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THE NUMBER OF QUADRATIC SUBFIELDS

JEAN B NGANOU

Abstract. We use elementary field theory to compute the num-
ber of intermediate fields of degree 2 of any finite extension of fields
of characteristic not 2. This leads to necessary and sufficient con-
ditions for such extensions to have no intermediate fields of degree
2, or to have a unique intermediate field of degree 2. We obtain
several applications including the number of quadratic subfields of
cyclotomic extensions.

1. Introduction

The Fundamental Theorem of Galois Theory is by far the most
important connection between field and group theory. It asserts that
for finite Galois extensions, there is a one-to-one correspondence
between the intermediate fields and the subgroups of the Galois
group. Moreover, under this correspondence subgroups of index
n correspond to intermediate fields of degree n. Therefore, this
produces an indirect method for finding the number of intermediate
fields of a given degree. One would use group-theoretic facts to find
the number of subgroups of the correspoding index. Unfortunately,
for non Galois extensions, there is no obvious relationship between
the intermediate fields of the extensions and the subgroups of their
Galois groups.

The aim of this note is to find a field-theoretic formula for the num-
ber of intermediate fields of degree 2 for an arbitrary finite extension
K/F with F of characteristic not 2. Such a formula would allow
us to answer questions about the existence of subfields of degree 2
without having to compute the Galois group, even for non Galois
extensions. Our strategy consists in the following steps: starting
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with a finite extension K/F , we create a new extension Q/F that is
finite Galois such that K/F and Q/F have the same intermediate
fields of degree 2. We can now apply the Fundamental Theorem of
Galois Theory to compute the number of subfields of degree 2 of the
extension Q/F , and therefore those of K/F . We also obtain that
the extension Q is the fixed field of the subgroup of squares of the
Galois group of K/F . In all that follows, F will denote a field of
characteristic different from 2 and K/F a finite extension(K is a fi-
nite dimensional vector space over F ). In addition, for every integer
k ≥ 2, Ck shall denote the cyclic group of order k.

Given a field extension K/F , the Galois group of K/F is denoted
by G(K/F ), and is the set of autormorphisms of K that fix every
element in F . Given a subgroup H of G(K/F ), the fixed field of
H is the intermediate field of K/F defined by F(H) := {a ∈ K :
σ(a) = a, for all σ ∈ H}. An extension K/F is called algebraic
if every element of K is a solution to a polynomial equation with
coefficients in F . A Galois extension is any algebraic exetnsion K/F
satisfying F(G(K/F )) = F . For the convenience of the reader, we
recall the Fundamental Theorem of Galois Theory.

Let K/F be a finite Galois extension with Galois group G. If E
is an intermediate field of K/F , let G(K) denote G(K/E). Then
F is a bijection from the the subgroups of G to the intermediate
fields, with inverse G such that for every E, [E : F ] = [G : G(E)]
and [K : E] = |G(E)|.

We also recall the following result about the number of subgroups
of index 2 in any group. The subgroup of squares of a group G is
denoted by G2, and is the subgroup of G generated by {g2 : g ∈ G}.
It is easy to see that G2 = {g21g22 · · · g2n : gi ∈ G, n ≥ 1}. It is
known that, every arbitrary finite group G has exactly [G : G2]− 1
subgroups of index 2 [4, Corollary 1].

We hope the article is accessible to readers with limited back-
ground.

2. Number of intermediate fields of degree 2

Let Q(K/F ) := F ({α ∈ K : α2 ∈ F}), then F ⊆ Q(K/F ) ⊆ K.
Since K/F is finite, there exists a subset {α1, α2, . . . , αn} ⊆ K with
α2
i ∈ F such that αi+1 /∈ F (α1, α2, . . . , αi) for all i ≤ n − 1 and
Q(K/F ) = F (α1, α2, . . . , αn). When it is clear what extension K/F
is being considered, we will simply write Q for Q(K/F ). We will call
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Q(K/F ) the quadratic closure of F in K, or simply the quadratic
closure of the extension K/F .
Let E be an intermediate field of K/F such that [E : F ] = 2, then
since Char(F ) 6= 2, there exists β ∈ E with β2 ∈ F such E = F (β).
Hence, E ⊆ Q and therefore, every intermediate field of K/F of
degree 2 is an intermediate field of Q/F of degree 2. The converse is
clearly true. Therefore, intermediate fields of K/F of degree 2 and
intermediate fields of Q/F of degree 2 are the same. On the other
hand, note that Q is the splitting field of (x2−α2

1)(x
2−α2

2) · · · (x2−
α2
n) over F . We have obtained the following key fact about the

extension Q/F , which shall play a central role in the entire article.

Theorem 2.1. For every finite extension K/F , the extension Q/F
is a finite Galois extension. Furthermore, K/F and Q/F have the
same intermediate subfields of degree 2 over F .

The Galois group of Q/F is elementary Abelian of exponent 2 as
we prove next.

Theorem 2.2. Let G = G(Q/F ). Then G ∼= C2 × C2 × · · · × C2.

Proof. To see this, first as observed above, there exists a subset
{α1, α2, . . . , αn} ⊆ K with α2

i ∈ F such that αi+1 /∈ F (α1, α2, . . . , αi)
for all i ≤ n−1 and Q = F (α1, α2, . . . , αn). It follows from the tower
formula that [Q : F ] = 2n, and the Fundamental Theorem of Galois
Theory that |G| = 2n. In addition, for every σ ∈ G, σ(αi) = ±αi for
all i and consequently σ2 = id. It follows from a well-known exercise
that G is Abelian, and since G has exponent 2, by the Fundamental
Theorem of Finite Abelian groups, G ∼= C2 × C2 × · · · × C2. �

Appealing to the Fundamental Theorem of Galois Theory, we can
count the number of intermediate fields of Q/F of degree 2 by count-
ing the number of subgroups of index 2 in G(Q/F ).

Corollary 2.3. Let K/F be finite extension with quadratic closure
Q. Then, Q/F has exactly [Q : F ]− 1 intermediate fields of degree
2.

Proof. From Theorem 2.2, we have G(Q/F ) ∼= C2 × C2 × · · · × C2,
where C2 is the cyclic group of order 2. Thus, G(Q/F )2 is the trivial
group and by [4, Corollary 1], G(Q/F )2 has |G(Q/F )|−1 subgroups
of index 2. Now, it follows from Fundamental Theorem of Galois
Theory, that Q/F has [Q : F ]− 1 subfields of degree 2. �
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Since K/F and Q/F have the same intermediate fields of degree
2 (Theorem 2.1), we deduce;

Corollary 2.4. Every finite extension K/F has exactly [Q : F ]− 1
intermediate fields of degree 2 where Q is the quadratic closure of
K/F .

Corollary 2.5. A finite extension K/F has a unique intermediate
field of degree 2 if and only if [Q : F ] = 2.

One can apply the Fundamental Theorem of Galois Theory and
the results in [4] about subgroups of index 2 to obtain the following.

Theorem 2.6. For every finite Galois extension K/F with Galois
group G and quadratic closure Q,

Q = F(G2) and G(K/Q) = G2

3. Applications

We can apply the results above to compute the number of qua-
dratic subfields in some typical extensions. The quadratic closure
Q/F of an extension as introduced here could be difficult to com-
pute, but in many cases as in the following Example, it is quite
simple and illustrative.

Example 3.1. Consider the extension Q(
√

2, 4
√

3)/Q, which is not
Galois. It is easy to see that [Q(

√
2, 4
√

3) : Q] = 8. It is also clear that√
2,
√

3 ∈ Q(Q(
√

2, 4
√

3)/Q) and 4
√

3 /∈ Q(Q(
√

2, 4
√

3)/Q). Hence
Q(Q(

√
2, 4
√

3)/Q) = Q(
√

2,
√

3) and [Q(Q(
√

2, 4
√

3)/Q) : Q] = 4.
Therefore, Q(

√
2, 4
√

3)/Q has three intermediate fields of degree 2.

The next example justifies why the characteristic assumption on
the base field cannot be dropped.

Example 3.2. Let k = F2(t) be the field of rational functions in
t over the Galois field of two elements, K = k(x, y) be the field of
rational functions in two variables over k and F = k(x2, y2). Then
for each a ∈ k, there is a degree 2 field extension La = F (x + ay)
of F . It is elementary to see La = Lb if and only if a = b. Thus,
since |k| is infinite, there are infinitely many degree 2 subextensions
of K/F even though [K : F ] = 4 is finite.

As another application, we investigate degree 2 subfields of the
cyclotomic extensions. A simple and complete treatment of cyclo-
tomic extensions can be found in [3, §7]. Recall that for n ≥ 1,
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the nth cyclotomic extension of Q is Qn := Q(ω) where ω is a
primitive nth root of unity. It is well known that Qn/Q is Galois
and G(Qn/Q) ∼= U(n), the group of units of the ring Zn of integers
modulo n. The order of U(n) is denoted by φ(n) and is equal to the
number of positive integers less than or equal to n that are relatively
prime to n.

Example 3.3. Let N2(Qn/Q) denote the exact number of degree 2
intermediate fields of Qn/Q. Then we have the following formulae:

1. For every nonnegative integer r

N2(Q2r/Q) =


0 if r = 0, 1

1 if r = 2

3 if r ≥ 3

2. If n = 2rpt11 p
t2
2 · · · ptss where r ≥ 0, s ≥ 1 and p1, p2, · · · , ps are

distinct odd primes.

N2(Qn/Q) =


2s − 1 if r = 0, 1

2s+1 − 1 if r = 2

2s+2 − 1 if r ≥ 3

Recall that G(Qn/Q) ∼= U(n) (see for instance [3, Corollary 7.8].
So, by Corollary 2.3, N2(Qn/Q) = [Q(Qn/Q) : Q] − 1 = [U(n) :
U(n)2] − 1. Therefore, we need to compute [U(n) : U(n)2] in each
case. We will use the decomposition of the U -groups into cyclic
groups as found in [1, pp159-160] or [2]. We will also use the facts
that if C is a cyclic group of order m, it follows from [1, Theorem.
4.2] that C2 is cyclic of order m/gcd(2,m); and that (G1 ⊕ G2)

2 =
G2

1 ⊕G2
2 for every groups G1, G2 [4, Theorem 4].

1. First note that the case r = 0 is obvious as Q1 = Q. On the
other hand, we have U(2) ∼= {0}, U(4) ∼= C2, U(2r) ∼= C2 ⊕ C2r−2

for r ≥ 3. So U(2)2 ∼= U(4)2 ∼= {0}, and U(2r)2 ∼= C2r−3 for r ≥ 3.
Hence [U(2) : U(2)2] = 1 and [U(4) : U(4)2] = 2 and for r ≥ 3,
[U(2r) : U(2r)2] = 2r−1/2r−3 = 4. Therefore the formula is justified.
2. First assume r ≥ 3, then U(n) ∼= U(2r)⊕U(pt11 )⊕ · · · ⊕U(ptss ) ∼=
C2 ⊕ C2r−2 ⊕ C

p
t1
1 −p

t1−1
1
⊕ · · · ⊕ Cptss −pts−1

s
. Hence, U(n)2 ∼= C2r−3 ⊕

C
(p

t1
1 −p

t1−1
1 )/2

⊕ · · · ⊕ C(ptss −pts−1
s )/2. Thus, |U(n)2| = φ(n)/2s+2 and

[U(n) : U(n)2] = 2s+2. For r = 2, as above U(n) ∼= C2⊕Cp
t1
1 −p

t1−1
1
⊕

· · · ⊕ Cptss −pts−1
s

, so U(n)2 ∼= C
(p

t1
1 −p

t1−1
1 )/2

⊕ · · · ⊕ C(ptss −pts−1
s )/2. So,
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|U(n)2| = φ(n)/2s+1 and [U(n) : U(n)2] = 2s+1.
We leave the cases r = 0, 1 as a simple verification exercise.
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