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A SOLUTION OF ∆u+ f(u) = 0 ON A TRIANGLE

JOSEPH A. CIMA AND WILLIAM DERRICK

Abstract. We use moving planes and thin domain maximum prin-
ciples to prove the maximum value of a positive solution to the equa-
tion ∆u+ f(u) = 0 on a symmetric-convex domain Ω , with u = 0
on the boundary of Ω, lies on the line of symmetry of the domain.
If the domain has two or more lines of symmetry the maximum is
at their intersection.

Introduction

In the last several years two novel tools used in the theory of
Partial Differential Equations (PDE) have yielded interesting infor-
mation: the use of “moving planes” and the concept of “maximal
principles for thin domains”. These ideas have been incorporated in
the works of the authors Berestycki, Nirenberg, Varadhan, Ni, Gi-
das, Fraenkel and Du (see the papers [1]–[3] and [5]). We refer the
reader to those papers for more detail on what we will address in this
paper, including a very detailed account of some of their work in the
book of Fraenkel [4]. Many of these results are based on solutions of
an elliptic PDE on a certain special class of bounded domains in Rn.
We will work only in R2 and we will define the special properties of
these domains in the following section. We will call these domains
“symmetric-convex” and use the notation S-C for any domain that
satisfies the appropriate conditions.

One of the key results of the above papers and books is to prove
that the directional derivatives of the solutions in the convex direc-
tions are negative when one leaves the line of symmetry and ap-
proaches the boundary in the convex direction. The purpose of this
paper is to study the location of the critical points where the solu-
tion takes its maximum. In general, if the domain in question has
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two possible directions of symmetry then there is a definitive answer
to the question. If not, then one knows only that the maximum is
taken on the intersection of the line (plane) of symmetry interior to
the domain. We will show in a basic case (an isosceles triangle) that
the maximum must be achieved on a fixed subset of this line of sym-
metry. Further, we will include computational work that indicates
the solution must be unique and in a significant way is independent
of the given function f(u) for the problem.

1. Definitions and the methods

First we define a symmetric-convex (S-C) domain:

Definition 1.1. Let Ω be a bounded, simply-connected domain in
the plane, and assume m and k are unit vectors in the plane which
are orthogonal. For each point P on the boundary of Ω let LP be
the subset of Ω consisting of the points that lie on the line {P +rm :
r ∈ R}, i.e.

LP = Ω ∩ (P + Rm).

Similarly, for Q on ∂Ω, let

L′Q = Ω ∩ (Q+ Rk).

The domain Ω is said to be S-C (with respect to (m, k)) if each
nonempty L′Q (for Q ∈ ∂Ω) is a segment and there is a point P0 ∈ ∂Ω
for which LP0

is a segment and Ω is symmetric under orthogonal re-
flection in this segment, i.e. the segment LP0

bisects every nonempty
L′Q.

For example, a disc is S-C for any two orthogonal directions while
a Star of David with the standard orientation (i.e., with center of
the star at the origin and the y axis joining two opposite points
of the star) has three S-C orientations. One is the m vector with
θ = 90◦ and the other two are for the angles θ = ±30◦.

Let Ω be a connected bounded S-C domain where, for simplicity,
we will assume U is the vector (1,0) and V is (0,1).

We sketch the way the “moving planes” and “thin domain” tools
are used in the proofs of the above mentioned authors. For sim-
plicity, consider the strictly elliptic, second order operator on the
domain Ω:

L = ∆ + c(x, y). (1)

The term c(·) is assumed uniformly bounded by a number, say c0.
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Definition 1.2. A maximum principle holds for L in Ω if

Lw ≥ 0 (2)

in Ω, with w ∈ C2(Ω) ∩ C(Ω̄), and

w(x, y) ≤ 0

on ∂Ω, implies that w(x, y) ≤ 0, for all (x, y) ∈ Ω.

Varadhan observes the following:

Proposition 1.3. (Thin Domain Principle.) Assume diam(Ω) ≤
d. There exists δ > 0 depending only on d, c0, such that the maxi-
mum principle holds for L in Ω provided meas(Ω) = |Ω| < δ.

Let u : Ω̄→ R be a positive solution of

∆u+ f(u) = 0, u = 0 on ∂Ω, (3)

with u ∈ C(Ω̄) ∩ C2(Ω), where f : [0,∞] → R is C1 (thus also
Lipschitz) and monotone increasing. We will give a brief overview of
how the maximum principles above and the moving plane methods
fit together. Assume 0 ∈ Ω without loss of generality. Then a line
La = [(x, y) : x = a] meets the domain Ω if a is small in modulus.
In particular, L0 is the y axis. Since the domain Ω is assumed to be
bounded there is a number a such that the line La meets Ω and cuts
a small “cap” (an open subset of Ω), say Σ(a) = {(x, y) ∈ Ω|x < a}
from Ω.

We examine only one component of this open subset of Ω and
assume a < 0. Reflecting the domain Σ(a) about La, we see that
the reflected domain Σ(a)⊥ ⊂ Ω, each point P ∈ Σ(a) having a
reflected point P⊥ ∈ Σ(a)⊥. Define

w(P ; a) ≡ u(P )− u(P⊥) (4)

for P ∈ Σ(a). Since f is Lipschitz w satisfies ∆w + γ(P ; a)w = 0,
on Σ(a), with

γ(P, a) =

{
f(u(P ))−f(u(P⊥))

u(P )−u(P⊥)
, P ∈ Σ(a),

0, P ∈ La.
(5)

By the Maximum principle (or thin domain principle), it follows

that w ≤ 0 in Σ(a). Next, using a strong maximum principle (see
[4, Theorem 2.13]), we extend this to w < 0 on Σ(a).

This leads to the key inequality u(P ) < u(P⊥) for all P in Σ(a).
Finally, this shows that ux(P ) > 0 in Σ(a). Consider the largest
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(non-positive) value of this parameter a for which this is true. If
this value is 0, then one can use symmetry to show, by replacing the
argument in the “opposite” direction, that in fact the solution u(p)
is strictly decreasing as the point p begins on the y axis and tends
to the boundary in either horizontal direction.

But if it is assumed the values of the parameter a stop at, say, a0 <
0, one must work to get a contradiction. The idea is that, although
the cap Σ(a0) itself may not have measure smaller than the required
value in Proposition 1.3, it is possible by a clever argument to excise
a compact subdomain K of Σ(a0) and apply the “thin maximal
principle” to the domain Σ(a0) \K. This will yield a contradiction
to the assumption about a0 and so we obtain the result concerning
strictly decreasing in the symmetric direction.

We use this method to get the following result.

Proposition 1.4. Assume Ω is an S-C domain in R2 and that it has
at least two S-C orientations, say in the m and M directions, with
orthogonal convex directions k and K respectively (i.e., the lines of
symmetry have directions m and M). Then the solution of equation
(3) has a unique point in the domain where it achieves its maximum.

Proof. Let the notation DV (u)(P ) denote the directional derivative
of the function u in the V direction and evaluated at a point P ∈ Ω.
The results above indicate that if P is not on the line generated by
m then it is strictly decreasing in the convex direction k. That is,

Dk(u)(P ) = Ou(P ) · k < 0,

so the gradient is nonzero. Similarly for P on M . Hence only points
on m and M can be maximums, and their intersection P satisfies
Ou(P ) = 0. Note that the maximum point P is not changed if we
change the function f ; it is a property of the domain and not of the
forcing function. �

2. Domain with one S-C orientation

One can easily construct domains in R2 which have only one S-C
orientation. Our example is an isosceles triangle Λ (which is not
equilateral – in this case one has three S-C orientations) with base
on the y axis and points A = (0, a), B = (0,−a) and C = (c, 0),
c > 0. This is S-C with the x axis as the line of symmetry and the
y axis as its associated convex direction. From the above theory we
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know that the solution to (3) on Λ must have any maximum points
on the real axis segment 0 < x < c. We also know, by symmetry
and the moving plane method that

uy > 0 for y < 0

uy < 0 for y > 0

and that ux > 0 near the y axis and ux < 0 near c.
Now writing the angle at the vertex A as 2α (and also at B),

we construct a four-sided figure (the sides are all line segments) as
follows. Draw the line from A by bisecting the angle at A. The line
meets the side BC at a point, say Q. The segment AQ together with
the segments BQ and AB form a triangle Γ. Reflect Γ along the line
AQ, so that the line QB reflects along QT The four-sided figure has
vertices at A,B,Q, T , and lies in Λ. We replace the original domain
Λ by this domain Ω = [A,B,Q, T ], a subdomain.

x

A
T

B

0

 y

C

γ

Q

Pa

In our case we are considering the domain Ω and lines orthogonal
to the segment AQ which is the line of symmetry. The convex
direction is the direction orthogonal to the segment AQ. Using the
technique above we have the L0 line given by AQ and beginning with
the point B we select lines La parallel to L0. For each admissible
choice of the parameter a, we construct a cap Σ(a) and define for
each P in the cap, with one vertex at B, determined by the line La,
the function

w
(
(x, y) : a

)
= u(P )− u(P⊥), (6)

where P⊥ is the reflection of P in La. Of course, the triangle de-
termined by this value of a has its reflection in the line La inside
Ω ⊆ Λ. Thus two of the sides of Σ(a) are parts of the boundary of
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Λ and the remaining two sides lie in Ω. Thus w(· : a) is well de-
fined and satisfies ∆w + γw = 0 with γ defined by equation (5). In

checking the required inequality on the boundary of Σ(a), we have

w(· : a) = 0 on the part of the line La that lies within Σ(a), and
w(· : a) < 0 on the other two sides. Hence, by the process outlined
above, we see that for each admissible a up to and including a = 0
we have w(P : a) < 0 in each such domain. Hence, u(P ) < u(P⊥)
for all P in Σ(a).

We recall that the point where the line segment AQ crosses the x
axis is the center of the largest inscribed circle that can be placed
inside of the triangle ABC. Label this point P0 = (x0, 0). We also
have the following.

Proposition 2.1. The function u is strictly increasing on the seg-
ment [(x, 0) : 0 < x < x0].

Proof. Let points P1 = (x1, 0) and P2 = (x2, 0) be given with 0 <
x1 < x2 < x0. Starting with the line La through P1 and moving
the line continuously toward the parallel segment AQ, we note the
following. The reflection is a continuous process in the parameter
a. Also, if we write Pj(P ) as the projection of the point P onto the
real axis, it is also a continuous process. Let P2 = Pj(P

⊥
1 ) where P⊥1

is the unique point which is the reflection of the given point P1 and
a new line La′. There is a unique choice of a′ that will do this. We
know from the information about u in the original triangle Λ that

u(P⊥1 ) < u
(
Pj(P

⊥
1 )
)

= u(P2).

Thus
u(P1) < u(P⊥1 ) < u

(
Pj(P

⊥
1 )
)

= u(P2). (7)

This completes the proof. �

Remark. If we examine the C2 expansion of u at P0, we find, for
x′ = x0 + ε and x′′ = x0 − ε,

u(x′, 0) = u(x0, 0) + ux(x0, 0)(ε) +O(ε2).

Similarly,

u(x′′, 0) = u(x0, 0) + ux(x0, 0)(−ε) +O(ε2).

Subtracting these two equations and using the ideas of reflections
above, we have

0 < u(x′, 0)− u(x′′, 0) = ux(x0, 0)(2ε) +O(ε2).
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Thus the “sign” of the right side of this equation is determined by
the first term. Since ε > 0 we have that ux(P0) > 0.

Note that we could have begun this process from the vertex B
with appropriate similar conclusion in a “different part” of triangle
ABC.

We note at this time that, in addition to the above two construc-
tions, there is also another simple subdomain of triangle ABC to
which we can apply this process. To wit, let the point Pm = ( c2 , 0)
be the mid point of the line joining the origin to the point (c, 0).
Now we can consider the subdomain of the original triangle deter-
mined by the part of the sides AC and BC from the points

(
c
2 ,±ym

)
where the line x = c

2 meets these sides. The symmetry line is the line

through c
2 joining the points determined by

(
c
2 ,+ym

)
and

(
c
2 ,−ym

)
.

Let the triangle determined by these points and the vertex (c, 0)
be labeled ∆. Clearly, reflection of ∆ in the line L c

2
remains in-

side ABC and, applying the technique above, we have for P⊥ the
reflection of P in the line x = c

2 , for all P ∈ ∆,

u(P ) < u(P⊥).

The following is true.

Proposition 2.2. The function u(x, 0) is strictly decreasing as x
increases from c

2 to c.

Proof. Let (x′, 0) and (x′′, 0) be given with c
2 < x′ < x′′ < c. The

proof is similar to that given in Proposition 2.1 and we omit the
details. �

It is also true (by a discussion similar to that for the expansion of
u near P0) that ux

(
c
2

)
< 0.

At this stage we have shown that any maximum for u can only
occur between the points P0 and Pm on the real axis.

3. Numerical information on the location of the
maxima

Although we have given some estimates, based on the geometry of
our given triangle ABC, as to where a maximum may occur, we have
not been successful in proving that such an (absolute) maximum is
unique or its exact location. The numerical data following implies
that indeed the maximum point is unique and, moreover, its position
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depends only on the geometry of the triangle and not on the function
f(z). From our point of view this is surprising.

We constructed a pseudo-triangle ABC consisting of a lattice of
square cells from -15 to 15 on the y-axis, with variable geometry
allowing up to 90 cells on the x-axis. The location of vertex C
is given by (c, 0). When that information is given, the program
initiates the computation by giving an initial value of u = 0.1 to all
points (i, j) such that |j| ≤ int [15

(
1 −

(
i
c

))
], 0 ≤ i ≤ c and giving

a value u = 0 to all other points in the grid, so that the boundary
grid points are zero. Observe that this pseudo-triangle is an S-C
domain.

The Laplacian of u is approximated by the average of the four
adjacent grid points and added to f(u), giving

unew(i, j) =
1

4
{u(i+1, j)+u(i−1, j)+u(i, j+1)+u(i, j−1)}+f(u(i, j)),

where (i, j) is the grid point where u is evaluated. The results are
stored in a new matrix of grid points unew for the next iteration.
All boundary grid points are kept at zero. Finally, the sum of the
squares of the differences between the new and old values is obtained,
and when its square root is less than a given tolerance, the iterations
are stopped and the maximum grid point values are located.

We used three different f(u): f1(u) = .03u2, f2(u) = .01(1+u2)/4,
and f3(u) = .005u(1 + u). We ran the program for different values
for c between 20 ≤ c ≤ 90. In all cases examined, the maximum
values (though different) occurred in the same place, u(x, 0), where
the x-value is shown in the table:

c 20 26 30 40 50 60 70 80 90
x 7 8 9 11 12 14 15 16 17

Different tolerances were used: 10−4 for f1 and f2, and 10−9 for
f3, but the location of the maximum did not change for all three
functions. The choice of c = 26 is an attempt to make the pseudo-
triangle ABC as close as possible to an equilateral triangle, where
the center of the inscribed circle is located at x = 5

√
3 ≈ 8.66, so

an x value of 8 in the table is a reasonable approximation to the
maximum point’s location.
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