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n-Universal Quadratic Forms and Quadratic Forms
over Finite Fields

AHMET TEKCAN AND ARZU ÖZKOÇ

Abstract. In this work, we derive some properties of n-

universal quadratic forms and quadratic forms over finite
fields Fp for primes p ≥ 5.

1. Preliminaries

A real binary quadratic form (or just a form) F is a polynomial in
two variables x and y of the type

F = F (x, y) = ax2 + bxy + cy2 (1.1)

with real coefficients a, b, c. We denote F briefly by F = (a, b, c). The
discriminant of F is defined by the formula b2 − 4ac and is denoted
by ∆ = ∆(F ). F is an integral form if and only if a, b, c ∈ Z, and
is indefinite if and only if ∆(F ) > 0. An indefinite definite form
F = (a, b, c) of discriminant ∆ is said to be reduced if∣∣∣√∆− 2|a|

∣∣∣ < b <
√

∆

(for further details on binary quadratic forms see [1, 2, 5, 9]). Most
properties of quadratic forms can be given with the aid of the ex-
tended modular group Γ (see [10]). Gauss defined the group action
of Γ on the set of forms as follows:
gF (x, y) =

(
ar2 + brs+ cs2

)
x2 + (2art+ bru+ bts+ 2csu)xy

+
(
at2 + btu+ cu2

)
y2 (1.2)

for g =
(
r s
t u

)
= [r; s; t;u] ∈ Γ, that is, gF is obtained from F

by making the substitution x → rx + tu, y → sx + uy. Moreover,
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∆(F ) = ∆(gF ) for all g ∈ Γ, that is, the action of Γ on forms leaves
the discriminant invariant. If F is indefinite or integral, then so is
gF for all g ∈ Γ. Let F and G be two forms. If there exists a g ∈ Γ
such that gF = G, then F and G are called equivalent. If det g = 1,
then F and G are called properly equivalent, and if det g = −1, then
F and G are called improperly equivalent. A quadratic form F is
called ambiguous if it is improperly equivalent to itself. An element
g ∈ Γ is called an automorphism of F if gF = F . If det g = 1, then
g is called a proper automorphism of F , and if det g = −1, then g
is called an improper automorphism of F . Let Aut(F )+ denote the
set of proper automorphisms of F and let Aut(F )− denote the set
of improper automorphisms of F .

2. Quadratic Irrationals, Quadratic Ideals and
Quadratic Forms

Let n be any integer. If there exists a (x, y) ∈ Z× Z such that

F (x, y) = ax2 + bxy + cy2 = n,

then n can be represented by F . If a form F represents all integers,
then it called universal (see [3, 4]).

Let F (x, y) = x2 + 5xy + 6y2 be an indefinite binary quadratic
form. Then F is universal. Indeed for any integer n, the quadratic
equation F (x, y) = x2+5xy+6y2 = n has a solution for (x, y) = (2−
3n, n− 1). Let p ≥ 5 be a prime number. Then p can be represented
by F . Now let P = 2−3p, Q = p−1 and D = P 2 + 5PQ+ 6Q2 = p.
Then γ = P+

√
D

Q is a quadratic irrational and hence

Iγ = [Q,P +
√
D] = [p− 1, 2− 3p+

√
p] (2.1)

is a quadratic ideal. Iγ is called reduced if P +
√
D > Q and

−Q < P −
√
D < 0 and is called ambiguous if and only if 2P

Q ∈ Z.
Mollin considered the arithmetic of quadratic irrationals and qua-
dratic ideals in his book [8]. He proved that given an ideal Iγ =
[Q,P +

√
D], there exists an indefinite binary quadratic form

Fγ(x, y) = Qx2 + 2Pxy +
(
P 2 −D
Q

)
y2 (2.2)

of discriminant ∆ = 4D. Hence there is a correspondence between
ideals and quadratic forms.
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Theorem 2.1. The ideal Iγ in (2.1) is not reduced and is not am-
biguous for every prime p ≥ 5.

Proof. Note that |2− 3p| > p− 1 and also 16p2 − 25p+ 9 > 0 since
p ≥ 5. So we have

16p2 − 25p+ 9 > 0 ⇔ 16p2 − 24p+ 9 > p

⇔ 4p− 3 >
√
p

⇔ p− 1− (2− 3p) >
√
p

⇔ p− 1 > (2 + 3p) +
√
p

⇔ Q > P +
√
D.

Hence Iγ is not reduced. Also Iγ is not ambiguous since 2P
Q = 4−6p

p−1

is not an integer. �

For the ideal Iγ , the corresponding quadratic form is hence

Fγ(x, y) = (p− 1)x2 + (4− 6p)xy + (9p− 4)y2 (2.3)

by (2.2).

Theorem 2.2. The form Fγ in (2.3) is not reduced and is not am-
biguous for every prime p ≥ 5.

Proof. We proved in Theorem 2.1 that Iγ is not reduced, that is,
p− 1 > (2 + 3p) +

√
p. Since 9p2 − 13p+ 4 > 0, we have

9p2 − 13p+ 4 > 0 ⇔ 9p2 − 12p+ 4 > p

⇔ 2− 3p >
√
p

⇔ 4− 6p >
√

4p

⇔ b >
√

∆.

So Fγ is not reduced. Also the system of equations

(p− 1)r2 + (4− 6p)rs+ (9p− 4)s2 = p− 1
(2p− 2)rt+ (4− 6p)ru+ (4− 6p)ts+ (18p− 8)su = 4− 6p

(p− 1)t2 + (4− 6p)tu+ (9p− 4)u2 = 9p− 4

has no solution for g = [r; s; t;u] ∈ Γ with det g = −1. So Fγ is not
improperly equivalent to itself and hence is not ambiguous. �

Recall that if a form F is not reduced, then we can get it into a
reduced form as follows: Let F = (a, b, c) be an indefinite form and
let Ω = {[1; s; 0; 1] : s ∈ Z}. Then Ω is a cyclic subgroup of SL(2,Z)
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which is generated by S = [1; 1; 0; 1]. Now we want to determine
the element in the Ω-orbit of F for which the absolute value of xy is
minimal. For s ∈ Z, we have

SsF = (a, b+ 2sa, as2 + bs+ c). (2.4)

Hence the coefficient of x2 of any form in the Ω-orbit of F is a and
the coefficient of xy of such a form is uniquely determined (mod 2a).
If we choice s =

⌊
a−b
2a

⌋
, then we have −a < b + 2sa ≤ a. This

choice of s is minimizes the absolute value of b. Further by (2.4),
the coefficient of y2 in SsF is (2as+b)2+|∆|

4a . So this choices of s
minimizes this coefficient. Hence the form F = (a, b, c) is called
normal if −|a| < b ≤ |a| for |a| ≥

√
∆ or

√
∆ − 2|a| < b <

√
∆

for |a| <
√

∆. We see as above that, the Ω−orbit of F contains one
normal form which can be obtained as SsF with s =

⌊
a−b
2a

⌋
. The

normal form in the Ω-orbit of F is called the normalization of F,
which means replacing F by its normalization. Let ρ(F ) denotes the
normalization of (c,−b, a), let F = F0 = (a0, b0, c0) and let

si =


sign(ci)

⌊
bi

2|ci|

⌋
for |ci| ≥

√
∆

sign(ci)
⌊
bi+
√

∆
2|ci|

⌋
for |ci| <

√
∆

(2.5)

for i ≥ 0. Then by (2.4), the reduction of F is

ρi+1(F ) = (ci,−bi + 2cisi, cis2
i − bisi + ai) (2.6)

for i ≥ 0. In this case, the form ρj(F ) is called the reduction of F
(see [1]).

Now we can consider the reduction of Fγ .

Theorem 2.3. The reduction of Fγ is ρ4(Fγ) = (−1, 2t, p − t2),
where t =

⌊√
p
⌋
.

Proof. Let Fγ = Fγ0 = (p− 1, 4− 6p, 9p− 4). Then by (2.5), we get
s0 = −1 and hence by (2.6), we get ρ1(Fγ) = (9p−4,−12p+4, 4p−1).
But ρ1(Fγ) is not reduced. So we can apply the reduction algorithm
again, then we find that s1 = −1 and hence ρ2(Fγ) = (4p − 1, 4p −
2, p − 1). Similarly ρ2(Fγ) is not reduced. If we continue, then we
find that s2 = 2 and hence ρ3(Fγ) = (p−1,−2,−1). Again ρ3(Fγ) is
not reduced. If we continue, then we find s3 = 1−t, where t =

⌊√
p
⌋
,

and hence ρ4(Fγ) = (−1, 2t, p− t2). This form is reduced. �
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3. Binary Quadratic Forms over Finite Fields

In the first section, we gave some notation on binary quadratic forms.
Now we generalize these to any finite field Fp for a prime p ≥ 5. A
binary quadratic form F p over Fp is a form in two variables x and y
of the type

F p = F p(x, y) = ax2 + bxy + cy2,

where a, b, c ∈ Fp. We denote F p briefly by F p = (a, b, c). The
discriminant of F p is defined by the formula b2− 4ac and is denoted
by ∆p = ∆p(F p). Set

Γ
p

= {gp = [r; s; t;u] : r, s, t, u ∈ Fp and ru− st ≡ ±1(mod p)} .

Let F p and Gp be two forms over Fp. If there exists a gp ∈ Γ
p

such
that gpF p = Gp, then F p and Gp are called equivalent. If det gp = 1,
then F p and Gp are called properly equivalent and if det gp = p− 1,
then F p and Gp are called improperly equivalent. A form F p is
called ambiguous if it is improperly equivalent to itself. An element
gp ∈ Γ

p
is called an automorphism of F p if gpF p = F p. If det gp = 1,

then g is called a proper automorphism and if det gp = −1, then g
is called an improper automorphism. Let Aut(F p)p,+ denote the set
of proper automorphisms of F p and let Aut(F p)p,− denote the set
of improper automorphisms of F p.

Recall that Fγ = (p − 1, 4 − 6p, 9p − 4). If we consider this form
over Fp, then we obtain

F pγ = (p− 1, 4, p− 4). (3.1)

First we consider the proper and improper automorphisms of F pγ .

Theorem 3.1. Let F pγ be a form defined in (3.1). Then

#Aut(F pγ )p,+ = #Aut(F pγ )p,− = 2p

for every prime p ≥ 5.

Proof. First we consider the proper automorphisms. Let p = 5.
Then F 5

γ = (4, 4, 1). Let gp = [r; s; t;u] ∈ Γ
5
. Then by (1), we have

the following system of equations:

4r2 + 4rs+ s2 = 4
8rt+ 4ru+ 4ts+ 2su = 4 (3.2)

4t2 + 4tu+ u2 = 1.
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This system has a solution for gp = [0; 2; 2; 2], [0; 3; 3; 3], [1; 0; 0; 1],
[1; 1; 1; 2], [2; 3; 3; 0], [2; 4; 4; 1], [3; 1; 1; 4], [3; 2; 2; 0], [4; 0; 0; 4] and
[4; 4; 4; 3] with det gp = 1. So

Aut(F 5
γ )5,+ =

{
[0; 2; 2; 2], [0; 3; 3; 3], [1; 0; 0; 1], [1; 1; 1; 2], [2; 3; 3; 0],
[2; 4; 4; 1], [3; 1; 1; 4], [3; 2; 2; 0], [4; 0; 0; 4], [4; 4; 4; 3]

}
and hence #Aut(F 5

γ )5,+ = 10.
The system of equations in (3.2) has a solution for gp = [0; 2; 3; 0],

[0; 3; 2; 0], [1; 0; 1; 4], [1; 1; 0; 4], [2; 3; 4; 3], [2; 4; 3; 3], [3; 1; 2; 2],
[3; 2; 1; 2], [4; 0; 4; 1] and [4; 4; 0; 1] with det gp = −1. So

Aut(F 5
γ )5,− =

{
[0; 2; 3; 0], [0; 3; 2; 0], [1; 0; 1; 4], [1; 1; 0; 4], [2; 3; 4; 3],
[2; 4; 3; 3], [3; 1; 2; 2], [3; 2; 1; 2], [4; 0; 4; 1], [4; 4; 0; 1]

}
and hence #Aut(F 5

γ )5,− = 10. Similarly it can be shown that
#Aut(F pγ )p,+ = #Aut(F pγ )p,− = 2p for every prime p ≥ 7. �

Now we consider the representation problem. Representations of
integers (or primes) by binary quadratic forms have an important
role on the theory of numbers and are studied by many authors. In
fact, this problem intimately connected to reciprocity laws. The ma-
jor problem of the theory of quadratic forms was: Given a quadratic
form F , find all integers n that can be represented by F , that is,
for which the equation F (x, y) = ax2 + bxy + cy2 = n has a solu-
tion (x, y). This problem was studied for specific quadratic forms
by Fermat, and intensively investigated by Euler. Fermat consid-
ered the representation of integers as sums of two squares. It was,
however, Gauss in the Disquisitions [6] who made the fundamental
breakthrough and developed a comprehensive and beautiful theory
of binary quadratic forms. Most important was his definition of the
composition of two forms and his proof that the (equivalence classes
of) forms with a given discriminant ∆ form a commutative group
under this composition.

Now we will consider the the number of representations of integers
n ∈ F∗p by quadratic forms F pγ defined in (3.1). It is known that [7],
to each quadratic form F , there corresponds the theta series

℘(τ ;F ) = 1 +
∞∑
n=1

r(n;F )zn, (3.3)

where r(n;F ) is the number of representations of a positive integer
n by the quadratic form F and z = exp(2πiτ) for Im(τ) > 0. Now
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we generalize (3.3) to any finite field Fp. Let F p = (a, b, c) be a
quadratic form over Fp for a, b, c ∈ Fp. Then (3.3) becomes

℘p(τ ;F p) = 1 +
∑
n∈F∗p

rp(n;F p)zn, (3.4)

where rp(n;F p) is the number of representations of n ∈ F∗p by F p.
Note that the theta series in (3.4) is determined by rp(n;F p). So
we have the find out rp(n;F p). Let Qp denote the set of quadratic
residues mod p. Then we have the following theorem.

Theorem 3.2. Let F pγ be the quadratic form.
(1) If p ≡ 1(mod 4), then

rp(n;F pγ ) =
{

#Aut(F pγ )p,+ if n ∈ Qp
0 if n /∈ Qp.

(2) If p ≡ 3(mod 4), then

rp(n;F pγ ) =
{

0 if n ∈ Qp
#Aut(F pγ )p,+ if n /∈ Qp.

Proof. (1) Let p ≡ 1(mod 4). Then (−1
p ) = 1, where ( .p ) denotes the

Legendre symbol. Let x ∈ Fp be given. Then we want to solve the
quadratic congruence

(p− 1)x2 + 4xy + (p− 4)y2 ≡ n(mod p) (3.5)

according to y. From (3.5), we get

(p− 4)y2 + 4xy + (p− 1)x2 − n ≡ 0(mod p). (3.6)

The discriminant of (3.6) is ∆ = (4xy)2 − 4(p− 4)((p− 1)x2 − n) ≡
−16n(mod p). So the solutions of (3.6) are

y1,2 =
−4x±

√
∆

2(p− 4)
≡ −4x±

√
−16n

2(p− 4)
≡ −2x± 2

√
−n

p− 4
. (3.7)

Note that −1 is a quadratic residue when p ≡ 1(mod 4). So (3.7)
becomes

y1,2 ≡
−2x± 2

√
n

p− 4
. (3.8)

If n ∈ Qp, then
√
n ∈ F∗p. So there are two solutions y1,2. Therefore

there are 2p integer solutions of (3.6). If n /∈ Qp, then
√
n /∈ F∗p. So

there are no integer solutions y1,2.
(2) It can be proved as in the same way that (1) was proved. �
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We proved in Theorem 2.3 the reduction of Fγ is

ρ4(Fγ) = (−1, 2t, p− t2)

for t =
⌊√

p
⌋
. If we consider ρ4(Fγ) over Fp, then we get

ρp,4(F pγ ) = (p− 1, 2t, p− t2). (3.9)

Now we can give the following theorems without giving its proof
since it can be proved as in the same way that Theorems 3.1 and 3.2
were proved.

Theorem 3.3. Let ρp,4(F pγ ) be the quadratic form in (3.9). Then

#Aut(ρp,4(F pγ ))p,+ = #Aut(ρp,4(F pγ ))p,− = 2p

for every prime p ≥ 5.

Theorem 3.4. Let ρp,4(F pγ ) be the quadratic form
(1) If p ≡ 1(mod 4), then

rp(n; ρp,4(F pγ )) =
{

#Aut(ρp,4(F pγ ))p,+ if n ∈ Qp
0 if n /∈ Qp.

(2) If p ≡ 3(mod 4), then

rp(n; ρp,4(F pγ )) =
{

0 if n ∈ Qp
#Aut(ρp,4(F pγ ))p,+ if n /∈ Qp.

4. n−Universal Form

Let F p be a quadratic form over Fp and let n ∈ F∗p. If n can be
represented by F p, then F p is called n−universal form. Now we can
give the following theorem.

Theorem 4.1. Let F pγ be the form in (3.1). Then F pγ
(1) is a 1-universal form if p ≡ 1(mod 4)
(2) is a 2-universal form if p ≡ 1, 3(mod 8)
(3) is a 3-universal form if p ≡ 1, 7(mod 12)
(4) is a 4-universal form if p ≡ 1, 5(mod 12)
(5) is a 5-universal form if p ≡ 1, 3, 7, 9(mod 20)
(6) is a 6-universal form if p ≡ 1, 5, 7, 11, 25, 29, 31, 35(mod 48)
(7) is a 7-universal form if p ≡ 1, 9, 11, 15, 23, 25(mod 28)
(8) is an 8-universal form if p ≡ 1, 11, 17, 19, 25, 35, 41(mod 48),

or if p ≡ 43(mod 48)
(9) is a 9-universal form if p ≡ 1, 5, 13, 17(mod 24)
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(10) is a 10-universal form if p ≡ 1, 7, 9, 11, 13, 19, 23, 37(mod 40)
(11) is a p−1

2 -universal form if p ≡ 1, 3(mod 8)
(12) is a (p− 1)-universal form for every prime p ≥ 5
(13) is a (p− 2)-universal form if p ≡ 1, 7(mod 8)
(14) is a (p− 3)-universal form if p ≡ 1, 11(mod 12)
(15) is a (p− 4)-universal form for every prime p ≥ 5
(16) is a (p− 5)-universal form if p ≡ 1, 9(mod 10)
(17) is a (p− 6)-universal form if p ≡ 1, 5, 19, 23(mod 24)
(18) is a (p− 7)-universal form if p ≡ 1, 3, 9, 19, 25, 27(mod 28)
(19) is a (p− 8)-universal form if p ≡ 1, 7, 17, 23(mod 24)
(20) is a (p− 9)-universal form for every prime p ≥ 11
(21) is a (p− 10)-universal form if p ≡ 1, 3, 9, 13, 27, 31(mod 40),

or if p ≡ 37, 39(mod 40)
(22) is not a p-universal form for every prime p ≥ 5.

Proof. Recall that n(p−1)/2 = 1 if n ∈ Qp and n(p−1)/2 = −1 if
n /∈ Qp for n ∈ F∗p, that is, (np ) = n(p−1)/2. Let

{
n, 2n, 3n, . . . , p−1

2 n
}

be the set of multiplies of n. Represent each of these elements of Fp
by an integer in the range

(−p
2 ,

p
2

)
and let v denote the number of

negative integers in this set. Then (np ) = (−1)v. Now let p ≥ 5 be
any prime number. Then p − 1 is always even. Hence ( 1

p ) = 1 for
every prime p.

Now consider the set {2, 4, 6, . . . , p − 1}. We know that 2 is an
quadratic residue mod p if and only if v lie in the interval (−p2 , 0)
is even. Note that v is the number of even integers in the interval[
p+1

2 , p− 1
]
. Let p+1

2 is even. Then p ≡ 3(mod 4) and hence v =
(p−1)− p+1

2
2 + 1 = p+1

4 . So(
2
p

)
= (−1)(p+1)/4 =

{
1 if p ≡ 7(mod 8)
−1 if p ≡ 3(mod 8). (4.1)

Similarly let p+1
2 is odd. Then p ≡ 1(mod 4) and hence

v =
(p− 1)− p+3

2

2
+ 1 =

p− 1
4

.

Therefore(
2
p

)
= (−1)(p−1)/4 =

{
1 if p ≡ 1(mod 8)
−1 if p ≡ 5(mod 8). (4.2)

Combining (4.1) and (4.2), we get ( 2
p ) = 1 if p ≡ 1, 7(mod 8) or −1

if p ≡ 3, 5(mod 8).
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Similarly it can be shown that ( 3
p ) = 1 if p ≡ 1, 11(mod 12) or

−1 if p ≡ 5, 7(mod 12); ( 4
p ) = 1 for every prime p ≥ 5; ( 5

p ) =
1 if p ≡ 1, 9(mod 10) or −1 if p ≡ 3, 7(mod 10); ( 6

p ) = 1 if p ≡
1, 5, 19, 23(mod 24) or −1 if p ≡ 7, 11, 13, 17(mod 24); ( 7

p ) = 1 if p ≡
1, 3, 9, 19, 25, 27(mod 28) or −1 if p ≡ 5, 11, 13, 15, 17, 23(mod 28);
( 8
p ) = 1 if p ≡ 1, 7, 17, 23(mod 24) or −1 if p ≡ 5, 11, 13, 19(mod 24);

( 9
p ) = 1 for every prime p ≥ 11; (10

p ) = 1 if p ≡ 1, 3, 9, 13, 27, 31, 37,
39(mod 40) or −1 if p ≡ 7, 11, 17, 19, 21, 23, 29, 33, 37(mod 40) and

(
p+1
2
p ) = 1 if p ≡ 1, 3(mod 8) or −1 if p ≡ 5, 7(mod 8).
With the same argument, we find that (−1

p ) = 1 if p ≡ 1(mod 4);
(−2
p ) = 1 if p ≡ 1, 3(mod 8); (−3

p ) = 1 if p ≡ 1, 7(mod 12); (−4
p ) = 1

if p ≡ 1, 5(mod 12); (−5
p ) = 1 if p ≡ 1, 3, 7, 9(mod 20); (−6

p ) = 1 if
p ≡ 1, 5, 7, 11, 25, 29, 31, 35(mod 48); (−7

p ) = 1 if p ≡ 1, 9, 11, 15, 23,
25(mod 28); (−8

p ) = 1 if p ≡ 1, 11, 17, 19, 25, 35, 41, 43(mod 48);
(−9
p ) = 1 if p ≡ 1, 5, 13, 17(mod 24) and (−10

p ) = 1 if p ≡ 1, 7, 9, 11,
13, 19, 23, 37(mod 40).

We proved in Theorem 3.2 that if p ≡ 1(mod 4), then

rp(n;F pγ ) =
{

#Aut(F pγ )p,+ if n ∈ Qp
0 if n /∈ Qp

and if p ≡ 3(mod 4), then

rp(n;F pγ ) =
{

0 if n ∈ Qp
#Aut(F pγ )p,+ if n /∈ Qp.

Combining this, the results from (1) to (21) are obvious.
(22) Now let p ≥ 5 be a prime. Then the quadratic equation

F pγ (x, y) = (p− 1)x2 + 4xy + (p− 4)y2 ≡ p (mod p)

has no solution (x, y). Therefore F pγ is not a p-universal form for
every prime p ≥ 5. �
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