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ON (m, p)-ISOMETRIC OPERATORS AND
OPERATOR TUPLES ON NORMED SPACES

PHILIPP H. W. HOFFMANN

This is an abstract of the PhD thesis On (m, p)-isometric opera-
tors and operator tuples on normed spaces written by Philipp Hoff-
mann under the supervision of Dr Michael Mackey and Dr Mı́cheál
Ó Searcóid at the School of Mathematical Sciences, UCD and sub-
mitted in May 2013.

The thesis deals with two kinds of tuples of commuting, bounded
linear operators (T1, ..., Td) =: T ∈ B(X)d on a normed (real or
complex) vector space X.

The first kind are so-called (m, p)-isometric tuples, which, given
m ∈ N0 and p ∈ (0,∞), are defined by satisfying the following:

m∑
k=0

(−1)k
(
m

k

)∑
|α|=k

k!

α!
‖T αx‖p = 0, ∀x ∈ X.

Here, α = (α1, ..., αd) ∈ Nd
0 is a multi-index, |α| the sum of its
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In the case of d = 1, these objects are called (m, p)-isometric
operators and have been introduced by Agler [1] on Hilbert spaces
(with p = 2) and Bayart [3] on Banach spaces. For general d ≥ 1,
these tuples have been introduced on Hilbert spaces (with p = 2) by
Gleason and Richter [5]. The first main result is as follows:

Theorem 1. T ∈ B(X)d is an (m, p)-isometric tuple if, and only if,
there exists a (necessarily unique) family of polynomials fx : R→ R,

x ∈ X, of degree ≤ m− 1 with fx|N0
=
(∑

|α|=n
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α!‖T
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)
n∈N0

.
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This extends earlier results by Agler and Stankus [2], Gleason and
Richter [5], Bermúdez, Martinón and Negŕın [4] and Bayart [3].

The second main result follows as a corollary from Theorem 1:

Theorem 2. Let m ≥ 2 and let T ∈ B(X) be an (m, p)-isometric
operator and not an (m− 1, p)-isometric operator. Then there exist
m0 ≥ 2 and p0 ∈ (0,∞) such that T is a (µ, q)-isometric operator
(and not a (µ− 1, q)-isometric operator) if, and only if,
(µ, q) = (k(m0 − 1) + 1, kp0) for some k ∈ N0 with k ≥ 1.

The second kind of objects studied, are so-called (m,∞)-isometric
tuples, which, given m ∈ N0 with m ≥ 1, are defined by satisfying

max
|α|=0,...,m
|α| even

‖T αx‖ = max
|α|=0,...,m
|α| odd

‖T αx‖, ∀x ∈ X.

The main result on these operator tuples is as follows:

Theorem 3. Let T ∈ B(X)d be an (m,∞)-isometric tuple. Then
T is a (1,∞)-isometric tuple under the equivalent norm |.|∞, given
by |x|∞ = maxα∈Nd

0
‖T αx‖ = max|α|=0,...,m−1 ‖T αx‖, for all x ∈ X.

Finally, we prove some statements on operator tuples (or opera-
tors) which are both, (m, p)-isometric and (µ,∞)-isometric:

Theorem 4. Let T = (T1, ..., Td) ∈ B(X)d be an (m, p)-isometric
and a (µ,∞)-isometric tuple.

(i) If d = 1, then T ∈ B(X) is an isometry.
(ii) If m = 1 or µ = 1 or d = m = µ = 2, one operator Tj0 is an

isometry and all other operators satisfy Tmj = 0 for j 6= j0.
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