
Irish Math. Soc. Bulletin
Number 69, Summer 2012, 33–46
ISSN 0791-5578

SPECTRAL PERMANENCE

ROBIN HARTE

Abstract. Several kinds of generalized inverse bounce off one an-
other in the proof of a variant of spectral permanence for C* em-
beddings.

This represents an expanded version of our talk to the IMS meeting
of August 2012, which in turn was based on the work [3] of Dragan
Djordjevic and Szezena Zivkovic of Nis, in Serbia.

1. Gelfand property

Spectral permanence, for C* algebras, says that the spectrum of
an element a ∈ A ⊆ B of a C* algebra is the same whether it
is taken relative to the subalgebra A or the whole algebra B: this
discussion is sparked by the effort to prove that the same is true of a
variant of spectral permanence in which the two-sided inverse, whose
presence or not defines “spectrum”, is replaced by a generalized
inverse. The argument involves a circuitous tour through “group
inverses”, “Koliha-Drazin inverses” and “Moore-Penrose inverses”;
it turns out that the induced variants of spectral permanence are
curiously inter-related.

Suppose T : A → B is a semigroup homomorphism, where we
insist that a semigroup A has an identity 1 , and that a homo-
morphism T : A → B respects that: we might indeed talk about
a functor between categories. It then follows, writing A−1 for the
invertible group in A, that

T (A−1) ⊆ B−1 , (1.1)

or equivalently, turning it inside out,

A−1 ⊆ T−1B−1 . (1.2)
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At its most abstract then “spectral permanence” for the homomor-
phism T says that (1.2) holds with equality:

T−1B−1 ⊆ A−1 . (1.3)

In words, it is tempting to describe (1.3) by saying “Fredholm im-
plies invertible”. We shall also describe (1.3) as the Gelfand prop-
erty, since it also holds, famously, when

T = Γ : A→ C(X) ⊆ CX (1.4)

is the Gelfand representation of a commutative Banach algebra A;
here of course X = σ(A) is the “maximal ideal space” of the algebra
A. We might notice a secondary instance of spectral permanence in
the embedding

C(X) ⊆ CX (1.5)

of continuous functions among arbitrary functions; similarly, for a
Banach space X, the embedding

B(X) ⊆ L(X) (1.6)

of bounded operators among arbitrary linear operators has spec-
tral permanence, but only thanks to the ministrations of the open
mapping theorem. Another elementary example is the left regular
representation

L : A→ AA (1.7)

of the semigroup A as mappings, where, for a ∈ A,

La(x) = ax (x ∈ A) . (1.8)

Less familiar is a commutant embedding

J : A = commB(K)→ B , (1.9)

where

commB(K) = {b ∈ B : a ∈ K =⇒ ba = ab} (1.10)

and of course J(a) = a: here spectral permanence reflects the fact
that two-sided inverses double commute:

a ∈ B−1 =⇒ a−1 ∈ comm2
B(a) . (1.11)

If in particular the semigroup A is a ring, having therefore a back-
ground “addition” and a distributive law, then we can quotient out
the Jacobson radical

Rad(A) = {a ∈ A : 1− Aa ⊆ A−1} , (1.12)
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in which every possible expression 1 − ca has an inverse: now it is
easily checked that

K : a 7→ a+ Rad(A) (A→ A/Rad(A)) (1.13)

has spectral permanence. Our final example will be the most famil-
iar, if not by any means the most elementary: it is the determinant

det : Cn×n → C , (1.14)

which indeed “determines” whether or not a square matrix is invert-
ible.

2. Spectral permanence

Mathematicians are thus prepared to go to a lot of trouble to
establish spectral permanence. If we specialise to linear homomor-
phisms between (complex) linear algebras then we meet the phe-
nomenon of spectrum, defining for each a ∈ A,

σA(a) = {λ ∈ C : a− λ 6∈ A−1} ; (2.1)

the idea is to harness complex analysis to the theory of invertibility.
Now we can rewrite (1.1) to say that, for arbitrary a ∈ A,

σB(Ta) ⊆ σA(a) , (2.2)

while the Gelfand property (1.3) says that (2.2) holds with equality,
giving indeed “spectral permanence”.

If we specialise to isometric Banach algebra homomorphisms then
there is built in a certain degree of spectral permanence, to the
extent that we always get

∂σA(a) ⊆ σB(Ta) : (2.3)

the topological boundary of the larger spectrum is included in the
smaller. Equivalently, it turns out, this means that

σA(a) ⊆ ησB(Ta) , (2.4)

where the connected hull ηK of a compact subset K ⊆ C is the
complement of the unbounded connected component of the comple-
ment C \ K. This has spin-off: if for a particular element a ∈ A
either the larger spectrum is all boundary,

σA(a) ⊆ ∂σA(a) , (2.5)

or the smaller spectrum fills out its connected hull,

ησB(Ta) ⊆ σB(Ta) , (2.6)
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then the homomorphism T : A → B has “spectral permanence at”
a ∈ A, in the sense of equality in (2.2). This holds if for example
the spectrum is either real or finite.

If more generally the homomorphism T : A→ B is one-one there
is at least inclusion

iso σA(a) ⊆ σB(Ta) . (2.7)

3. Generalized permanence

If A is a semigroup we shall write

A∩ = {a ∈ A : a ∈ aAa} (3.1)

for the “regular” or relatively regular elements of A, those a ∈ A
which have a generalized inverse c ∈ A for which

a = aca : (3.2)

we remark that if (3.2) holds the products

p = ca = p2 , q = ac = q2 (3.3)

are both idempotent. Generally if T : A → B is a homomorphism
there is inclusion

T (A∩) ⊆ B∩ ⊆ B , (3.4)

and hence also
A∩ ⊆ T−1(B∩) ⊆ A . (3.5)

If there is equality in (3.4) we shall say that T has generalized per-
manence. This happens for example when

T−1(0) ⊆ A∩ , T (A) = B : (3.6)

recall the implication

(a− aAa) ∩ A∩ 6= ∅ =⇒ a ∈ A∩ . (3.7)

This does not however happen when T is quotienting out the radical
as in (1.10), unless the ring A is semi simple: for notice

Rad(A) ∩ A∩ = {0} . (3.8)

It follows that spectral permanence is not in general sufficient for
generalized permanence. Indeed by (3.8) spectral and generalized
permanence together imply that a homomorphism T : A → B is
one one; further (1.5) shows that spectral permanence and one one
do not together imply generalized permanence. If A is the ring of
continuous homomorphisms a : X → X on a Hausdorff topological
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abelian group X then it is necessary for a ∈ A∩ that a have closed
range

a(X) = cl a(X) : (3.9)

this is because

a(X) = ac(X) = (1− ac)−1(0) (3.10)

is the null space of the complementary idempotent. Thus the em-
bedding (1.6) is another example with spectral but not generalized
permanence.

4. Simple permanence

If in particular there is c ∈ A for which

a− aca = 0 = ac− ca , (4.1)

then a ∈ A is very special; this happens if a ∈ A is either invert-
ible, or idempotent, or more generally the commuting product of an
invertible and an idempotent. When (4.1) holds we shall say that
a ∈ A is simply polar: in Banach-algebra-land 0 ∈ C can be at
worst a simple pole of the resolvent mapping

(z − a)−1 : C \ σ(a)→ A . (4.2)

In the group theory world the product cac is referred to as the group
inverse for a ∈ A. We remark that it is necessary and sufficient for
a ∈ A to be simply polar that

a ∈ a2A ∩ Aa2 : (4.3)

indeed [15],[19],[20] there is implication

a2u = a = va2 =⇒ au = va , aua = a = ava , (4.4)

giving (4.1) with c = vau.
We shall write SP(A) for the simply polar elements of a semigroup

A and observe, for homomorphisms T : A→ B, that

T SP(A) ⊆ SP(B) ⊆ B , (4.5)

and hence

SP(A) ⊆ T−1SP(B) ⊆ A ; (4.6)

when there is equality in (4.5) we shall say that T : A → B has
simple permanence. The counterimage T−1SP(B) ⊆ A is sometimes
known [2],[18],[16] as the “generalized Fredholm” elements of A.
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We remark that spectral permanence does not in general, or even
together with one-one-ness, imply simple permanence: return to
(3.8) and (1.5).

In general

SP(A) ⊆ A∪ ≡ {a ∈ A : a ∈ aA−1a} , (4.7)

and hence

SP(A) ∩ A−1left = A−1 = SP(A) ∩ A−1right . (4.8)

This will show again that spectral permanence together with one
one is not sufficient for generalized permanence:

Theorem 4.1. If B−1left 6= B−1right then there exist A and T : A → B
for which T is one one with spectral but not generalized permanence.

Proof. If A is commutative then A∩ = SP(A) and hence

T (A∩) ⊆ SP(B) ⊆ B∩ ,

and if

T (A∩) ∩B−1left \B
−1 6= ∅

then T does not have generalized permanence. Thus find a ∈ B−1left \
B−1 and, recalling (1.9), take

T = J : comm2
B(a) ⊆ B

�

The familiar example is to take B = L(X) to be the linear map-
pings on the space X = CN of all complex sequences and a ∈ B to be
the forward shift. Conversely however simple permanence together
with one-one-ness does imply spectral permanence:

Theorem 4.2. For semigroup homomorphisms

one one and simple permanence implies spectral permanence ,
(4.9)

while conversely

simple and spectral permanence implies one one . (4.10)

Proof. The last implication is (3.8); conversely observe

SP(A) ∩ T−1B−1left ⊆ A∪ ∩ T−1B−1left ⊆ A−1 + T−1(0) (4.11)

�
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When we specialise to rings of mappings then simple polarity is
characterized by “ascent” and “descent”:

Theorem 4.3. If A = L(X) is the additive, or linear, operators on
an abelian group, or vector space, X then necessary and sufficient
for a ∈ A to be simply polar is that it has ascent ≤ 1,

a−2(0) ⊆ a−1(0) ; equivalently a−1(0) ∩ a(X) = O ≡ {0} , (4.12)

and also descent ≤ 1,

a(X) ⊆ a2(X) ; equivalently a−1(0) + a(X) = X . (4.13)

The same characterization is valid when A = B(X) for a Banach
space X.

Proof. The complementary subspaces a−1(0) and a(X) determine
the idempotent p : X → X, defined by setting

p(ξ) ∈ a(X) ; ξ − p(ξ) ∈ a−1(0)

for each ξ ∈ X, whose boundedness, together with the closedness of
the range a(X), follows ([7] Theorem 4.8.2) from the open mapping
theorem; and finally, if ξ ∈ X,

c(ξ) = cp(ξ) ; ca(ξ) = p(ξ)

�

We remark that, on incomplete spaces, the conditions (4.5) and
(4.6) are not sufficient for simple polarity: indeed it is possible for
a ∈ B(X) to be one one and onto but not in B(X)∩: the obvious
example is the “standard weight” a = w on X = c00 ⊆ c0 defined
by setting

w(ξ)n = (1/n)ξn .

Even together with the assumption a ∈ A∩, however, the conditions
(4.5) and (4.6) are ([7] (7.3.6.8)) not sufficient for simple polarity
(4.1) when A = B(X) for an incomplete normed space X.

5. Drazin permanence

More generally if there is n ∈ N for which an is simply polar we
shall also say that a ∈ A is “polar”, or Drazin invertible. If a ∈ A is
polar then there is c ∈ A for which ac = ca and a−aca is nilpotent.
If we further relax this to “quasinilpotent” we reach the condition
that a ∈ A “quasipolar”. Specifically if we write

QN(A) = {a ∈ A : 1−Ca ⊆ A−1} (5.1)
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for the quasinilpotents of a Banach algebra A then a ∈ QN(A) if
and only if

σA(a) ⊆ {0} ,
while with some complex analysis we can prove that if a ∈ QN(A)
then

‖an‖1/n → 0 (n→∞) . (5.2)

In the ultimate generalization of “group invertibility”, we shall write
QP(A) for the quasipolar elements a ∈ A, those which have a spec-
tral projection q ∈ A for which (cf [8])

q = q2 ; aq = qa ; a+ q ∈ A−1 ; aq ∈ QN(A) . (5.3)

Now [17] the spectral projection and the Koliha-Drazin inverse

a• = q , a× = (a+ q)−1(1− q) (5.4)

are uniquely determined and lie in the double commutant of a ∈ A.
It is easy to see that if (5.3) is satisfied then

0 6∈ acc σA(a) : (5.5)

the origin cannot be an accumulation point of the spectrum; con-
versely if (5.5) holds then we can display the spectral projection as
a sort of “vector-valued winding number”

a• =
1

2πi

∮
0

(z − a)−1dz , (5.6)

where we integrate counter clockwise round a small circle γ cen-
tre the origin whose connected hull ηγ is a disc whose intersection
with the spectrum is at most the point {0}. Now generally for a
homomorphism T : A→ B there is inclusion

T QP(A) ⊆ QP(B) , (5.7)

while if T : A→ B has spectral permanence in the sense (1.3) then
it is clear from (5.5) that there is also “Drazin permanence” in the
sense that

QP(A) = T−1QP(B) ⊆ A : (5.8)

Theorem 5.1. For Banach algebra homomorphisms T : A → B
there is implication

spectral permanence =⇒ Drazin permanence .

Proof. Equality in (2.2), together with (5.5) �
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The example of Theorem 4.1 also shows that the left regular rep-
resentation L : A → B(A), with A = B(X) for a normed space X,
does not always have generalized permanence; however we do have
a sort of “closed range permanence”: there is implication

LaA = cl LaA =⇒ a(X) = cl a(X) : (5.9)

indeed if aξn → η and ϕ ∈ X∗ and ϕ(ξ) = 1 then, with ϕ� η : ζ 7→
ϕ(ζ)η,

La(ϕ� η) = La(b) =⇒ η = a(bξ) . (5.10)

Generally

Theorem 5.2. If T : A→ B is arbitrary then

QP(A) ∩ T−1(B−1) ⊆ A−1 + T−1(0) (5.11)

and if T : A→ B is one one then

QP(A) ∩ T−1SP(B) = SP(A) . (5.12)

Hence if a ∈ B and T = J : A = comm2
B(a) ⊆ B then

A∩ = T−1SP(B) . (5.13)

It follows that if T−1(0) = O then

Drazin =⇒ simple =⇒ spectral permanence .

Proof. Uniqueness guarantees that the spectral projection T (a)• of
Ta ∈ SP(B) ⊆ QP(B) commutes with T (a) ∈ B, and one-one-ness
guarantees the same for a ∈ A �

For Banach algebra homomorphisms therefore there is an im-
proved version of Theorem 4.2: of the three conditions

spectral permanence ; simple permanence ; one one ,

any two imply the third.
If we rework Theorem 4.1 with B = B(`2) then it is clear that

isometric homomorphisms with spectral permanence need not have
generalized permanence: indeed the forward shift a = u ∈ B∩ \
QP(A) is not even quasipolar: we recall that the spectrum of u is
the closed unit disc, violating (5.5).

Theorem 4.1 was obtained in this way ([3] Theorem 3.2) in [3].
Of course (cf [9],[17]) “quasinilpotents” and“quasipolars” are only
available in Banach algebras; Theorem 4.1 above, using “simply
polar” elements, is conceptually much simpler.
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6. Moore-Penrose permanence

We recall that a “C* algebra” is a Banach algebra which also has
an involution a 7→ a∗ which is conjugate linear, reverses multiplica-
tion, respects the identity and satisfies the “B* condition”

‖a∗a‖ = ‖a‖2 (a ∈ A) . (6.1)

Historically the term “C* algebra” was reserved for closed *-subal-
gebras of the algebras B(X) for Hilbert spaces X; however the
Gelfand-Naimark-Segal (GNS) representation

Γ : A→ B(ΞA) (6.2)

takes an arbitrary “B* algebra” A isometrically into the algebra of
operators on a rather large Hilbert space ΞA built from its “states”:
a defect of (6.2) would be that if already A = B(X) we do not get
back ΞA = X. In the opinion of this writer these terms “B* algebra”
and “C* algebra” could easily ([7] Chapter 8) have been Hilbert
algebra. When in particular A = B(X) for a Hilbert space X then
the closed range condition (3.9) is sufficient for relative regularity
a ∈ A∩: indeed we can satisfy (2.2) by setting

c(ξ) = c(qξ) ; c(aξ) = p(ξ) (ξ ∈ X) , (6.3)

where q∗ = q = q2 and p∗ = p = p2 are the orthogonal projections on
the range a(X) and the orthogonal complement a−1(0)⊥ of the null
space. The element c ∈ A given by (6.3) satisfies four conditions:

a = aca ; c = cac ; (ca)∗ = ca ; (ac)∗ = ac , (6.4)

and is known as the Moore-Penrose inverse of a ∈ B(X): more
generally in a C* algebra A the conditions (6.4) uniquely determine
at most one element

c = a† ∈ A , (6.5)

lying ([11] Theorem 5) in the double commutant of {a, a∗}, and still
known as a “Moore-Penrose inverse” for a ∈ A. Now it is a result of
Harte and Mbekhta ([11] Theorem 6) that generally there is equality

A∩ = A† : (6.6)

in an arbitrary C* algebra, every relatively regular element has a
Moore Penrose inverse. The argument, and a slight generalization,
proceeds with the aid of the Drazin inverse.

More generally, on a semigroup A, an involution a 7→ a∗ satisfies

(a∗)∗ = a ; (ca)∗ = a∗c∗ ; 1∗ = 1 . (6.7)
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In rings and algebras we also ask that the involution be additive, or
conjugate linear. The B* condition (6.7) implies that, for arbitrary
a, x ∈ A,

‖ax‖2 ≤ ‖x∗‖ ‖a∗ax‖ , (6.8)

which in turn gives cancellation

L−1a∗a(0) ⊆ L−1a (0) . (6.9)

Generally the hermitian or “real” elements of A are given by

Re(A) = {a ∈ A : a∗ = a} . (6.10)

The Moore-Penrose inverse a† of (6.4), if it exists, is unique and
double commutes with a and a∗. We pause to notice the star polar
elements of a semigroup A:

SP∗(A) = {a ∈ A : a∗a ∈ A∩} ; (6.11)

now we claim

Theorem 6.1. If the involution * on the semigroup A is cancellable
then

A† ⊆ SP∗(A) ⊆ A∩ . (6.12)

Proof. With cancellation there is implication

a ∈ SP∗(A) =⇒ a ∈ aAa∗a ⊆ Aa∗a ∩ aAa ,
and equality

Re(A) ∩ SP∗(A) = Re(A) ∩ SP(A) ,

If a = aca with c = a† then

a∗a = a∗(ac)(ac)∗a = a∗acc∗a∗a ∈ a∗aAa∗a :

conversely, by cancellation,

a∗a = ada∗a =⇒ a = ada∗a :

hence also
a ∈ Aa∗a ; ⇐⇒ a∗ ∈ a∗aA .

Hence if a∗ = a then (4.2) follows �

It is now clear that an isometric C* homomorphism has “Moore-
Penrose permanence”:

Theorem 6.2. If T : A→ B has simple permanence then

T−1B† ⊆ A† . (6.13)
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Proof. We claim

A† = {a ∈ A : a∗a ∈ SP(A)} , (6.14)

with implication

a∗a ∈ SP(A) =⇒ a† = (a∗a)×a∗ .

If a ∈ A† with a = aca and (ca)∗ = ca then, with d = cc∗, we have

a∗ad = a∗acc∗ = a∗c∗ = a∗c∗a∗c∗ = ca

and

da∗a = cc∗a∗a = ca .

Conversely if a∗a = a∗ada∗a with a∗ad = da∗a with (wlog) d = d∗

then, using cancellation, with c = da∗,

aca = ada∗a = a and ca = da∗a = a∗ad = a∗c∗ .

Now if a ∈ A there is implication

Ta ∈ B† =⇒ T (a∗a) ∈ SP(B) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A†

�

Our main result is a slight generalization, and a new proof, of the
Harte/Mbekhta result (6.6), and at the same time “generalized per-
manence”, equality in (3.4), for isometric C* homomorphisms. One
way to go, thanks to the Gelfand/Naimark/Segal representation,
is to look first in the very special algebra D = B(X) of bounded
Hilbert space operators:

Theorem 6.3. If d ∈ D = B(X) for a Hilbert space X then

(d∗d)−1(0) ⊆ d−1(0) (6.15)

and

cl d(X) + d∗−1(0) = X ; (6.16)

hence if cl d(X) = d(X) then

d∗(X) = d∗d(X) , andcl d∗d(X) = d∗d(X) . (6.17)

There is inclusion

Re(D) ∩D∩ ⊆ SP(D) ; (6.18)

hence

d ∈ D∩ =⇒ d ∈ SP∗(D) =⇒ d∗d ∈ SP(D) =⇒ d ∈ D† . (6.19)
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Proof. For arbitrary ξ ∈ X there is [3] inequality

‖dξ‖2 ≤ ‖ξ‖ ‖d∗dξ‖ ,
and also

cl d(X) = d∗−1(0)⊥

�

Both of the Harte/Mbekhta observations now follow:

Theorem 6.4. If T : A→ B is isometric then

T−1(B∩) ⊆ A† . (6.20)

Proof. With S : B → D = B(X) a GNS mapping we argue, us-
ing again Theorem 4.2, together with “spectral permanence at” a∗a
(which has of course real spectrum),

Ta ∈ B∩ =⇒ ST (a∗a) ∈ SP(D) =⇒ a∗a ∈ SP(A) =⇒ a ∈ A†

�

In the situation of (6.14),

a = a∗ ∈ A∩ =⇒ a† = a× ; 1− a†a = a• . (6.21)

Theorem 6.4 has an obvious extension to homomorphisms with clos-
ed range:

Theorem 6.5. If T : A → B has closed range then there is impli-
cation, for arbitrary a ∈ A,

T (a) ∈ B∩ =⇒ a+ T−1(0) ∈ (A/T−1(0))∩ . (6.22)

Proof. Apply Theorem 6.4 to the bounded below T∧ : A/T−1(0)→
B �

References

[1] SR Caradus, Generalized inverses and operator theory, Queens papers Pure
Appl. Math. Ontario 50 (1978)

[2] SR Caradus, WE Pfaffenberg and B Yood, Calkin algebras and algebras of
operators on Banach spaces, Dekker 1974.
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