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INTERPLAY BETWEEN SPECTRALLY BOUNDED
OPERATORS AND COMPLEX ANALYSIS

MARTIN MATHIEU

Abstract. Methods from Complex Analysis have been playing
an important role in the study of spectrally bounded and spectrally
isometric operators between Banach algebras in the past few years,
not only through the subharmonicity of the spectral radius. In this
survey, we intend to illustrate this interplay with Operator Theory
by some recent advances in the structural investigation of these
operators.

Introduction

The concept of a spectrally bounded operator was used long be-
fore the idea was formalised in [18] in connection with the non-
commutative Singer–Wermer conjecture. Le Page [17], Pták [30]
and Zemánek [36] exploited inequalities of the form r(f(x)) ≤ r(x),
where x is an element in a Banach algebra A and r(x) stands for
its spectral radius, for certain functions f on A to obtain criteria
for commutativity in a general sense. Aupetit proved in [3] that
a linear mapping T from a Banach algebra A onto a semisimple
Banach algebra B satisfying r(Tx) ≤ r(x) for all x ∈ A is au-
tomatically continuous, thus providing a new proof for Johnson’s
uniqueness-of-the-complete-norm-topology theorem. His methods
heavily used properties of subharmonic functions while a simplified
proof by Ransford, see [31] and [32], rests on alternative techniques
from Complex Analysis such as the three-circles theorem. More re-
cently, properties of holomorphic self-maps of the open spectral unit
ball in an infinite-dimensional Banach algebra have been exploited
to obtain several new results on spectrally bounded and spectrally
isometric operators, notably by Costara [11]–[13].
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The present paper aims to illustrate the usefulness of these meth-
ods in this particular branch of Operator Theory by discussing sev-
eral known results leading to some new evidence towards a conjec-
ture on spectral isometries discussed further below.

Basic properties of spectrally bounded operators

Throughout A and B will denote unital complex Banach algebras.
Let E be a linear subspace of A. A linear mapping T : E → B is
called spectrally bounded provided there is a constant M ≥ 0 such
that r(Tx) ≤ M r(x) for all x ∈ E. In this case, the smallest such
constant is called the spectral operator norm of T and denoted by
‖T‖σ. Let us point out right from the start, although the notions
strongly resemble the concepts of a bounded linear operator and
its operator norm, our theory here will differ a lot from the classi-
cal one since, in the noncommutative setting, the spectral radius is
neither subadditive nor submultiplicative and moreover, every quasi-
nilpotent element has spectral radius zero. As a result, the set of
spectrally bounded operators on a given space E is not even a vector
space.

Spectrally bounded operators were introduced in [18], partly mo-
tivated by their connection to the noncommutative Singer–Wermer
conjecture and Kaplansky’s problem on invertibility-preserving op-
erators. A detailed discussion of the relations with these deep open
questions in Banach algebra theory can be found in [22]; see also [9].
Let us first look at a few examples.

Examples 1. (i) Let T : A→ B be a linear mapping which is unital
(that is, T1 = 1) and preserves invertibility. Then σ(Tx) ⊆
σ(x) for every x ∈ A and hence T is spectrally bounded with
‖T‖σ = 1. (Here and in the following, σ(x) stands for the
spectrum of x.)

(ii) Suppose A is a uniform algebra (that is, A is commutative
and ‖a2‖ = ‖a‖2 for all a ∈ A). Then every bounded linear
operator defined on A is spectrally bounded.

(iii) Let A = Mn(C) be the algebra of complex n× n matrices and
let B = C. Then the usual trace on A is spectrally bounded
with spectral operator norm equal to n.

Typical mappings satisfying the assumptions in Example (i) above
are Jordan epimorphisms ; these are surjective linear mappings such
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that T (x2) = (Tx)2 for every x. (It does follow that T preserves the
Jordan product of any two elements, x◦y = 1

2(xy+yx), so is indeed
a homomorphism of the associated Jordan algebras.) However, the
other examples illustrate that, without further hypotheses, there are
many more possibilities for spectrally bounded operators.

The systematic study of spectrally bounded operators was begun
in [24], based on Schick’s thesis [34]. Fundamental to all these, and
previous, investigations is Vesentini’s Theorem from 1968 [35].

Theorem 2 (Vesentini, 1968). Let f : D → A be a holomorphic
function defined on an open subset D ⊆ C. Then the mapping
λ 7→ r(f(λ)) is subharmonic on D.

Subharmonicity here is simply to be understood in the classical
sense: the function is upper semi-continuous and satisfies the lo-
cal submean inequality. For more details we refer to Ransford’s
book [32] which also contains a nice proof of Vesentini’s Theorem.

Another important ingredient is Zemánek’s characterization of the
Jacobson radical rad(A) of A [36]. We recall that rad(A) is the
intersection of all the kernels of irreducible representations of the
Banach algebra A as an algebra of bounded linear operators on a
Banach space. If rad(A) = 0 the algebra A is said to be semisimple,
andA/rad(A) is always semisimple. For further details, please see [2]
or [4].

Theorem 3 (Zemánek, 1977). Let a ∈ A be such that r(a+x) = r(x)
for all x ∈ A. Then a ∈ rad(A).

It even suffices that the condition in the above theorem is satisfied
for all quasi-nilpotent x ∈ A. Proofs of Theorem 3 can be found in
[2, Theorem 5.40] and [4, Theorem 5.3.1].

Let us put these results to good use right away.

Proposition 4. Let T : A → B be a surjective spectrally bounded
operator. Then T rad(A) ⊆ rad(B).

The following is just one of the many known arguments; for an
alternative one, see [24, Proposition 2.11].

Proof. Suppose that a ∈ rad(A); then r(λa + x) = r(x) for all
x ∈ A, λ ∈ C. Fix y ∈ B and choose x ∈ A such that y =
Tx. Then r(λTa + y) ≤ ‖T‖σ r(x) all λ ∈ C so that Liouville’s
Theorem for subharmonic functions [2, Corollary 5.43] entails that
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λ 7→ r(λTa + y) is constant. Evaluating at λ = 1 and λ = 0 we
obtain that r(Ta + y) = r(y) for all y ∈ B and by Theorem 3,
Ta ∈ rad(B). �

Since r(x+ rad(A)) = r(x) for every x ∈ A, the above proposition
enables us to reduce the study of a surjective spectrally bounded
operator T to the semisimple case as

T̂ : Â = A/rad(A)→ B̂ = B/rad(B), T̂ (x+rad(A)) = Tx+rad(B)

is surjective and spectrally bounded with ‖T̂‖σ = ‖T‖σ.
A far more sophisticated application of subharmonicity enabled

Aupetit in [3] to prove the following beautiful result which is by
now widely known as Aupetit’s Lemma, cf. [2, Theorem 5.45].

Theorem 5 (Aupetit, 1982). For every spectrally bounded operator
T : A→ B, the following inequality holds

r(Ta) ≤ r(Ta+ y) for all a ∈ A and y ∈ S(T ), (1)

where S(T ) = {y ∈ B | y = lim
n→∞

Txn, xn → 0} stands for the
separating subspace of T .

As a consequence of this, we have the following automatic conti-
nuity result.

Corollary 6. For every surjective spectrally bounded operator
T : A→ B, S(T ) ⊆ rad(B); thus T is bounded if B is semisimple.

Proof. Take y ∈ S(T ); by Aupetit’s Lemma, r(b) ≤ r(b + y) for
all b ∈ B as T is surjective. For fixed b ∈ B, pick x ∈ A with
Tx = −(b+y) to obtain r(b+y) = r(Tx) ≤ r(b). Thus r(y+b) = r(b)
for all b and Zemánek’s characterization of the radical yields the
claim. It follows that S(T ) = 0 in case that B is semisimple; the
Closed Graph Theorem now yields that T is bounded. �

We will next take a look at a very concrete class of operators, the
so-called elementary operators.

For a ∈ A, let La and Ra, respectively denote left multiplication
x 7→ ax and right multiplication x 7→ xa, respectively on A. As
r(ax) = r(xa) for all x, spectral boundedness for La is the same as
for Ra. The following result belongs to Pták [30, Proposition 2.1].

We shall denote by Z(A) the centre modulo the radical of A, that
is, the closed subalgebra of A consisting of all y ∈ A such that
xy − yx ∈ rad(A) for all x ∈ A. If A is semisimple, this is nothing
but the usual centre of A.
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Proposition 7. For each a ∈ A, the operator La is spectrally bounded
if and only if a ∈ Z(A).

Proof. It is well known that, if a and x commute, then r(ax) ≤
r(a)r(x), see, e.g., [4, Corollary 3.2.10]. Since the induced left mul-

tiplication Lâ on Â = A/rad(A) is spectrally bounded if and only if
La is spectrally bounded, the “if”-part in the proposition follows.

In order to establish the “only if”-part suppose that r(ax) ≤
M r(x) for all x and some M > 0. Fix x ∈ A. Let λ ∈ C be
such that |λ| > M + r(x). Write

λ− a− x = (1− a(λ− x)−1)(λ− x)

and note that

r(a(λ− x)−1) ≤M r((λ− x)−1) ≤M
1

|λ| − r(x)
< 1

whence λ− (a+ x) is invertible.
It follows that r(a + x) ≤ M + r(x). In particular, the function

λ 7→ r
(
a−eλxae−λx

)
is bounded on C. Since f(λ) = 1

λ

(
a−eλxae−λx

)
is entire and r(f(λ)) is small for large |λ|, we have r(f(λ)) = 0 for
all x ∈ A, by Liouville’s Theorem. Evaluation at λ = 0 yields

r(ax− xa) = 0 (x ∈ A).

Suppose there exists an irreducible representation (π,E) of A such
that π(a) /∈ Z(π(A)) = C1. Then there is ξ ∈ E such that
{ξ, π(a)ξ} is linearly independent. By Jacobson’s Density Theo-
rem [2, Theorem 5.19], there exists x ∈ A with π(x)ξ = 0 and
π(x)π(a)ξ = −ξ. As a result,

(
π(a)π(x) − π(x)π(a)

)
ξ = ξ which

implies that r
(
π(a)π(x) − π(x)π(a)

)
≥ 1, a contradiction. Conse-

quently, ax− xa ∈ rad(A) for all x ∈ A which was to show. �

Let Ma,b = LaRb denote the two-sided multiplication by a, b ∈ A.
An elementary operator on A is simply a linear combination of two-
sided multiplications, hence of the form

S =
n∑
j=1

Maj ,bj (2)

for a finite subset {a1, . . . , an, b1, . . . , bn} of A. By the above result,
Ma,b is spectrally bounded if and only if ba ∈ Z(A). It was shown
in [10] that the generalised inner derivation La − Rb is spectrally
bounded if and only if both a ∈ Z(A) and b ∈ Z(A). However,
for more general elementary operators, the problem is much harder.
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In [7] we gave a complete characterisation of when Ma,b + Mc,d, an
elementary operator of length 2, is spectrally bounded. A sufficient
condition is that both ba and dc belong to Z(A) and that da = 0. For
arbitrary length, the problem is still open but in [8] the following
sufficient condition was found: S as in (2) is spectrally bounded
provided biai ∈ Z(A) for all 1 ≤ i ≤ n and bjai = 0 for all j > i.
The additional difficulties are largely due to the non-uniqueness of
the representation of S by a sum of two-sided multiplications as
in (2).

There is a large variety of further general results on spectrally
bounded operators for which we refer to the extensive literature (see,
e.g., [22] and the references therein). Some reveal a surprisingly
strong compatibility with the algebra structure. As a sample, we
quote from [25]: If T is a surjective spectrally bounded operator onto
a semisimple Banach algebra and x ∈ A is nilpotent with xn = 0,
then (Tx)n = 0.

We will now turn our attention to a special class of spectrally
bounded operators.

Spectral isometries

A linear mapping T : A→ B is called a spectral isometry if r(Tx) =
r(x) for every x ∈ A. It can be shown, see [27] e.g., that, under
the additional assumption of surjectivity, T rad(A) = rad(B) and
hence B is semisimple if A is. Moreover, if A is semisimple, T is
injective [24, Proposition 4.2] and therefore, T−1 : B → A is also a
bijective spectral isometry. It now follows from Corollary 6 together
with Banach’s Homomorphism Theorem that T is a topological iso-
morphism between A and B. It is close at hand to wonder how
much more of the structure such T may preserve. As it is possible
to reduce the general case to the one when T is unital, we will make
henceforth this additional assumption which allows us to state the
following conjecture first formulated in [24].

Conjecture 8. Every unital surjective spectral isometry between
unital C*-algebras is a Jordan isomorphism.

It is well possible that this conjecture even holds in the setting
of semisimple Banach algebras; if this is the case, it would imply
a positive answer to Kaplansky’s question on spectrum-preserving
linear mappings for which so far only partial answers are known;
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see, e.g., [5]. Indeed, no counter examples are known and there are
recent results, see e.g. [1] and [14], providing an affirmative answer
under additional hypotheses.

The conjecture is, of course, partly motivated by the classical
Banach–Stone Theorem (which covers the commutative situation)
and Kadison’s generalization to unital isometries between general
C*-algebras [16].

Theorem 9 (Kadison, 1951). Every unital surjective isometry be-
tween two unital C*-algebras is a Jordan *-isomorphism.

The difference between the classical situation of isometries (with
respect to the norm) and our situation is precisely the issue of preser-
vation of the self-adjoint elements: a unital surjective spectral isom-
etry T is an isometry if and only if it sends self-adjoint elements in
A onto self-adjoint elements in B (it is a *-mapping). One direction
follows from Kadison’s theorem, the other from an application of
the Russo–Dye Theorem. See also [21]

Another motivation comes from Physics which we will try to ex-
plain using the diagram below.

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 

Modelled by C*-algebra  A Modelled by C*-algebra  B 
 

 

 

Quantum system Quantum system 

measurements measurements = 

If  A  and  B  are  “spectrally isomorphic”, 

are they isomorphic as models of the same quantum system? 

Suppose we model a certain quantum system by a C*-algebra A (in
the sense that the physical observables of the system are represented
by self-adjoint elements in A). Suppose we do the same with another
system and a C*-algebra B. As we cannot make direct observations
in the systems, we entirely rely on the measurements performed
on the observables; these relate to the spectral values of the self-
adjoint elements. Now suppose all the measurements we take agree
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with one another; in other words, we have a bijective correspondence
between the spectra of all (self-adjoint) elements in A and B (which
we shall assume to be linear). If the C*-algebras A and B are
“spectrally isomorphic” in this sense, can we conclude that they
are models of the same quantum system? This is a problem of re-
constructing the physical system from its data, or from the model
that we use to evaluate the data, and leads to Kaplansky’s question
whether, at least for C*-algebras, a bijective spectrum-preserving
linear mapping must be a Jordan isomorphism (the Jordan structure
being the relevant algebraic structure describing quantum systems).
Our conjecture above goes somewhat further: we only require that
“the largest eigenvalue” of each element is preserved.

Since Jordan isomorphisms do preserve the spectrum, a test for
the above conjecture has to be which parts of the spectrum, or sets
related to the spectrum, a unital spectral isometry will preserve. We
have the following results [24].

Proposition 10 (Mathieu–Schick, 2002). Let T : A→ B be a unital
surjective spectral isometry, where A is semisimple. Then, for each
a ∈ A,

(i) σper(Ta) = σper(a), where
σper(a) = {λ ∈ σ(a) | |λ| = r(a)} is the peripheral spectrum;

(ii) co σ(Ta) = co σ(a), where
co σ(a) is the convex hull of the spectrum.

In particular, singleton spectra are preserved.

Recently, Costara [13] improved this result to the following one.

Proposition 11 (Costara, 2012). Let T : A → B be a unital sur-
jective spectral isometry, where A is semisimple. Then, for each
a ∈ A,

σ(a) = {λ, µ} =⇒ σ(Ta) = {λ, µ}. (3)

In order to obtain this result, we have to take a look at some
infinite-dimensional Complex Analysis now.

More Complex Analysis

Let A be a semisimple Banach algebra. By

ΩA = {a ∈ A | r(a) < 1}
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we denote the open spectral unit ball. Since the spectral radius is
upper semi-continuous, ΩA is open but it need not be convex and will
in general not be bounded as there can be quasi-nilpotent elements
of arbitrary large norm. Every linear spectral isometry provides us
with a holomorphic self-map of ΩA; thus it is close at hand to study
mappings of this type when investigating spectral isometries.

Theorem 12 (Ransford, 1996). Let A be a semisimple Banach alge-
bra. Let F : ΩA → ΩA be holomorphic with F (0) = 0 and F ′(0) = id.
Then F (z) = z for all z ∈ ΩA ∩ Z(A).

This Cartan-type theorem differs from the classical one—which
states that a holomorphic self-map F on a bounded domain D in C
satisfying F (z0) = z0 and F ′(z0) = 1 for some z0 ∈ D has to be the
identity on D—in that we do not recover the identity throughout
but only on the centre of A. In fact, the second part of Ransford’s
theorem [33] states that for every non-central element a ∈ ΩA there
is a mapping F satisfying the assumptions of Theorem 12 such that
F (a) 6= a.

In his paper [13], Costara uses Ransford’s theorem to obtain the
following very detailed information on the spectral behaviour of self-
maps of the open spectral unit ball which in turn yields a proof of
Proposition 11 above.

For ζ ∈ C, denote by D(ζ, r) the open disk centred at ζ with
radius r > 0 and by D(ζ, r) its closure. Let Γr = ∂D(ζ, r) be its
boundary.

Theorem 13 (Costara, 2012). Let A be a semisimple Banach alge-
bra. Let F : ΩA → ΩA be holomorphic with F (0) = 0 and F ′(0) = id.
Suppose that D(ζ, r) ⊆ D = D(0, 1) and that a ∈ A satisfies σ(a) ⊆
D(ζ, r). Then σ(F (a)) ⊆ D(ζ, r) and σ(a) ∩ Γ = σ(F (a)) ∩ Γ.

Proposition 11 provides us with further evidence towards Conjec-
ture 8: Every Jordan homomorphism sends idempotents to idempo-
tents hence, necessarily, if the spectrum of an element is {0, 1} then
the spectrum of its image under a unital surjective spectral isometry
must be {0, 1} too.

In another paper [12], Costara obtained the following variant of
Ransford’s theorem above.

Theorem 14 (Costara, 2009). Let A be a primitive Banach algebra.
Let F : ΩA → ΩA be holomorphic with F (0) = 0 and F ′(0) = id.
Suppose that F (x)x = xF (x) for all x ∈ ΩA. Then F = idΩA

.
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Besides Complex Analysis the proof of this result also uses the the-
ory of commuting mappings, and this is essentially the reason why
one has to assume that A is primitive. As a consequence of Theo-
rem 14, Costara then establishes the following result, thus partially
affirming Conjecture 8 for von Neumann algebras.

Theorem 15 (Costara, 2009). Let T : A→ B be a unital surjective
spectral isometry between von Neumann algebras A and B. If Ta
and T (a2) commute for all a ∈ A, then T is a Jordan isomorphism.

To obtain this result, the situation is reduced to the case of prim-
itive algebras by making use of so-called Glimm ideals ; these are
those closed two-sided ideals which are generated by maximal ideals
in the centre of the algebra. In von Neumann algebras, every Glimm
ideal is primitive; a well-known result due to Halpern. One can then
reduce to primitive quotients by employing the fact that the Glimm
ideals separate the points together with the following result taken
from [26].

Theorem 16 (Mathieu–Sourour, 2004). Let T : A→ B be a unital
surjective spectral isometry between von Neumann algebras A and B.
For each Glimm ideal I ⊆ A, J = TI is a Glimm ideal in B and
the induced mapping TIJ : A/I → B/J is a unital surjective spectral
isometry.

A key ingredient in the latter result is the spectral radius formula
in quotient C*-algebras due to Pedersen [29], see also [28]. Another
reduction technique using suitable quotients was exploited in our
latest paper on the subject, [27], a brief discussion of which shall
finish off this survey.

The structure of spectral isometries

The structure of spectral isometries on commutative algebras is well
understood, and it may be close at hand to use this knowledge to un-
ravel it in the noncommutative setting, especially as being a Jordan
homomorphism is a local property of a linear mapping.

The following useful observation was obtained in [27]. For an
element a in a unital C*-algebra A, C∗(a) stands for the unital
C*-subalgebra of A generated by a and {a}cc for the bi-commutant
(with respect to A).
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Proposition 17. Let A be a unital C*-algebra and let B be a uni-
tal Banach algebra. The following conditions on a unital surjective
spectral isometry T : A→ B are equivalent.

(a) T is a Jordan isomorphism;

(b) TA0 is a subalgebra of B for every commutative unital subalgebra
A0 of A;

(c) T
(
{a}cc

)
is a subalgebra of B for every element a ∈ Asa;

(d) T C∗(a) is a subalgebra of B for every element a ∈ Asa.

If, in the above proposition, A is merely assumed to be a unital
semisimple Banach algebra instead of a unital C*-algebra, the con-
dition that T

(
{a}cc

)
is a subalgebra of B for every element a ∈ A

still yields that T is invertibility preserving.

The main result of [27] is the following.

Theorem 18 (Mathieu–Sourour, 2013). Let A and B be unital
semisimple Banach algebras, and let T : A → B be a unital sur-
jective spectral isometry. Suppose that B has a separating family I
of closed ideals I such that B/I is semisimple and that each unital
surjective spectral isometry from B/I onto B/I is multiplicative or
anti-multiplicative. Then T preserves invertibility. If, moreover, A
is a C*-algebra, then T is a Jordan isomorphism.

The idea of the proof is the following. Let a ∈ A and put A0 =
{a}cc. Let B0 = TA0. Take b1, b2 ∈ B0 and x ∈ {a}c, the commu-
tant of a. By a series of lemmas we show that T−1(b1b2)x + I =
xT−1(b1b2) + I for every I ∈ I . As I is separating, this yields
T−1(b1b2)x = xT−1(b1b2) which entails that T−1(b1b2) ∈ A0, equiv-
alently, b1b2 ∈ B0. We conclude that B0 is a (closed, unital) subal-
gebra of B. If A is a C*-algebra, this argument shows that T

(
{a}cc

)
is a subalgebra of B for every element a ∈ Asa. Now Proposition 17
completes the proof. The more general case is covered by the remark
following that proposition.

Theorem 18 applies, e.g., to B = C(X)⊗Mn(C) or B = C(X)⊗D,
where D is a unital, purely infinite, simple C*-algebra (and X is a
compact Hausdorff space). It was obtained under the hypothesis
that B has a faithful family of finite-dimensional irreducible repre-
sentation by Costara and Repovš in [14].
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The next two consequences of Theorem 18 were obtained in [23]
under the additional assumption that the spectrum of the domain
algebra is totally disconnected.

Corollary 19. Let T : A → B be a unital surjective spectral isom-
etry from a unital type I C*-algebra with Hausdorff primitive ideal
space onto a unital C*-algebra B. Then T is a Jordan isomorphism.

Corollary 20. Let A and B be unital C*-algebras, and let T : A→
B be a unital surjective spectral isometry. Suppose that A has real
rank zero and no tracial states and that its primitive ideal space
contains a dense subset of closed points. Then T is a Jordan iso-
morphism.

Further evidence for the truthfulness of the above conjecture is
contained in some of the papers listed below.
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