≥ 2, Ck shall denote the cyclic group of order k.

Given a field extension K/F , the Galois group of K/F is denoted
by G(K/F ), and is the set of autormorphisms of K that fix every
element in F . Given a subgroup H of G(K/F ), the fixed field of
H is the intermediate field of K/F defined by F(H) := {a ∈ K :
σ(a) = a, for all σ ∈ H}. An extension K/F is called algebraic
if every element of K is a solution to a polynomial equation with
coefficients in F . A Galois extension is any algebraic exetnsion K/F
satisfying F(G(K/F )) = F . For the convenience of the reader, we
recall the Fundamental Theorem of Galois Theory.

Let K/F be a finite Galois extension with Galois group G. If E
is an intermediate field of K/F , let G(K) denote G(K/E). Then
F is a bijection from the the subgroups of G to the intermediate
fields, with inverse G such that for every E, [E : F ] = [G : G(E)]
and [K : E] = |G(E)|.

We also recall the following result about the number of subgroups
of index 2 in any group. The subgroup of squares of a group G is
denoted by G2, and is the subgroup of G generated by {g2 : g ∈ G}.
It is easy to see that G2 = {g21g22 · · · g2n : gi ∈ G, n ≥ 1}. It is
known that, every arbitrary finite group G has exactly [G : G2]− 1
subgroups of index 2 [4, Corollary 1].

We hope the article is accessible to readers with limited back-
ground.

2. Number of intermediate fields of degree 2

Let Q(K/F ) := F ({α ∈ K : α2 ∈ F}), then F ⊆ Q(K/F ) ⊆ K.
Since K/F is finite, there exists a subset {α1, α2, . . . , αn} ⊆ K with
α2
i ∈ F such that αi+1 /∈ F (α1, α2, . . . , αi) for all i ≤ n − 1 and
Q(K/F ) = F (α1, α2, . . . , αn). When it is clear what extension K/F
is being considered, we will simply write Q for Q(K/F ). We will call
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Q(K/F ) the quadratic closure of F in K, or simply the quadratic
closure of the extension K/F .
Let E be an intermediate field of K/F such that [E : F ] = 2, then
since Char(F ) 6= 2, there exists β ∈ E with β2 ∈ F such E = F (β).
Hence, E ⊆ Q and therefore, every intermediate field of K/F of
degree 2 is an intermediate field of Q/F of degree 2. The converse is
clearly true. Therefore, intermediate fields of K/F of degree 2 and
intermediate fields of Q/F of degree 2 are the same. On the other
hand, note that Q is the splitting field of (x2−α2

1)(x
2−α2

2) · · · (x2−
α2
n) over F . We have obtained the following key fact about the

extension Q/F , which shall play a central role in the entire article.

Theorem 2.1. For every finite extension K/F , the extension Q/F
is a finite Galois extension. Furthermore, K/F and Q/F have the
same intermediate subfields of degree 2 over F .

The Galois group of Q/F is elementary Abelian of exponent 2 as
we prove next.

Theorem 2.2. Let G = G(Q/F ). Then G ∼= C2 × C2 × · · · × C2.

Proof. To see this, first as observed above, there exists a subset
{α1, α2, . . . , αn} ⊆ K with α2

i ∈ F such that αi+1 /∈ F (α1, α2, . . . , αi)
for all i ≤ n−1 and Q = F (α1, α2, . . . , αn). It follows from the tower
formula that [Q : F ] = 2n, and the Fundamental Theorem of Galois
Theory that |G| = 2n. In addition, for every σ ∈ G, σ(αi) = ±αi for
all i and consequently σ2 = id. It follows from a well-known exercise
that G is Abelian, and since G has exponent 2, by the Fundamental
Theorem of Finite Abelian groups, G ∼= C2 × C2 × · · · × C2. �

Appealing to the Fundamental Theorem of Galois Theory, we can
count the number of intermediate fields of Q/F of degree 2 by count-
ing the number of subgroups of index 2 in G(Q/F ).

Corollary 2.3. Let K/F be finite extension with quadratic closure
Q. Then, Q/F has exactly [Q : F ]− 1 intermediate fields of degree
2.

Proof. From Theorem 2.2, we have G(Q/F ) ∼= C2 × C2 × · · · × C2,
where C2 is the cyclic group of order 2. Thus, G(Q/F )2 is the trivial
group and by [4, Corollary 1], G(Q/F )2 has |G(Q/F )|−1 subgroups
of index 2. Now, it follows from Fundamental Theorem of Galois
Theory, that Q/F has [Q : F ]− 1 subfields of degree 2. �
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Since K/F and Q/F have the same intermediate fields of degree
2 (Theorem 2.1), we deduce;

Corollary 2.4. Every finite extension K/F has exactly [Q : F ]− 1
intermediate fields of degree 2 where Q is the quadratic closure of
K/F .

Corollary 2.5. A finite extension K/F has a unique intermediate
field of degree 2 if and only if [Q : F ] = 2.

One can apply the Fundamental Theorem of Galois Theory and
the results in [4] about subgroups of index 2 to obtain the following.

Theorem 2.6. For every finite Galois extension K/F with Galois
group G and quadratic closure Q,

Q = F(G2) and G(K/Q) = G2

3. Applications

We can apply the results above to compute the number of qua-
dratic subfields in some typical extensions. The quadratic closure
Q/F of an extension as introduced here could be difficult to com-
pute, but in many cases as in the following Example, it is quite
simple and illustrative.

Example 3.1. Consider the extension Q(
√

2, 4
√

3)/Q, which is not
Galois. It is easy to see that [Q(

√
2, 4
√

3) : Q] = 8. It is also clear that√
2,
√

3 ∈ Q(Q(
√

2, 4
√

3)/Q) and 4
√

3 /∈ Q(Q(
√

2, 4
√

3)/Q). Hence
Q(Q(

√
2, 4
√

3)/Q) = Q(
√

2,
√

3) and [Q(Q(
√

2, 4
√

3)/Q) : Q] = 4.
Therefore, Q(

√
2, 4
√

3)/Q has three intermediate fields of degree 2.

The next example justifies why the characteristic assumption on
the base field cannot be dropped.

Example 3.2. Let k = F2(t) be the field of rational functions in
t over the Galois field of two elements, K = k(x, y) be the field of
rational functions in two variables over k and F = k(x2, y2). Then
for each a ∈ k, there is a degree 2 field extension La = F (x + ay)
of F . It is elementary to see La = Lb if and only if a = b. Thus,
since |k| is infinite, there are infinitely many degree 2 subextensions
of K/F even though [K : F ] = 4 is finite.

As another application, we investigate degree 2 subfields of the
cyclotomic extensions. A simple and complete treatment of cyclo-
tomic extensions can be found in [3, §7]. Recall that for n ≥ 1,
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the nth cyclotomic extension of Q is Qn := Q(ω) where ω is a
primitive nth root of unity. It is well known that Qn/Q is Galois
and G(Qn/Q) ∼= U(n), the group of units of the ring Zn of integers
modulo n. The order of U(n) is denoted by φ(n) and is equal to the
number of positive integers less than or equal to n that are relatively
prime to n.

Example 3.3. Let N2(Qn/Q) denote the exact number of degree 2
intermediate fields of Qn/Q. Then we have the following formulae:

1. For every nonnegative integer r

N2(Q2r/Q) =





0 if r = 0, 1

1 if r = 2

3 if r ≥ 3

2. If n = 2rpt11 p
t2
2 · · · ptss where r ≥ 0, s ≥ 1 and p1, p2, · · · , ps are

distinct odd primes.

N2(Qn/Q) =





2s − 1 if r = 0, 1

2s+1 − 1 if r = 2

2s+2 − 1 if r ≥ 3

Recall that G(Qn/Q) ∼= U(n) (see for instance [3, Corollary 7.8].
So, by Corollary 2.3, N2(Qn/Q) = [Q(Qn/Q) : Q] − 1 = [U(n) :
U(n)2] − 1. Therefore, we need to compute [U(n) : U(n)2] in each
case. We will use the decomposition of the U -groups into cyclic
groups as found in [1, pp159-160] or [2]. We will also use the facts
that if C is a cyclic group of order m, it follows from [1, Theorem.
4.2] that C2 is cyclic of order m/gcd(2,m); and that (G1 ⊕ G2)

2 =
G2

1 ⊕G2
2 for every groups G1, G2 [4, Theorem 4].

1. First note that the case r = 0 is obvious as Q1 = Q. On the
other hand, we have U(2) ∼= {0}, U(4) ∼= C2, U(2r) ∼= C2 ⊕ C2r−2

for r ≥ 3. So U(2)2 ∼= U(4)2 ∼= {0}, and U(2r)2 ∼= C2r−3 for r ≥ 3.
Hence [U(2) : U(2)2] = 1 and [U(4) : U(4)2] = 2 and for r ≥ 3,
[U(2r) : U(2r)2] = 2r−1/2r−3 = 4. Therefore the formula is justified.
2. First assume r ≥ 3, then U(n) ∼= U(2r)⊕U(pt11 )⊕ · · · ⊕U(ptss ) ∼=
C2 ⊕ C2r−2 ⊕ C

p
t1
1 −p

t1−1
1
⊕ · · · ⊕ Cptss −pts−1

s
. Hence, U(n)2 ∼= C2r−3 ⊕

C
(p

t1
1 −p

t1−1
1 )/2

⊕ · · · ⊕ C(ptss −pts−1
s )/2. Thus, |U(n)2| = φ(n)/2s+2 and

[U(n) : U(n)2] = 2s+2. For r = 2, as above U(n) ∼= C2⊕Cp
t1
1 −p

t1−1
1
⊕

· · · ⊕ Cptss −pts−1
s

, so U(n)2 ∼= C
(p

t1
1 −p

t1−1
1 )/2

⊕ · · · ⊕ C(ptss −pts−1
s )/2. So,
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|U(n)2| = φ(n)/2s+1 and [U(n) : U(n)2] = 2s+1.
We leave the cases r = 0, 1 as a simple verification exercise.
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The Joy of Understanding and Solving Problems — A Guide to
School Mathematics makes some new inroads into school mathemat-
ics but few inroads into joy. Siddartha Sen has a gift for bringing
innovative examples and fresh motivations to old and well-worn top-
ics, but in his stout-hearted ambition to present the whole of school
mathematics, and more besides, in an expository fashion in a single
volume, the novelty that should be at the heart of joy soon drains
away. An Irish reader will notice that some of the material, as much
as 100 pages of the 600 in the book, including vectors, conics and
group theory, is no longer on any second-level maths syllabus.

The book aims high. In a long preface on the nature of maths
and maths learning, the author declares his intention that the book
should implement, embody perhaps, the idea that (quoting mythol-
ogist Joseph Campbell) a civilisation is on the rise when there is
“integrity and cogency in [that civilisation’s] supportive canons of
myths, for not authority but aspiration is the motivator, builder and
transformer of civilisation”.

Maintaining such an ideal among the nuts and bolts of a didac-
tic course in school mathematics was always going to be challenge,
and despite the sprinkling of novel motivational examples, the book
overall does not escape its own gunfire: “mathematics is taught
in schools as a collection of rules for solving certain examination
problems”. Most of the methods, apart from the most elementary,
where the derivation can be explained, are introduced convention-
ally by rules.

While Sen’s aspiration is that the senior school student, at whom he
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says the book is aimed, will hear that “mathematics is an enjoyable
human activity created by people with great imagination who have
a passion to solve problems and find patterns”, normal 16-year olds
will worry about whether they have enough imagination to create
mathematics, and if not, how they fit in.

Long chapters of worded exposition mean that this is not a text-
book. In places it justifies the choice of topics on a school syllabus,
in other places it merely rehearses the material. How a second-level
student would use it is not clear. Good maths students could refer
to it for reassurance or further study, but this is hardly its purpose:
the students that inspirational books want to capture are the weaker
ones, those who would love to be inspired.
Sen works through Leaving Certificate Euclidean Geometry in a
verbalising manner, where a school text would be terse. Verbalising
does not always mean clarifying. In the theorem about correspond-
ing sides in similar triangles being proportional, the proof moves
from “λ2(BX2 + AX2) = FY 2 + AY 2” to “This equation has to
hold as an identity. Thus AY = λAX,FY = λBX”. The normal
16-year old would be tempted to learn this passage by heart. When
dealing with the Geometry it might have been better to have fo-
cussed on how the student will meet the new demand by Project
Maths: that he/she be able to “use the following terms related to
logic and deductive reasoning: is equivalent to, if and only if, proof
by contradiction”.

Siddartha Sen’s book should be reduced and rewritten. It does
not have to start with addition of integers — some threshold can
be assumed. And rather than attempting to compete exhaustively
with school texts, it should focus on a few interesting ideas about
pattern and structure and mathematical inquiry. That would give
it a chance to become the inspirational, joyful handbook that Sen
intended. But in the rewriting, a lot needs to change. The book
is littered with editorial typos, and these intrude on the mathemat-
ics. The main page on quaternions is full of errors (jk = i, then
jk = −i, . . . , ik = j . . . ). There is repetition of topics, and when
this happens the book does not reference itself.
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One of the potentially best chapters in the book, “Using Mathe-
matics”, starts on page 534. Apart from explaining, again, how to
calculate 5−3+1, and the rules of fractions, both covered 500 pages
earlier, it contains a section on Maths Muscle Building, where Sen
seeks to use the algebra that has been learned, though principally
to solve algebraic problems. This idea could be expanded to include
mathematical modelling for second-level pupils, and the black art
of converting a worded problem to a symbolic one teased out and
revealed to all, student and teacher alike. Acquiring this art is the
biggest challenge facing our second-level maths teachers today.

In hurling counties in Ireland there is the concept of the “makings”
of a hurley, a J-shaped plank cut from the lower half and root of a
young ash-tree. It looks like a hurley but one could not play with it.
Before hand-drills/sanders became household items, a person would
reduce the makings to a proper hurley using a spoke-shave. The
Joy of Understanding and Solving Problem has the makings of a
new type of maths book. The author must take a spoke-shave to it.
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REVIEWED BY GABRIELLE KELLY

This book outlines some of the more interesting results that arise
when studying probability or statistics for the first time. The book
is laid out in an Introduction, followed by 25 chapters and a final
chapter with challenge problem solutions. The title comes from one
particular chapter in the book (chapter 23) that deals with life ex-
pectancy and is not indicative of the type of problem dealt with in
general. The most common topics the book deals with are combi-
natorial problems. Although the author claims there is little in the
book by way of statistical problems, I found this to be not so. Topics
covered range from distribution of maxima and minima of uniform
random variables to the memoryless property of the exponential dis-
tribution and these arise naturally when studying statistics. Each
chapter has some topic that is formulated by way of a question with
a theoretical answer and a simulation solution using MATLAB is
also given. The introduction is interesting from a historical point
of view and also gives a flavour of the type of problems and re-
sults that follow. It is interesting to classify the chapters by type
of problem. Chapter 2 is a probability counting problem. Chapter
3 presents an occupancy problem. Chapter 4 deals with the geo-
metric distribution. Chapter 5 deals with the uniform distribution.
Chapter 6 is estimating population size. Chapter 7 presents a quite
tricky problem on the probability a chain letter will end. Chapter
8 and 9 are probability problems involving enumerating all possibil-
ities. Chapter 10 concerns statistical hypothesis testing. Chapter
11 is a runs problem. Chapter 12 is a probability problem with an
infinite sum involving Eulers constant and one of the more interest-
ing chapters. Chapter 13 is a combinatorial problem. Chapter 14
reads more like a lesson on integration. Chapter 15 is one of the few
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where the solution to a probability problem is motivated by an im-
portant application. Chapter 16 deals with the uniform distribution
again. Chapter 17 deals with false positive and negative rates from
test results. Chapter 18 mainly involves doing an intricate integral.
Chapter 19 dealing with the memoryless property of the exponential
distribution gives one of the more interesting results. Chapter 20 is
the ballot problem (but not motivated by a random walk as most
texts). Chapter 21 deals with maxima of uniform random variables.
Chapter 22 involves setting up a double difference equation to solve
a probability problem winning at Ping-Pong or squash. Chapter 23
is a little disappointing as it assumes a hypothetical life-expectancy
distribution is available. Chapter 24 presents further counting prob-
lems. Chapter 25 presents Newcombs paradox - another interesting
chapter - this one without a solution and providing food for thought.
The solutions to challenge problems are in Chapter 26 many of
which involve geometry and integration. Thus many topics arise
naturally when studying statistics — most students of statistics are
familiar with the distribution of maximum and minimum of random
variables, conditional probability, the Gamblers ruin problem, false
positive and negative rates among others. A drawback of the book
is that there is no intrinsic order to the Chapters. Thus for a student
of probability the solutions to many of the problems are just one-off
and the lack of coherent structure mitigates against learning how
to do them. Also many of the problems posed are artificial and are
not motivated by important everyday problems e.g. Steve’s elevator
problem in Chapter 3 or the chicken in boxes problem Chapter 24.
However, what is considered an interesting problem can be subjec-
tive as the author indicates by the Note to what he terms the Plum
Pudding problem in Chapter 21. On the plus side, the book provides
useful problems for an instructor wishing to improve their student’s
ability at combinatorics, statistical distribution theory and calculus
(specifically integration). It also provides useful MATHLAB prob-
lems. In addition the book showcases some of the famous problems
in probability and statistics like the Gambler’s ruin problem, Simp-
son’s paradox (both in the Introduction) and the ballot problem.
Thus the book also provides motivation for an interested student or
reader to pursue the study of probability and statistics to a deeper
level.
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The longer title of this book is The Improbability Principle : Why
incredibly unlikely things keep happening. Hand’s thesis is that
extremely improbable events are commonplace.

The introductory chapters discuss phenomena such as supersti-
tions, prophecies, gods and miracles, parapsychology and the para-
normal, psychic powers, synchronicity and morphic resonance. Hand
explains these ideas are all inventions designed to explain surprising
phenomena and all that is really needed to explain them are the
basic laws of probability.

Hand defines five strands (or “Laws”) contributing to the Im-
probability Principle: the law of inevitability, the law of truly large
numbers, the law of selection, the law of the probability lever and
the law of near enough. Putting the laws together leads to ‘extra-
ordinary’ events: financial crashes, winning the lottery twice, being
struck by lightning seven times etc.

A chapter is devoted to each of the above laws, each of which is
derived from and motivated by examples from everyday life. My
favourite is in regard to the distribution of market fluctuations. If
the distribution is normal a 5-sigma event has probability 1 in 3.5
million. The same probability assuming a Cauchy distribution is 1
in 16. This might explain why financial crashes happen all the time
and comes under Hand’s law of the probability lever. Most examples
are nontrivial and require a subtlety of thought, some touching on
principles in physics and finance.

While the above chapters are very entertaining, the penultimate
two chapters explore frailties in our ways of thinking about the world
and discuss the improbability of our universe. The exposure of our
frailty is what makes this book enriching. You will undoubtedly
encounter an example that ‘corrects’ your way of thinking about
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some phenomenon. It will change how you think about coincidences
in particular. The final chapter explores how the idea of significance
in statistics is based on probability concepts.

There are two appendices, one explaining how large numbers are
written in mathematics and the other explaining the axioms of prob-
ability.

The book is written in an easy style and all arguments are easy to
follow. It is very well written and is both entertaining and informa-
tive. It is accessible to a lay person and yet should appeal to anyone
working in a numerate discipline. Even statisticians or probabilists
accustomed to thinking about probability every day will find some-
thing of interest in this book. Several months after reading it I find
several of the ‘laws’ have stayed with me. I strongly recommend it.
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PROBLEMS

IAN SHORT

Problems

The first problem was contributed by Finbarr Holland of Univer-
sity College Cork.

Problem 73.1. Let Un denote the Chebyshev polynomial of the
second kind of degree n, which is the unique polynomial that satisfies
the equation Un(cos θ) = sin((n + 1)θ)/ sin θ. The polynomial U2n

satisfies U2n(t) = pn(4t
2), where

pn(z) =
n∑

k=0

(−1)k
(

2n− k
k

)
zn−k.

Prove that pn is irreducible over the integers when 2n+ 1 is a prime
number.

The second and third problems were passed on to me by Tony
Barnard of King’s College London.

Problem 73.2. Find all positive integers a, b, and c such that

bc ≡ 1 (mod a)

ca ≡ 1 (mod b)

ab ≡ 1 (mod c).

Problem 73.3. Prove that
1

10
√

2
<

1

2
× 3

4
× 5

6
× · · · × 99

100
<

1

10
.

Solutions

Here are solutions to the problems from Bulletin Number 71. The
first problem was solved by J.P. McCarthy of University College
Cork and also by the North Kildare Mathematics Problem Club.
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We give McCarthy’s solution to (a) and the NKMPC’s solution to
(b). The problem was also solved by the proposer.

Problem 71.1 . For n = 0, 1, 2, . . . , the triangular numbers Tn and
Jacobsthal numbers Jn are given by the formulas

Tn =
n(n+ 1)

2
and Jn =

2n − (−1)n

3
.

(a) Prove that for each integer n > 3 there exist positive integers
a, b, and c such that Tn = Ta + TbTc.

(b) Prove that infinitely many square numbers can be expressed
in the form JaJb + JcJd for positive integers a, b, c, and d.

Solution 71.1. (a) It is straightforward to check that

T2n = Tn−1 + 3Tn

T2n+1 = Tn+1 + 3Tn.

These equations are illustrated in the figure below.

Since T2 = 3, the result follows immediately.
(b) We have

J2n + J2n+1 =
22n − 1

3
+

22n+1 + 1

3
= 22n.

Therefore the square of each positive integer power of 2 can be writ-
ten as a sum of two Jacobsthal numbers, and since J1 = 1 the result
follows immediately. �

The second problem was solved separately by Niall Ryan of the
University of Limerick, the North Kildare Mathematics Problem
Club, and the proposer. All solutions were in the same spirit, and
we present a solution based on that of the proposer.

Problem 71.2 . Prove that for each integer n > 3,∫ ∞

0

x− 1

xn − 1
dx =

π

n sin(2π/n)
.
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Solution 71.2. Let

f(z) =
1

zn−1 + · · ·+ z + 1
.

This function is analytic on a region containing the closed contour
shown below.

Applying Cauchy’s theorem to f , and letting R→∞, we obtain
∫ ∞

0

x− 1

xn − 1
dx+ eiπ/n

∫ ∞

0

eiπ/nx− 1

xn + 1
dx = 0.

Therefore∫ ∞

0

x− 1

xn − 1
dx = −Re

[
eiπ/n

∫ ∞

0

eiπ/nx− 1

xn + 1
dx

]

= cos
(π
n

)
K(n, 0)− cos

(
2π

n

)
K(n, 1), (1)

where, for non-negative integers m and n,

K(n,m) =

∫ ∞

0

xm

xn + 1
dx.

Using a similar contour to above but with angle 2π/n rather than
π/n, one can obtain the well-known formula

K(n,m) =
π

n sin((m+ 1)π/n)
, n > m+ 1.

Substituting the expressions for K(n, 0) and K(n, 1) into (1) gives
the required result. �

Problem 71.3 remains unsolved!
We invite readers to submit problems and solutions. Please email

submissions to imsproblems@gmail.com.

Department of Mathematics and Statistics, The Open University,
Milton Keynes MK7 6AA, United Kingdom
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