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SPECTRAL PERMANENCE
ROBIN HARTE

ABSTRACT. Several kinds of generalized inverse bounce off one an-
other in the proof of a variant of spectral permanence for C* em-
beddings.

This represents an expanded version of our talk to the IMS meeting
of August 2012, which in turn was based on the work [3] of Dragan
Djordjevic and Szezena Zivkovic of Nis, in Serbia.

1. GELFAND PROPERTY

Spectral permanence, for C* algebras, says that the spectrum of
an element a € A C B of a C* algebra is the same whether it
is taken relative to the subalgebra A or the whole algebra B: this
discussion is sparked by the effort to prove that the same is true of a
variant of spectral permanence in which the two-sided inverse, whose
presence or not defines “spectrum”, is replaced by a generalized
inverse. The argument involves a circuitous tour through “group
inverses”, “Koliha-Drazin inverses” and “Moore-Penrose inverses”;
it turns out that the induced variants of spectral permanence are
curiously inter-related.

Suppose T' : A — B is a semigroup homomorphism, where we
insist that a semigroup A has an identity 1 , and that a homo-
morphism 7" : A — B respects that: we might indeed talk about
a functor between categories. It then follows, writing A~! for the
invertible group in A, that

T(AhHhCcB!, (1.1)
or equivalently, turning it inside out,
Atcr Bt (1.2)
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At its most abstract then “spectral permanence” for the homomor-
phism 7" says that (1.2) holds with equality:

T'BtCcaAal. (1.3)

In words, it is tempting to describe (1.3) by saying “Fredholm im-
plies invertible”. We shall also describe (1.3) as the Gelfand prop-
erty, since it also holds, famously, when

T=T:A-=C(X)ccC¥ (1.4)

is the Gelfand representation of a commutative Banach algebra A;
here of course X = o(A) is the “maximal ideal space” of the algebra
A. We might notice a secondary instance of spectral permanence in
the embedding

c(x)cc* (1.5)
of continuous functions among arbitrary functions; similarly, for a
Banach space X, the embedding

B(X) C L(X) (L6)

of bounded operators among arbitrary linear operators has spec-
tral permanence, but only thanks to the ministrations of the open
mapping theorem. Another elementary example is the left regular
representation

L:A— A4 (1.7)
of the semigroup A as mappings, where, for a € A,
Ly(x) =ax (z € A). (1.8)
Less familiar is a commutant embedding
J:A=commp(K)— B, (1.9)
where
commp(K)={be B:a € K = ba = ab} (1.10)

and of course J(a) = a: here spectral permanence reflects the fact
that two-sided inverses double commute:

a € B'=a'€comm}(a) . (1.11)

If in particular the semigroup A is a ring, having therefore a back-
ground “addition” and a distributive law, then we can quotient out
the Jacobson radical

Rad(A)={ac A:1—-Aa C A}, (1.12)



SPECTRAL PERMANENCE 35

in which every possible expression 1 — ca has an inverse: now it is
easily checked that

K :a+ a+Rad(A) (A — A/Rad(A)) (1.13)

has spectral permanence. Our final example will be the most famil-
iar, if not by any means the most elementary: it is the determinant

det : C" — C | (1.14)

which indeed “determines” whether or not a square matrix is invert-
ible.

2. SPECTRAL PERMANENCE

Mathematicians are thus prepared to go to a lot of trouble to
establish spectral permanence. If we specialise to linear homomor-
phisms between (complex) linear algebras then we meet the phe-
nomenon of spectrum, defining for each a € A,

oala) ={AeC:a-AgA}; (2.1)
the idea is to harness complex analysis to the theory of invertibility.
Now we can rewrite (1.1) to say that, for arbitrary a € A,

op(Ta) C osla) , (2.2)

while the Gelfand property (1.3) says that (2.2) holds with equality,
giving indeed “spectral permanence”.

If we specialise to isometric Banach algebra homomorphisms then
there is built in a certain degree of spectral permanence, to the
extent that we always get

doa(a) Cop(Ta) : (2.3)

the topological boundary of the larger spectrum is included in the
smaller. Equivalently, it turns out, this means that

oa(a) Cnop(Ta) , (2.4)

where the connected hull nK of a compact subset K C C is the
complement of the unbounded connected component of the comple-
ment C \ K. This has spin-off: if for a particular element a € A
either the larger spectrum is all boundary,

oa(a) C doy(a) , (2.5)
or the smaller spectrum fills out its connected hull,

nog(Ta) C op(Ta) , (2.6)
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then the homomorphism 7" : A — B has “spectral permanence at”
a € A, in the sense of equality in (2.2). This holds if for example
the spectrum is either real or finite.

If more generally the homomorphism 7T : A — B is one-one there
is at least inclusion

iso 04(a) Cop(Ta) . (2.7)

3. GENERALIZED PERMANENCE

If A is a semigroup we shall write
A"={a€ A:a€aAa} (3.1)
for the “regular” or relatively regular elements of A, those a € A
which have a generalized inverse ¢ € A for which
a=aca : (3.2)
we remark that if (3.2) holds the products
p=ca=p*, ¢q=ac=q (3.3)
are both idempotent. Generally if T': A — B is a homomorphism
there is inclusion
T(A")CB"CB, (3.4)
and hence also
ANCcT BN CA. (3.5)
If there is equality in (3.4) we shall say that T" has generalized per-
manence. This happens for example when

T10)Cc A", T(A) =B : (3.6)
recall the implication
(a—aAa)NA"# )= ac A" . (3.7)

This does not however happen when 7' is quotienting out the radical
as in (1.10), unless the ring A is semi simple: for notice

Rad(A) N A" = {0} . (3.8)

It follows that spectral permanence is not in general sufficient for
generalized permanence. Indeed by (3.8) spectral and generalized
permanence together imply that a homomorphism 7" : A — B is
one one; further (1.5) shows that spectral permanence and one one
do not together imply generalized permanence. If A is the ring of
continuous homomorphisms a : X — X on a Hausdorff topological



SPECTRAL PERMANENCE 37

abelian group X then it is necessary for a € A” that a have closed
range
a(X) =cla(X) : (3.9)
this is because
a(X) = ac(X) = (1 — ac) (0) (3.10)

is the null space of the complementary idempotent. Thus the em-
bedding (1.6) is another example with spectral but not generalized
permanence.

4. SIMPLE PERMANENCE
If in particular there is ¢ € A for which
a—aca=0=ac—ca, (4.1)

then a € A is very special; this happens if a € A is either invert-
ible, or idempotent, or more generally the commuting product of an
invertible and an idempotent. When (4.1) holds we shall say that
a € A is simply polar: in Banach-algebra-land 0 € C can be at
worst a simple pole of the resolvent mapping

(z—a)':C\ofa) = A. (4.2)

In the group theory world the product cac is referred to as the group
inverse for a € A. We remark that it is necessary and sufficient for
a € A to be simply polar that

a € a*AN Ad® (4.3)

indeed [15],[19],]20] there is implication

a*u = a =va’ = au =va , aua = a = ava , (4.4)

giving (4.1) with ¢ = vau.
We shall write SP(A) for the simply polar elements of a semigroup
A and observe, for homomorphisms 7" : A — B, that

T SP(A) CSP(B) C B, (4.5)
and hence
SP(A) C T 'SP(B) C A (4.6)

when there is equality in (4.5) we shall say that T': A — B has
simple permanence. The counterimage T1SP(B) C A is sometimes
known [2],[18],[16] as the “generalized Fredholm” elements of A.
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We remark that spectral permanence does not in general, or even
together with one-one-ness, imply simple permanence: return to
(3.8) and (1.5).

In general

SP(A)C A”={ac A:acaAta}, (4.7)
and hence

SP(A)N Ay, = AT =SP(A)N AL,

right * (48)

This will show again that spectral permanence together with one
one is not sufficient for generalized permanence:

Theorem 4.1. If Bl;]lct £ B-1 . then there exist A and T : A — B

right
for which T is one one with spectral but not generalized permanence.

Proof. If A is commutative then A" = SP(A) and hence
T(A") C SP(B) C B",

and if
T(A)N B, \ B #0

then T' does not have generalized permanence. Thus find a € B, }t\
B~ and, recalling (1.9), take

T = J: commy(a) C B
0

The familiar example is to take B = L(X) to be the linear map-
pings on the space X = CN of all complex sequences and a € B to be
the forward shift. Conversely however simple permanence together
with one-one-ness does imply spectral permanence:

Theorem 4.2. For semigroup homomorphisms

one one and stmple permanence 1mplies spectral permanence ,
(4.9)
while conversely

simple and spectral permanence implies one one . (4.10)
Proof. The last implication is (3.8); conversely observe

SP(A)NT™'B,;, CANT'B;, C A~ +T7Y(0) (4.11)

O
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When we specialise to rings of mappings then simple polarity is
characterized by “ascent” and “descent”:

Theorem 4.3. If A = L(X) is the additive, or linear, operators on
an abelian group, or vector space, X then necessary and sufficient
for a € A to be simply polar is that it has ascent < 1,

a"2(0) C a'(0) ; equivalently a *(0) Na(X) =0 = {0} , (4.12)
and also descent < 1,
a(X) C a*(X) ; equivalently a™'(0) +a(X) = X . (4.13)

The same characterization is valid when A = B(X) for a Banach
space X.

Proof. The complementary subspaces a™1(0) and a(X) determine
the idempotent p : X — X, defined by setting

p(€) € a(X) ; £ —p(€) € a”'(0)
for each £ € X, whose boundedness, together with the closedness of

the range a(X), follows ([7] Theorem 4.8.2) from the open mapping
theorem; and finally, if £ € X,

c(§) = cp(&) ;5 ca(§) = p(§)
0

We remark that, on incomplete spaces, the conditions (4.5) and
(4.6) are not sufficient for simple polarity: indeed it is possible for
a € B(X) to be one one and onto but not in B(X)": the obvious
example is the “standard weight” a = w on X = ¢yy C ¢y defined
by setting

w(&)n = (1/n)& .
Even together with the assumption a € A", however, the conditions
(4.5) and (4.6) are ([7] (7.3.6.8)) not sufficient for simple polarity
(4.1) when A = B(X) for an incomplete normed space X.

5. DRAZIN PERMANENCE

More generally if there is n € N for which a” is simply polar we
shall also say that a € A is “polar”, or Drazin invertible. If a € A is
polar then there is ¢ € A for which ac = ca and a — aca is nilpotent.
If we further relax this to “quasinilpotent” we reach the condition
that a € A “quasipolar”. Specifically if we write

QN(A)={a€A:1-CaC A} (5.1)
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for the quasinilpotents of a Banach algebra A then a € QN(A) if
and only if
oa(a) € {0},
while with some complex analysis we can prove that if a € QN(A)
then
|a" || = 0 (n — o0) . (5.2)
In the ultimate generalization of “group invertibility”, we shall write

QP(A) for the quasipolar elements a € A, those which have a spec-
tral projection q € A for which (cf [8])

g=¢ ;ag=gqa; a+qg€ A" ; ag € QN(A) . (5.3)
Now [17] the spectral projection and the Koliha-Drazin inverse
a*=q,a" =(a+q) (1 —q (5.4)

are uniquely determined and lie in the double commutant of a € A.
It is easy to see that if (5.3) is satisfied then

0 & acc oa(a) : (5.5)

the origin cannot be an accumulation point of the spectrum; con-
versely if (5.5) holds then we can display the spectral projection as
a sort of “vector-valued winding number”

1 1
a®=— P(z—a) 'dz 5.6
57 Ple—a) e (56)
where we integrate counter clockwise round a small circle v cen-
tre the origin whose connected hull nvy is a disc whose intersection
with the spectrum is at most the point {0}. Now generally for a

homomorphism 7" : A — B there is inclusion
T QP(4) C QP(B) , (5.7)

while if 7': A — B has spectral permanence in the sense (1.3) then
it is clear from (5.5) that there is also “Drazin permanence” in the
sense that

QP(A)=T'QP(B) C A : (5.8)

Theorem 5.1. For Banach algebra homomorphisms T : A — B
there is implication

spectral permanence = Drazin permanence .

Proof. Equality in (2.2), together with (5.5) O
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The example of Theorem also shows that the left regular rep-
resentation L : A — B(A), with A = B(X) for a normed space X,
does not always have generalized permanence; however we do have
a sort of “closed range permanence”: there is implication

L,A=cl LLA= a(X)=cla(X) : (5.9)

indeed if a&, — n and ¢ € X* and p(§) = 1 then, with p © 71 : { —
p(C)n,

La(p ©n) = La(b) = 1 = a(bf) . (5.10)
Generally
Theorem 5.2. If T : A — B is arbitrary then
QP(A)NT (B cAt+T70) (5.11)
and if T : A — B 1s one one then
QP(A)NT'SP(B) = SP(A) . (5.12)
Hence ifa € B and T = J : A = comm%(a) C B then
A" =T71SP(B) . (5.13)

It follows that if T~1(0) = O then

Drazin =—> simple = spectral permanence .

Proof. Uniqueness guarantees that the spectral projection T'(a)® of
Ta € SP(B) C QP(B) commutes with 7'(a) € B, and one-one-ness
guarantees the same for a € A ]

For Banach algebra homomorphisms therefore there is an im-
proved version of Theorem [4.2} of the three conditions

spectral permanence ; simple permanence ; one one ,

any two imply the third.

If we rework Theorem with B = B({s) then it is clear that
isometric homomorphisms with spectral permanence need not have
generalized permanence: indeed the forward shift a = v € B"\
QP(A) is not even quasipolar: we recall that the spectrum of u is
the closed unit disc, violating (5.5).

Theorem [4.1] was obtained in this way ([3] Theorem 3.2) in [3].
Of course (cf [9],[17]) “quasinilpotents” and “quasipolars” are only
available in Banach algebras; Theorem above, using “simply
polar” elements, is conceptually much simpler.
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6. MOORE-PENROSE PERMANENCE

We recall that a “C* algebra” is a Banach algebra which also has
an involution a — a* which is conjugate linear, reverses multiplica-
tion, respects the identity and satisfies the “B* condition”

la*all = [lal|* (a € A4) . (6.1)

Historically the term “C* algebra” was reserved for closed *-subal-
gebras of the algebras B(X) for Hilbert spaces X; however the
Gelfand-Naimark-Segal (GNS) representation

[:A— B(Z4) (6.2)

takes an arbitrary “B* algebra” A isometrically into the algebra of
operators on a rather large Hilbert space =4 built from its “states”:
a defect of (6.2) would be that if already A = B(X) we do not get
back =4 = X. In the opinion of this writer these terms “B* algebra”
and “C* algebra” could easily ([7] Chapter 8) have been Hilbert
algebra. When in particular A = B(X) for a Hilbert space X then
the closed range condition (3.9) is sufficient for relative regularity
a € A™: indeed we can satisfy (2.2) by setting

c(§) = c(q€) ; clag) = p(§) (€ € X) | (6.3)
where ¢* = ¢ = ¢ and p* = p = p? are the orthogonal projections on
the range a(X) and the orthogonal complement a~1(0)* of the null
space. The element ¢ € A given by (6.3) satisfies four conditions:

a=aca; c=cac; (ca)" =ca; (ac)" =ac, (6.4)

and is known as the Moore-Penrose inverse of a € B(X): more
generally in a C* algebra A the conditions (6.4) uniquely determine
at most one element

c=a €A, (6.5)
lying ([11] Theorem 5) in the double commutant of {a, a*}, and still
known as a “Moore-Penrose inverse” for a € A. Now it is a result of
Harte and Mbekhta ([11] Theorem 6) that generally there is equality

AT = AT (6.6)

in an arbitrary C* algebra, every relatively regular element has a
Moore Penrose inverse. The argument, and a slight generalization,
proceeds with the aid of the Drazin inverse.

More generally, on a semigroup A, an involution a +— a* satisfies

(@) =a; (ca)" =a’c"; 1I"=1. (6.7)
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In rings and algebras we also ask that the involution be additive, or
conjugate linear. The B* condition (6.7) implies that, for arbitrary
a,r € A,

laz||* < [l la"az] , (6.8)
which in turn gives cancellation
Lea(0) € L,'(0) . (6.9)
Generally the hermitian or “real” elements of A are given by
Re(A)={a€ A:a" =a} . (6.10)

The Moore-Penrose inverse a' of (6.4), if it exists, is unique and
double commutes with a and a*. We pause to notice the star polar
elements of a semigroup A:

SP*(A) ={a€ A:a"a € Am} ; (6.11)
now we claim

Theorem 6.1. If the involution * on the semigroup A is cancellable
then
AT C SP*(A) C A" . (6.12)

Proof. With cancellation there is implication

a € SP*(A) = a € aAa”a C Aa*aNaAa,
and equality

Re(A) N SP*(A) = Re(A) NSP(A) ,

If @ = aca with ¢ = a then

a*a = a*(ac)(ac)*a = a*acc*a*a € a*aAa’a :
conversely, by cancellation,

a*a = ada*a = a = ada’a :

hence also
a € Aa*a ; <= a" € a*aA .
Hence if a* = a then (4.2) follows O

i W ) ) i i
It is now clear that an isometric C* homomorphism has “Moore
Penrose permanence”:

Theorem 6.2. If T : A — B has simple permanence then
T'BI C AT, (6.13)
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Proof. We claim
Al={a€ A:a*acSP(A)}, (6.14)
with implication
a*a € SP(A) = a' = (a*a)”a* .

If a € AT with a = aca and (ca)* = ca then, with d = cc*, we have

a‘ad = a*acc® = a*c* = a*c*a’c* = ca

and

da*a = cc*a*a = ca .
Conversely if a*a = a*ada*a with a*ad = da*a with (wlog) d = d*
then, using cancellation, with ¢ = da*,

aca = ada®a = a and ca = da*a = a*ad = a*c* .
Now if a € A there is implication
Ta € B' = T(a*a) € SP(B) = a*a € SP(A) = a € A
O

Our main result is a slight generalization, and a new proof, of the
Harte/Mbekhta result (6.6), and at the same time “generalized per-
manence”, equality in (3.4), for isometric C* homomorphisms. One
way to go, thanks to the Gelfand/Naimark/Segal representation,
is to look first in the very special algebra D = B(X) of bounded
Hilbert space operators:

Theorem 6.3. If d € D = B(X) for a Hilbert space X then

(d*d)~'(0) € d~(0) (6.15)
and
c d(X)+dH0) = X ; (6.16)
hence if cl d(X) = d(X) then
d'(X)=d"d(X) ,andcl d*d(X) = d*d(X) . (6.17)
There is inclusion
Re(D) N D" C SP(D) ; (6.18)

hence

de D" = decSP* (D)= d'dc SP(D)=dc D'. (6.19)
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Proof. For arbitrary £ € X there is [3] inequality
lde)l* < [l€]l N1 dg]l

and also
cld(X) = d(0)*

Both of the Harte/Mbekhta observations now follow:

Theorem 6.4. If T : A — B is isometric then
TY(B") C A", (6.20)
Proof. With S : B — D = B(X) a GNS mapping we argue, us-

ing again Theorem [4.2] together with “spectral permanence at” a*a
(which has of course real spectrum),

Ta € B" = ST(a*a) € SP(D) = a*a € SP(A) = a € Al
L]
In the situation of (6.14),
a=a"cA"=d =a"; 1-dla=a". (6.21)

Theorem [6.4] has an obvious extension to homomorphisms with clos-
ed range:

Theorem 6.5. If T : A — B has closed range then there is impli-
cation, for arbitrary a € A,

T(a) € B" = a+T(0) € (A/T1(0))" . (6.22)

Proof. Apply Theorem [6.4] to the bounded below T" : A/T~1(0) —

B [
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