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“ODD” MATRICES AND EIGENVALUE ACCURACY

DAVID JUDGE

Abstract. A definition of even and odd matrices is given, and
some of their elementary properties stated. The basic result is that
if λ is an eigenvalue of an odd matrix, then so is −λ. Starting from
this, there is a consideration of some ways of using odd matrices to
test the order of accuracy of eigenvalue routines.

1. Definitions and some elementary properties

Let us call a matrix W even if its elements are zero unless the
sum of the indices is even – i.e. Wij = 0 unless i + j is even; and
let us call a matrix B odd if its elements are zero unless the sum of
the indices is odd – i.e. Bij = 0 unless i + j is odd. The non-zero
elements of W and B (the letters W and B will always denote here
an even and an odd matrix, respectively) can be visualised as lying
on the white and black squares, respectively, of a chess board (which
has a white square at the top left-hand corner).

Obviously, any matrix A can be written as W+B; we term W and
B the even and odd parts, respectively, of A. Under multiplication,
even and odd matrices have the properties, similar to those of even
and odd functions, that

even × even and odd × odd are even,
even × odd and odd × even are odd.

From now on, we consider only square matrices. It is easily seen
that, if it exists, the inverse of an even matrix is even, the inverse
of an odd matrix is odd. It is also easily seen that in the PLU
decomposition of a non-singular matrix A which is either even or
odd, L and U are always even, while P is even or odd according as
A is.
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We note also that in the QR factorisation of a non-singular even
matrix, R and Q are both even, while for an odd matrix, R is even,
Q is odd. (This is most easily seen by viewing the QR factorisation
in its Gram-Schmidt orthogonalisation aspect.) Thus the property
of being even or odd is preserved under the basic QR algorithm for
eigenvalues: however, for odd matrices, this is not true for the QR
algorithm with shifts.

2. The basic result

The following very elementary result is basic:

Proposition 2.1. If λ is an eigenvalue of an odd matrix B, then
so is −λ.

This can be seen easily in two different ways.

First Proof. If Djk = (−1)kδjk, D−1(W + B)D = W − B, so
that W +B, W −B have the same eigenvalues, for arbitrary square
(even and odd) matrices W and B. Putting W = 0, the result
follows. �

Second Proof. We can write any vector x as x = u + v, where
ui = 0, i odd, vi = 0, i even. We call u and v even and odd
vectors, respectively, and refer to them as the even and odd parts
of x. (We assume that indices run from 1 to n, the order of the
matrix. However, choosing the index origin as 0 merely interchanges
the values of u and v, and makes no difference to what follows.) We
note that

if B is odd , then Bu is odd , Bv is even. (1)

Now if x is an eigenvector of B with eigenvalue λ,

Bx = λx, (2)

writing x = u + v, and using (1), we must have

Bu = λv , Bv = λu. (3)

Then

B(u− v) = Bu−Bv = λv − λu = −λ(u− v), (4)

so that −λ is an eigenvalue of B, with eigenvector u− v. �
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This property is useful in giving a simple indication of the accuracy
of eigenvalue routines. For a completely arbitrary odd matrix B,
random or otherwise, with real or complex elements, the non-zero
eigenvalues can be sorted into pairs (λ1i , λ

2
i ) such that

λ1i + λ2i = 0. (5)

(As far as this property is concerned, there is no initial error what-

ever in entering B .) If the computed values, denoted by λ̂, are

sorted into corresponding pairs (λ̂1i , λ̂
2
i ), and

δi ≡ λ̂1i + λ̂2i , (6)

then max|δi| gives an estimate of the error.
A check on the accuracy of the eigenvectors is also possible. The

argument of proof 2 shows that if x = u + v is an eigenvector of B
corresponding to a simple eigenvalue λ , and if y is an eigenvector
corresponding to −λ, then y is of the form y = θu + φv, with the
same u and v, where θ and φ are scalars. (The fact that φ = −θ
here is not essential.) Thus if we multiply y by a factor to make
one of its even components (say the first non-zero one, or the largest
one) equal to the corresponding component of x, producing z, say,
we must have z = u+ρv, where ρ is some scalar. When we subtract
z from x, all the other even components must also cancel exactly.
Doing this for the computed vectors x̂ and ŷ, the actual deviations
from zero of these components give an accuracy estimate. The odd
components can be checked similarly.

3. Even matrices

For even matrices, there is no necessary relation whatever between
any of the eigenvalues – e.g., a diagonal matrix with arbitrary values
is even.

However, it is of interest to consider a further subdivision of such
matrices into a doubly-even (in brief, d-even) part and a doubly-odd
(in brief, d-odd) part,

W = Wee +Woo, (7)

where (Wee)ij = 0 unless i and j are both even, (Woo)ij = 0 unless
i and j are both odd.
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Under multiplication, doubly-even and doubly-odd matrices have
the properties that

d-even × d-even is d-even, d-odd × d-odd is d-odd,
d-even × d-odd is zero, d-odd × d-even is zero.

Thus the doubly-even and doubly-odd parts are completely ‘uncou-
pled’ under multiplication.

If I denotes the unit matrix, let Iee and Ioo denote its doubly-even
and doubly-odd parts, so that

I = Iee + Ioo. (8)

We can now see that the d-even and d-odd parts are also ‘uncoupled’
when taking inverses, in the following sense. If W is non-singular,
let X and Y denote the d-even and d-odd parts, respectively, of
W−1. Then

X ×Wee = Iee, X ×Woo = 0, Y ×Wee = 0, Y ×Woo = Ioo.

The eigenvalue problem for W also splits into two completely in-
dependent sub-problems:

Wx = λx =⇒ Weeu = λu, Woov = λv,

where u and v are the even and odd parts of x.
These properties of even matrices, trivial to check, are even more

obvious on noting that under a simple reordering transformation,
W is equivalent to a block-diagonal matrix of the form

T =

[
T1 0
0 T2

]
(9)

where T1, of dimension b(n+ 1)/2c, contains the non-zero elements
of Woo, and T2, of dimension bn/2c, contains those of Wee.

We note that under the same transformation, an odd matrix B is
similarly equivalent to a skew-diagonal block matrix

S =

[
0 S1
S2 0

]
. (10)

Thus the determinant of an even matrix always factorizes,

det(W ) = det(T ) = det(T1).det(T2),

and the determinant of an odd matrix either factorizes or is zero:

det(B) = det(S) = (−1)n/2det(S1).det(S2), if n is even,

= 0 if n is odd
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(since if n is odd, S1 and S2 are not square). This latter gives one
proof of the almost obvious fact that an odd matrix of odd dimension
always has the eigenvalue λ = 0.

4. Further eigenvalue matchings

We consider now the matrix

M ≡ αIee + βIoo +B (11)

where α and β are scalars, B as usual denotes an odd matrix, and
Iee and Ioo are as defined above at (8). If λ is an eigenvalue of M ,
the eigenvalue equation

Mx = λx (12)

can be written as the pair of equations

αu +Bv = λu, (13)

Bu + βv = λv (14)

where u and v are the even and odd parts of x. We can now proceed
in two different ways.

First, on defining y by

y = (λ− α)u + (β − λ)v (15)

we find that

My = (α + β − λ)y. (16)

Thus the eigenvalues of the matrix M can be grouped into pairs
(λ1, λ2) such that

λ1 + λ2 = α + β. (17)

This may be viewed as a generalisation of the basic result for a pure
odd matrix B, where α = β = 0.

Second, on defining z by

z =
√

(λ− α) u +
√

(λ− β) v, (18)

we find that

Bz =
√
λ− α

√
λ− β z. (19)

Thus for each eigenvalue λ of M , there corresponds an eigenvalue κ
of B such that

κ =
√

(λ− α)(λ− β). (20)

It should be emphasised that the relation (17) relates two eigen-
values of the same matrix, generated during one calculation, while
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(20) relates eigenvalues of two different matrices, generated in two
independent calculations.

Based on (20), we can give now an error estimate alternative to (6).

It is convenient to take β = −α, and solve for λ, λ =
√

(κ2 + α2),
so that the sets of λ’s and κ’s can be sorted into pairs (λi, κi) such
that

λi −
√

(κ2i + α2) = 0. (21)

If the computed values, denoted by λ̂, κ̂, are sorted into corre-
sponding pairs (λ̂i, κ̂i), and

δi ≡ λ̂i −
√

(κ̂2i + α2) , (22)

then again max|δi| gives an estimate of the error.
We note that for any estimate based on either (17) or (as here)

(20), one can check on the eigenvectors also, just as in Section 2.

5. Discussion

If one is using a package to calculate eigenvalues and wishes to
get some idea of the accuracy of the results, it is natural to see how
it performs on test matrices. An ideal test matrix is one which can
be entered exactly, and whose eigenvalues are known in advance,
either exactly or to very high precision. The error level can thus be
assessed directly by observing the differences between the computed
values and the correct values.

Rather than importing samples of this type, one may prefer to use
something which is easily generated. For example, a simple method
is to choose a set of numbers and form a diagonal matrix D, say,
with these values; then choose an arbirary non-singular matrix X,
say, and take M ≡ XDX−1 as the test matrix. Its eigenvalues
should be the chosen numbers, and its eigenvectors the columns of
X. However, there is a snag: what is entered into the eigenvalue
calculation is not, in fact, the exact ‘known-eigenvalue’ matrix M ,
but a computed approximation, M̂ , say; and so one cannot tell how
much of the observed error is due to the eigenvalue calculation, and
how much arises in computing M̂ .

An alternative approach, the one adopted here, is to use an exact-
entry test matrix, or pair of matrices, whose eigenvalues are not
known in advance: but, instead, some relation which should hold
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between these values is known. The extent to which the the com-
puted values fail to satisfy this relation gives an estimate of the error
due to the eigenvalue calculation alone.

However, caution is needed with this approach. Consider the fol-
lowing argument: “if λ is an eigenvalue of a real matrix, then so
is λ̄. Therefore we can sort the complex eigenvalues into pairs, the
sum of whose imaginary parts should be zero. The difference from
zero of the sum of the computed imaginary parts then gives an in-
dication of the error of these computed values.” This is, of course,
completely erroneous, because the imaginary parts will be evaluated
at the same point of the calculation as being ± the square-root of
the same number,Q, say; and their sum will thus cancel perfectly,
even though Q may differ widely from the correct value.

This shows that we must guard against the possibilty that the
supposed ‘accuracy-checking’ relation between eigenvalues may be
automatically satisfied at the time of their calculation. (One might
worry that this could somehow be happening in (6), i.e. that the the
‘equal-and-opposite’ pairs might be produced in some correlated way
because their magnitudes are equal. To circumvent this, one could
add α times the unit matrix to B before finding the eigenvalues, and
then subtract α from each before pairing - equivalent to (17) with
β = α. However, trials show that this step is unnecessary.) Clearly,
there is no possiblity whatever of correlation between the errors of
the κ′s and λ′s in (22).

For a real odd matrix B, if λ is an eigenvalue, then ±λ,±λ̄ are all
in the list of eigenvalues, which complicates the sorting and match-
ing of the imaginary parts. To keep (6) easy to implement, one
can consider just the real parts, and simply ignore the imaginary
parts of the λ’s, implicitly assuming that the errors of the real and
imaginary parts are of the same order. (This may be false in special
circumstances, e.g. if B is antisymmetric – a case where, in fact,
using (6) fails completely.) Using (22) has no such problems: we can

take all the real parts and all the imaginary parts, of both the λ̂i
and the

√
(κ̂2i + α2), as positive, and sort these real and imaginary

parts independently.
In trials of random odd matrices (real and complex) of dimension

up to 500, using (6)and (22) gave results of the same order, differing
by a factor often close to one, and rarely exceeding two.
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6. Addendum

The author is grateful to the referee for pointing out that very sim-
ilar concepts have been introduced and used by Liu et al in the field
of computer science: in [1], a square matrix A of even dimension n
is decomposed into four sub-matrices, each of dimension n/2, con-
taining those elements Aij of A for which i and j are even and even,
even and odd, odd and even, or odd and odd, respectively. (These
correspond to the T1, S1, S2, and T2 of section 3, the index origin in
[1] being 0.) These authors then exploit this partitioning to break
down the process of evaluating A×b, where b is a vector of dimen-
sion n, into four processes involving the even and odd sub-vectors of
b (each of dimension n/2), as a key step in designing an improved
hardware module for use in vector digital signal processing.

If, motivated by this work, we consider a splitting, similar to 7,
of an n-dimensional square odd matrix B into an “even-odd ” part
and an “odd-even” part (both n-dimensional),

B = Beo +Boe, (23)

where (Beo)ij = 0 unless i is even, j is odd, (Boe)ij = 0 unless i is
odd, j is even, it is of interest to note the easily-proved facts

(a) if λ is an eigenvalue of Beo + Boe, then iλ is an eigenvalue of
Beo −Boe,

(b) if W is an even matrix, the matrices W,W +Beo and W +Boe

all have the same eigenvalues.
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