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Applications of Prüfer Transformations in the Theory
of Ordinary Differential Equations

GEORGE CHAILOS

Abstract. This article is a review article on the use of Prüfer

Transformations techniques in proving classical theorems from
the theory of Ordinary Differential Equations. We consider

self-adjoint second order linear differential equations of the

form

Lx = (p(t)x′(t))′ + g(t)x(t) = 0, t ∈ (a, b). (?)

We use Prüfer transformation techniques (which are a gener-
alization of Poincaré phase-plane analysis) to obtain some of

the main theorems of the classical theory of linear differen-

tial equations. First we prove theorems from the Oscillation
Theory (Sturm Comparison theorem and Disconjugacy theo-

rems). Furthermore we study the asymptotic behavior of the

equation (?) when t → ∞ and we obtain necessary and suf-
ficient conditions in order to have bounded solutions for (?).

Finally, we consider a certain type of regular Sturm–Liouville

eigenvalue problems with boundary conditions and we study
their spectrum via Prüfer transformations.

1. Introduction

In this review article we will present main theorems related to the
study of the solutions of self-adjoint second order linear Differential
Equations of the form

Lx = (p(t)x′(t))′ + g(t)x(t) = 0, t ∈ (a, b), (1.1)

where p(t) > 0, p(t) is absolutely continuous and g(t) ∈ L1(a, b)
where a, b are elements in the extended real line. For this, we
will develop and use the so called “Prüfer transformations” which
are (roughly speaking) a generalization of the Poincaré phase plane
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analysis. The “Prüfer transformations” are general polar coordinate
representations of the solutions of (1.1). The most common Prüfer
transformation is {

x(t) = r(t) sinΘ(t)
x′(t) = r(t)

p(t) cos Θ(t).
(1.2)

Substituting (1.2) to (1.1) we obtain the Prüfer system{
r′(t) = ( 1

p(t) − g(t))r sinΘ cos Θ

Θ′(t) = 1
p(t) cos2 Θ + g(t) sin2 Θ.

(1.3)

In the second section (Oscillation Theory) we will use the trans-
formed system (1.3) in order to prove main theorems from the Oscil-
lation theory, like the Sturm Comparison Theorem, the Oscillation
theorem, and Disconjugacy theorems. In the third section (Bounds
of Solutions and Asymptotic Behavior) we will use the Prüfer trans-
formation and the modified Prüfer transformation in order to study
the asymptotic behavior of the equation (1.1) when t→∞ (without
considering that g(t) ∈ L1(m)). Moreover we will prove necessary
and sufficient conditions in order to have bounded solutions for (1.1).
Finally, in the last section (Spectral Theory) we will consider the reg-
ular Sturm–Liouville eigenvalue problem with boundary conditions,

(p(t)x′(t))′ + (λr(t)− q(t))x(t) = 0, t ∈ [a, b], λ 6= 0
Ax(a)−Bx′(a) = 0
Γx(b)−∆x′(b) = 0.

(1.4)

We will use the Prüfer transformation to prove that there is an in-
finite number of eigenvalues of (1.4) forming a monotone increasing
sequence with λn →∞, and that the eigenfunctions Φn correspond-
ing to the eigenvalues λn have exactly n zeros in (a,b). Moreover,
we will use the Prüfer transformed system to derive upper and lower
bounds for the spectrum of (1.4).

At the end we present a list of references which were used in this
article. The reader may refer to them for proofs that are not included
in this paper.

I would like to note that I am particularly in debt to Professor
D. Hinton for his constant willingness to discuss each step of this
paper.
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2. Oscillation Theory

In this section we will apply the Prüfer transformation on regular
Sturm–Liouville problems in order to prove the Sturm Comparison
theorem, the Oscillation theorem and “Disconjugacy” theorems.

Consider the equation of the form

Lx = (p(t)x′)′ + g(t)x = 0, t ∈ (a, b). (2.1)

(Note that the equation x′′ + f(t)x′ + h(t)x = 0 can be transformed
in the form of (2.1) by multiplying it with e

∫ t
0 f(s)ds.) We assume

that p(t) > 0 with p absolutely continuous and g ∈ L1(m).
In (2.1) we consider the substitution y = p(t)x′. From (2.1),

x′ =
y

p(t)
, y′ = −g(t)x. (2.2)

If we use polar coordinates, x = r(t) sin θ(t), y = r(t) cos θ(t) on
(2.2), and solve for r′, θ′, then we obtain the Prüfer system

r′(t) =
(

1
p(t)

− g(t)
)
r sin θ cos θ (2.3)

θ′(t) =
1
p(t)

cos2 θ + g(t) sin2 θ. (2.4)

In the sequel we use the above transformed system to prove the
following theorems related to the solutions of (2.1). The first two
results are from [6].

Theorem 2.5 (Oscillation Theorem). Suppose p′i, gi are piecewise
continuous functions in [a, b], and Lix = (pix

′)′ + gix = 0, i = 1, 2.
Let 0 < p2(t) ≤ p1(t), g2(t) ≥ g1(t). If L1φ1 = 0,L2φ2 = 0,
where φi are solutions of Lix, and ω2(a) ≥ ω1(a), where ωi are
solutions of (2.4), then ω2(t) ≥ ω1(t) ∀t ∈ (a, b) (1). Moreover, if
g2(t) > g1(t), t ∈ (a, b), then ω2(t) > ω1(t), ∀t ∈ (a, b] (2).

Proof. From (2.4), ω′i = 1
pi

cos2 ωi + gi sin2 ωi, i = 1, 2. We have

(ω2 − ω1) = (g1 −
1
p1

)(sin2 ω2 − sin2 ω1) + h (3),

where

h =
(

1
p1
− 1
p2

)
cos2 ω2 + (g2 − g1) sin2 ω2.

Note that h ≥ 0.
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If ω2 − ω1 = u, then by (3), u′ = fu+ h, where

f =
(
g1 −

1
p1

)
(sinω1 + sinω2)

sinω2 − sinω1

ω2 − ω1
.

Hence, f is a piecewise continuous and uniformly bounded function.
Since h ≥ 0, u′ − fu ≥ 0. Set F (t) =

∫ a

t
f(s) ds. Then eFu′ +

F ′eFu ≥ 0, and by integrating this,

eF (t)u(t) ≥ eF (a)u(a) ≥ 0 (4).

Now it is easy to see that the above proves (1).
Now suppose that (2) fails to hold. We show that there exist some

c > a such that ω2(t) = ω1(t) (a ≥ t ≥ c) (5).
Suppose not, then by (1) there exists a sequence {tj}n

j=1 such that
a is a limit point of it with ω2(tj) > ω1(tj), j = 1 . . . n. Now using
(4) with a replaced by tj , it follows that for t > tj , ω2(t) > ω1(t),
j = 1 . . . n. With tj arbitrarily close to a we have that (2) implies
(5). This leads to a contradiction.

Using (5), (3) is true with g2 > g1 only if ω2 = ω1 = 0 (mod π),
and if p1 = p2 in (a,c). However, since ωi, i = 1 . . . n, are solutions
of (2.4), the case ω1 = ω2 = 0 (mod π) in (a,c) is impossible. This
proves (2) if g1 > g2, and concludes the proof of the theorem. �

Theorem 2.6 (Sturm Comparison). Suppose φ is a real solution of
(px′)′ + g1x = 0 and ψ is a real solution of (px′)′ + g2x = 0, where
x ∈ (a, b). Let g1(t) > g2(t) in (a,b). If t1, t2 are successive zeros of
φ in (a,b), then ψ must vanish in some point in (t1, t2).

Proof.

Claim 2.7. φ(t) can vanish only where ω(t) = kπ, k ∈ Z (where
ω(t) is a solution of (2.4).)

Proof. For a solution φ of (2.1) there is a solution r = %(t), θ = ω(t)
of (2.3), (2.4) respectively, where %2 = (pφ′)2+φ2, ω = arctan

(
φ

pφ′

)
.

Since φ and φ′ do not vanish simultaneously, it follows that %2(t) > 0,
and without loss of generality we can assume that %(t) > 0. A
consequence of this is that φ(t) = %(t) sinω(t) can vanish only where
ω(t) = kπ, k ∈ Z. �

Now since cos2 θ, sin2 θ are uniformly bounded, (2.4) has a solu-
tion over any interval on which p > 0 and p, g are piecewise continu-
ous functions (Picard Theorem). Since the right hand side of (2.4) is
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differentiable in θ, it follows that the solution is unique in the usual
sense. Now the proof of the theorem follows directly from the claim,
the monotonicity of ω(t), and Theorem 2.5. �

The following theorem is from [3].

Theorem 2.8 (Disconjugacy). Consider the problem

Lx = (p(t)x′(t))′ + g(t)x(t) = 0,

where t ∈ [a,∞), x(a) = 0, and without loss of generality x′(a) > 0.
If p(t), g(t) are continuous in [a,∞), and

∫∞
a

(
1

p(t) + |g(t)|
)
dt ≤ π

with p(t) > 0, t ∈ [a,∞), then no nontrivial solution of Lx = 0 has
two zeros in [a,∞).

Proof. Recall that θ′(t) = 1
p(t) cos2 θ + g(t) sin2 θ, θ(a) = 0, and

integrate it to obtain

θ(s) =
∫ s

a

(
1
p(t)

cos2 θ(t) + g(t) sin2 θ(t)
)
dt ≤

∫ s

a

(
1
p(t)

+ |g(t)|
)
dt.

Hence,

θ(s) <
∫ ∞

a

(
1
p(t)

+ |g(t)|
)
dt ≤ π. (2.9)

Since θ′(a) > 0, θ(t) <
∫∞

a

(
1

p(t) + |g(t)|
)

dt ≤ π, t ∈ [a,∞).
Since the zeros of Lx = 0 occur when θ(t) = kπ, k ∈ Z, the above
inequality proves the theorem. �

Theorem 2.10. Consider the problem Lx = (p(t)x′(t))′+g(t)x(t) =
0, x(a) = 0 (x′(a) > 0), where g(t) < 0, ∀t ∈ [a,∞). Then the
nontrivial solution of Lx = 0 has at most one zero in [a,∞).

Proof. We know that θ(a) = 0 and θ′(a) > 0. Now the mono-
tonicity of θ(t) implies that for some b ∈ (a,∞), θ(b) = π

2 . Since
θ′(b) = 1

p(t) cos2 θ(b) + g(t) sin2 θ(b) = g(b), we get that 0 < θ(t) <
π
2 in (a,∞). Therefore in (a,∞) there are no zeros of any nontriv-
ial solution of Lx = 0; since if they were any, they would occur at
θ(t) = kπ. This concludes the proof. �

In the following theorem, where its proof is taken from [9], we
will make use of a modified Prüfer transformation in order to give
an important result about the distance between two successive zeros
of a fixed nontrivial solution of the equation

x′′(t) + p1(t)x′(t) + p2(t)x(t) = 0, (2.11)
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where p1(t), p2(t) are piecewise continuous, real valued functions in
a closed interval.

Theorem 2.12. Let a and b be consecutive zeros of a fixed nontrivial
solution of (2.11), and let γ be a differentiable function defined on
[a, b]. Set

M1 ≡ sup
a≤t≤b

(|2γ(t)− p1(t)|),

M2 ≡ sup
a≤t≤b

(|γ′(t)− p2(t)− γ2(t) + p1(t)γ(t)|).

Then

b− a ≥ 2
∫ ∞

0

ds

1 +M1s+M2s2
.

Proof. Let x denote the solution referred to the statement of the
theorem. Without loss of generality assume that x(t) > 0 ∀t ∈ (a, b),
and that x′(a) > 0, x′(b) < 0. Define the real valued functions R
and Θ by the relations:

R sinΘ = x (1)

R cos Θ = x′ + γx (2),

where R(t) > 0 ,Θ(t) ∈ [0, π] , t ∈ [a, b]. We differentiate (1), (2)
and substitute into (2.11). Then

R′ cos Θ−RΘ′ sinΘ = R(γ−p1) cos Θ+R(γ′−p2−γ2+p1γ) sinΘ (3)

R′ sinΘ +RΘ′ cos Θ = R cos Θ−Rγ sinΘ (4).

We eliminate R′ from (3),(4), and we have

Θ′ = cos2 Θ− (2γ−p1) sinΘ cos Θ+(γ′−p2−γ2 +p1γ) sin2 Θ (5).

From (1) we observe that the zeros of x occur when Θ(t) = kπ,
and from (5) we note that Θ is increasing at kπ since Θ′(kπ) = 1.
Hence we can suppose that Θ(a) = 0 and Θ(b) = π. We use the
intermediate value theorem to obtain t ∈ (a, b) such that Θ(t) = π

2 .
Now let α denote the least such t. For t ∈ (a, α), sinΘ and cos Θ are
both positive. Now we use (5) to get

|Θ′| ≤ cos2 Θ +M1 sinΘ cos Θ +M2 sin2 Θ,
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and so

α− a ≥
∫ π

2

o

dΘ
cos2 Θ +M1 sinΘ cos Θ +M2 sin2 Θ

=∫ ∞

0

ds

1 +M1s+M2s2
(6).

Similarly, if β denotes the largest t ∈ (a, b) such that Θ(t) = kπ,
then

b− β ≥
∫ ∞

0

ds

1 +M1s+M2s2
(7).

By combining (6) and (7) we have

b− a ≥ 2
∫ ∞

0

ds

1 +M1s+M2s2
. �

By choosing appropriate values for γ and imposing certain condi-
tions on p1(t) and p2(t), we can derive some very remarkable results.

Corollary 2.13. If p1 ≡ 0, then supa≤t≤b |
∫ t

a
p2(s)ds| ≥ 2

b−a .

Proof. Set γ ≡
∫ t

a
p2(s)ds. Thus,

M1 = 2 sup
a≤t≤b

∣∣∣∣∫ t

a

p2(s)ds
∣∣∣∣ ,

M2 = sup
a≤t≤b

∣∣∣∣∫ t

a

p2(s)ds
∣∣∣∣2 .

Let M = supa≤t≤b |
∫ t

a
p2(s)ds|. By Theorem 2.12 we have

b− a ≥ 2
∫ ∞

0

dt

1 + 2Mt+M2t2
=

2
M
. �

Corollary 2.14. If p1(t) is differentiable then

sup
a≤t≤b

∣∣∣∣p′12 − p2 +
p2
1

4

∣∣∣∣ ≥ π2

(b− a)2
.

Proof. Choose γ ≡ p1

2
. Then M1 = 0 and

M2 = sup
a≤t≤b

∣∣∣∣p′12 − p2 +
p2
1

4

∣∣∣∣ .
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From Theorem 2.12,

b− a ≥ 2
∫ ∞

o

dt

1 +M2t2
= π

1√
M2

. �

Similarly we can prove that if p1 is differentiable, then

sup
a≤t≤b

∣∣∣∣p1(a)
2

− p1(t) +
∫ t

a

(
p2(s)−

p1(s)2

4

)
ds

∣∣∣∣ ≥ 2
b− a

.

(To see the above, choose γ ≡ p1(t)
2 +

∫ t

a
(p2 − p′

1
2 −

p2
1
4 )ds and apply

Theorem 2.12.)

3. Bounds of Solutions and Asymptotic Behavior

In this section we will use the Prüfer transformation in order to study
the asymptotic behavior of solutions of the equation

Lx = (p(t)x′)′ + g(t)x = 0 when t→∞,

and we will prove that every solution of Lx = 0 is bounded if∫ ∞

a

∣∣∣∣ 1
p(t)

− g(t)
∣∣∣∣ dt <∞.

In the proof of the following theorem we will use Gronwall’s Lemma.

Lemma 3.1 (Gronwall’s Lemma). If u, v are real valued nonnegative
functions in L1(m) with domain {t : t ≥ t0}, and if there exists a
constant M ≥ 0 such that for every t ≥ t0

u(t) ≤M +
∫ t

t0

u(s)v(s) ds,

then

u(t) ≤M exp
(∫ t

t0

v(s) ds
)
.

The following theorem is from [3].

Theorem 3.2. Every solution x(t) of Lx = 0 satisfies the inequality

|x(t)| ≤ K exp
[
1
2

∫ t

a

∣∣∣∣ 1
p(s)

− g(s)
∣∣∣∣ ds],

where t ∈ (a,∞) and K =
√
x2(a) + (p(a)x′(a))2. Moreover, if∫ ∞

a

∣∣∣∣ 1
p(t)

− g(t)
∣∣∣∣ dt <∞,
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then every solution of Lx = 0 is bounded.

Proof. We will use once more the transformed system

r′(t) =
[

1
p(t)

− g(t)
]
r(t) sinΘ(t) cos Θ(t) (1)

Θ′(t) =
1
p(t)

cos2 Θ(t) + g(t) sin2 Θ(t) (2),

where x(t) = r(t) sinΘ(t), to conclude that

|x(t)| ≤ |r(t)| (3).

From (1) we have that

r(s)− r(a) =
∫ s

a

[
1
p(t)

− g(t)
]
r(t)

1
2

sin 2Θ(t) dt, s ∈ (a,∞).

Hence,

|r(t)| ≤ r(a) +
1
2

∫ s

a

∣∣∣∣ 1
p(t)

− g(t)
∣∣∣∣ |r(t)| dt.

We apply Gronwall’s Lemma in the above inequality and we get

|r(s)| ≤ r(a) exp
(

1
2

∫ s

a

∣∣∣∣ 1
p(t)

− g(t)
∣∣∣∣ dt),

and so from (3),

|x(t)| ≤ r(a) exp
(

1
2

∫ t

a

∣∣∣∣ 1
p(s)

− g(s)
∣∣∣∣ ds).

Now observe that if
∫∞

a
| 1
p(t) − g(t)| dt <∞, then

exp
[
1
2

∫ ∞

a

| 1
p(t)

− g(t)| dt
]
∈ R.

Thus ifM = r(a) exp ( 1
2

∫∞
a
| 1
p(t) − g(t)| dt), thenM ∈ R and |x(t)| ≤

M . This shows that x(t) is bounded. �

Now we will study the asymptotic behavior of the solutions of the
equation

x′′(t) + (1 + g(t))x(t) = 0, (3.3)

where if x0 is a fixed real number that is sufficiently “small” for
large values of x, then g(t) is a real continuous function for x ≥ x0.
Now observe that (3.3) is of the standard form Lx = (x′p)′+gx = 0,
where p(t) ≡ 1, g(t) 7→ g(t)+1. In (3.3) we will use a modified Prüfer
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transformation by substituting Θ(t) with Θ(t) + 1. The transformed
equations are

r′(t) = −g(t)r(t) sin(t+ Θ(t)) cos(t+ Θ(t))

(t+ Θ(t))′ = 1 + g(t) sin2(t+ Θ(t)),
which yield to

r′(t)
r(t)

= −1
2
g(t) sin 2(t+ Θ(t)), (3.4)

Θ′(t) =
1
2
g(t)(1− cos 2(t+ Θ(t)). (3.5)

Using the above transformed system we will prove the following the-
orem which asserts that the fundamental system of solutions x1, x2

of (3.3) when t→∞ is{
x1(t) = cos(t) + o(1) x2(t) = sin(t) + o(1)
x′1(t) = − sin(t) + o(1) x′2 = cos(t) + o(1).

(3.6)

The following theorem is from [8].

Theorem 3.7 (Asymptotic Behavior). Let g(t) be a real continuous
function for t ≥ t0, where t0 is a fixed real number, and assume that
the following integrals exist:{∫∞

t
g(s) ds, g1(s) =

∫∞
t
g(s) cos(2s) ds

g2(t) =
∫∞

t
g(s) sin(2s) ds,

∫∞
t0
|g(t)gj(t)| dt, j = 1, 2.

(3.8)

Then the equation x′′+ (1 + g(t)x) = 0 has a fundamental system of
solutions satisfying (3.6).

Note that the above assumptions are certainly satisfied if g ∈
L[t0,∞].

Proof. Step 1: We will show that for any nontrivial solution of (3.3)
the corresponding Θ(t), r(t), given by (3.4) and (3.5) respectively,
tend to finite limits as t→∞. By using

g(t) cos(2t) cos(2Θ) = −(g1 cos 2Θ)′ − 2g1Θ′ sin 2Θ

and
g(t) sin(2t) sin(2Θ) = −(g2 sin 2Θ)′ − 2g2Θ′ cos 2Θ,

(3.5) can be written as:

Θ′(t) =
1
2
g+

1
2
(g1 cos 2Θ)′− 1

2
(g2 sin 2Θ)′+g1Θ′ sin 2Θ+g2Θ′ cos 2Θ.

(3.9)
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Since by (3.5) |Θ′| ≤ |g|, it follows from the hypothesis of the theorem
that Θ′ is integrable over [x0,∞). Now from (3.9) we have

|Θ′(t)| = 1
2
|g|+ 1

2
|(g1 cos 2Θ)′|+ 1

2
|(g2 sin 2Θ)′|+ |g1g|+ |g2g|.

From (3.8) and (3.9) we conclude that Θ(t) tends to a finite limit as
t→∞. Similarly using the relations

g(t) sin 2t cos 2t = −(g2 cos 2Θ)′ − 2g2Θ′ sin 2θ

g(t) cos 2t sin 2t = −(g1 sin 2Θ)′ − 2g1Θ′ cos 2θ,

we can write (3.4) as

r′

r
= (1/2)(g2 cos 2Θ)′+(1/2)(g1 sin 2Θ)′+g2Θ′ sin 2θ−g1Θ′ cos 2Θ.

(3.10)
Since (log r)′ = r′

r , from (3.4) we get |(log r)′| ≤ |g|, and so (log r)′

is integrable over [x0,∞]. Now using (3.10) we obtain

|(log r)′| ≤ (1/2)|(g2 cos 2Θ)′|+ (1/2)|(g1 sin 2Θ)′|+ |g1g|+ |g2g|,

and hence by (3.8), log r tends to a finite limit as t→∞. Therefore
r has a positive (finite) limit. This concludes the proof of Step 1.
Step 2: Now we will show that two distinct solutions of (3.3) cannot
tend to the same limit as t→∞. If we integrate (3.9), then by (3.5)
we get

Θ(t) = Θ(∞) + 1/2
∫ ∞

t

g(s) ds+ 1/2(g1 cos 2Θ− g2 sin 2Θ)

− 1/2
∫ ∞

t

[g(g1 sin 2Θ) + g2 cos 2Θ)(1− cos 2(s+ Θ)] ds.

(3.11)

Now choose t1 large enough such that |g1(t)| ≤ 1/16 for every t ≥ t1
and

∫∞
t1
|gjg| ds ≤ 1/16, where j = 1, 2. If Θ̂(t) is a solution of (3.5)

with the same limit as Θ and Θ 6= Θ̂, then if we subtract from (3.11)
the corresponding relation with Θ replaced by Θ̂, we get that for
t ≥ t1,

|Θ(t)− Θ̂(t)| ≤ 1/2 sup
s≥t1

|Θ(s)− Θ̂(s)|.

Hence sups≥t1 |Θ(s)− Θ̂(s)| = 0, and thus, Θ = Θ̂. This is clearly
a contradiction. Similarly we have r(t) = r̂(t). This conclude the
proof of step 2.
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In terms of (3.3), this means that for any nontrivial solution x
there exist constants A, α, (A > 0, 0 ≤ α < 2π) such that for
t→∞

lim
t→∞

x(t) = A sin(t+ α) + o(1),

lim
t→∞

x′(t) = A cos(t+ α) + o(1).

Moreover, if x1, x2 are linearly independent solutions of (3.3), then
the corresponding phase shifts α1, α2 cannot differ by an integer
multiple of π. Consequently, by forming suitable combinations of
x1, x2, we can obtain solutions with asymptotic behavior as it is
described in (3.6). �

Examples 3.12. (1). Given the equation y′′ ± ky = 0, k > 0, from
Theorem 2.6 with p(t) = 1, g(t) = ±k, we get

|y(t)| ≤
√
y2(a) + (y′)2(a) exp (1/2|1± k|).

(2). Consider the equation (p(t)y′)′ + k
p(t)y = 0, where 1

p(t) ∈ L
1(m)

and k > 0. Then by Theorem 3.2, since∫ ∞

a

∣∣∣∣1− k

p(t)

∣∣∣∣ dt ≤ |1− k|
∫ ∞

a

dt

|p(t)|
<∞,

we conclude that the solutions y(t) are bounded.
(3). In this example we will illustrate an application of Theorem 3.7.
We will study the asymptotic behavior of the equation

x′′(t) +
(

1 +
sin 2t
t

)
x(t) = 0, t ≥ 0, λ ∈ (Z \ {±2}).

Consider the function g(t) = sin λt
t , λ 6= ±2, λ ∈ Z. Observe that

g(t) /∈ L1(m), but the hypothesis of the Theorem 3.7 are satisfied.
Indeed,∫ ∞

a

∣∣∣∣ sinλss

∣∣∣∣ ds ≥ ∫ ∞

a

sin2 λs

|s|
ds

=
∫ ∞

a

(1− cos 2λs)
|2s|

ds

= 1/2
∫ ∞

2a

1− cosu
|u|

du

= 1/2
∫ ∞

2a

du

u
− 1/2

∫ ∞

2a

cosu
u

du. (3.13)
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Moreover,
∫∞
2a

du
u = ∞ and

∫∞
2a

cos u
u du <∞, hence

∫∞
a
| sin λs

s | ds =
∞. This shows that g(t) /∈ L1(m) .

Observe that
∫∞

t
g(s) ds =

∫∞
t

sin λs
s ds exists, since if 0 < s < t,∣∣∣∣∫ t

s

sinλs
s

ds

∣∣∣∣ ≤ ∣∣∣∣cosλs
λs

− cosλt
λt

− 1
λ

∫ t

s

cosλs
s

ds

∣∣∣∣ .
Thus, ∣∣∣∣∫ t

s

sinλs
s

ds

∣∣∣∣ ≤ 1/|λ|
(

1/s+ 1/t+
∫ t

s

1
s2

ds

)
=

2
|λ|s

.

Additionally,

g1(t) =
∫ ∞

t

sinλs
s

cos 2s ds <∞

(see [15], p.96 (15.34)) and

g2(t) =
∫ ∞

t

sinλs
s

sin 2s ds <∞

(see [15], p.96 (15.38)). Moreover, since g2 ∈ L1(m), it is elementary
to show that

∫∞
a
|ggj | dt < ∞ for a > 0, j = 1, 2. This shows that

the hypothesis of the theorem are satisfied, and thus the equation

x′′(t) + (1 +
sin 2t
t

)x(t) = 0, t ≥ 0, λ ∈ (Z \ {±2})

has a fundamental system of solutions satisfying (3.6).

Remark 3.14. If λ = ±2 we can easily see that∫ ∞

a

sin2 λs

s
ds =

∫ ∞

a

1− cos 4s
2

ds =
∫ ∞

a

ds

2
−

∫ ∞

a

cos 4s
2

ds,

where
∫ ∞

a

ds

2
= ∞ and

∫ ∞

a

cos 4s
2

ds <∞ ∀a ∈ [0,∞). This shows

that∫ ∞

a

sin2 λs

s
ds = ∞ and thus the integral g2(t) =

∫ ∞

t

sinλs
s

sin 2s ds

does not exist and the Theorem 3.7 does not apply.
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4. Spectral Theory

In this section we will consider the regular Sturm–Liouville eigen-
value problem with boundary conditions. We use once more “Prüfer
transformation” techniques to obtain theorems concerning the spec-
trum of such problems.

Consider the system
(p(t)x′(t))′ + (λr(t)− q(t))x(t) = 0, t ∈ [a, b],
Ax(a)−Bx′(a) = 0
Γx(b)−∆x′(b) = 0.

There is no loss of generality in assuming that 0 ≤ |A| ≤ 1, 0 ≤
B/p(a) ≤ 1 and A2+B2

p2(a) = 1. This means that there is a unique
constant α, 0 ≤ α ≤ π, such that the expression Ax(a)−Bx′(a) = 0
can be written as (cosα)x(a)− (sinα)p(a)x′(a) = 0. Similarly, there
is a unique constant β, 0 ≤ β ≤ π, such that Γx(b)−∆x′(b) = 0 can
be written as (cosβ)x(β) − (sinβ)p(b)x′(b) = 0. Hence the above
system is equivalent to the following system

(p(t)x′(t))′ + (λr(t)− q(t))x(t) = 0, t ∈ [a, b], λ 6= 0,
(cosα)x(a)− (sinα)p(a)x′(a) = 0
(cosβ)x(β)− (sinβ)p(b)x′(b) = 0,

(4.1)

where λ is a real parameter and p′, r, q are real and piecewise contin-
uous functions in [a, b] with p > 0, r > 0 in [a, b]. The values of λ for
which the system (4.1) has a nontrivial solution are called eigenvalues
and the corresponding (nontrivial) solutions, eigenfunctions.

Next, we present the most important theorem (which is taken
from [4]) about the eigenvalues and the zeros of eigenfunctions of
(4.1).

Theorem 4.2. There is an infinite number of eigenvalues λ0, λ1,
λ2, . . . forming a monotone increasing sequence with λn → ∞ as
n → ∞ of (4.1). Moreover, the eigenfunctions φn corresponding to
λn have exactly n zeros in (a, b). Note that by Theorem 2.6 (Sturm
Comparison) the zeros of φn separate those of φn+1.

Proof. Let φ(t, λ) be the unique solution of the first equation of (4.1)
which satisfies φ(a, λ) = sinα, φ′(a, λ) = cosα. Then φ satisfies the
second equation of (4.1). Let r(t, λ), ω(t, λ) be the corresponding
Prüfer transformations of φ(t, λ). The initial conditions are trans-
formed to r(a, λ) = 1, ω(a, λ) = α . Eigenvalues are those values of
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λ for which φ(t, λ) satisfies the third equation of (4.1). That is, are
those values of λ for which ω(b, λ) = β+nπ, n ∈ Z. By Theorem 2.5
(Oscillation) for any fixed t ∈ [a, b], ω(t, λ) is monotone and increas-
ing in λ. Note that ω(t, λ) = 0 (mod π) if and only if φ(t, λ) = 0.
From θ′ = 1

p cos2 θ + (λr − q) sin2 θ it is clear that θ′ = 1
p > 0 at a

zero of φ, and hence ω(t, λ) is strictly increasing in a neighborhood
of a zero.

Claim 4.3. For any fixed t = c, c ∈ [a, b], limλ→∞ ω(c, λ) = ∞.

Proof. Since α ≥ 0 and since ω′ > 0 for ω = 0 (mod π), ω(t, λ) ≥ 0.
Thus it suffices to show that for some t0, α < t0 < c,

lim
λ→∞

[ω(c, λ)− ω(t0, λ)] = ∞.

Let t0 = a+b
2 , and P,Q,R be constants such that over (t0, c), p(t) ≤

P, r(t) ≥ R > 0 and q(t) ≤ Q. Then the equation

Px′′ + (λR−Q) = 0 (4.4)

with solution φ̂ satisfying φ̂(t0, λ) = φ(t0, λ), φ̂′(t0, λ) = φ′(t0, λ),
has ω̂(t0, λ) = ω(t0, λ), and hence by Theorem 2.5

ω(c, λ)− ω(t0, λ) ≥ ω̂(c, λ)− ω̂(t0, λ). (4.5)

(4.4) implies that the successive zeros of φ̂ have spacing π
√

P
λR−Q ,

and hence limλ→∞ π
√

P
λR−Q = 0. Then for any integer j > 1, φ̂ will

have j zeros between t0 and c for λ large enough. Thus, ω̂(c, λ) −
ω̂(t0, λ) ≥ jπ. Since j is arbitrary, by (4.5), limλ→∞[ω(c, λ) −
ω(t0, λ)] = ∞. This proves the claim. �

Claim 4.6. For fixed t = c, c ∈ (a, b], we have lim
λ→−∞

ω(c, λ) = 0.

Proof. We will use the equation θ′ = 1
p cos2 θ+(λr−q) sin2 θ. Choose

δ > 0 sufficiently small such that α < π− δ. If δ ≤ ω ≤ π− δ, λ < 0,
and if 0 < P ≤ p, 0 < R ≤ r, Q ≥ |q|, then ω′ < 1/p− |λ|R sin2 δ +
Q ≤ −α−δ

c−α < 0 whenever λ <
[

α−δ
α−c −Q− 1/p

]
R sin2 δ < 0. Hence

ω(c, λ) ≤ δ for−λ sufficiently large. Since δ is arbitrary, lim
λ→−∞

ω(c, λ)

= 0, and this proves the claim. �

Now for c = b, limλ→−∞ ω(b, λ) = 0. Since β > 0, and since
ω(b, λ) is monotone and increasing in λ, it follows that there is a
value λ = λo for which ω(b, λo) = β. Since 0 ≤ α < π and β ≤ π,
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0 < ω(t, λo) < π in (a, b). Now from this we immediately obtain
that the solution φ(t, λo) satisfies the third equation of (4.1) and in
addition it does not vanish. Now let λ increase beyond λo. Then
there is a unique λ1 for which ω(b, λ1) = β+π. Clearly, φ(t, λ1) sat-
isfies the third equation of (4.1) and has exactly one zero in (a, b).
If we continue in this manner, the nth eigenvalue is determined by
ω(b, λn) = β + nπ and the nth corresponding eigenfunction has ex-
actly n zeros in (a, b). This concludes the proof of the theorem. �

A Prüfer transformation, in combination with one dimensional
Sobolev inequality, can be used to derive upper and lower bounds
for the spectrum (set of eigenvalues) of regular self adjoint second
order eigenvalue problems.

For the next theorem consider the following eigenvalue problem.
Let q be a real function in Ls(a, b), s ≥ 1, and let λo < λ1 < λ2 <

. . . and φo, φ1, φ2, . . . denote the eigenvalues and real orthonormal
eigenfunctions (see Theorem 4.2) of

−y′′ + q(x)y = λy y(a) = y(b) = 0. (4.7)

We introduce the notation f+(x) ≡ max (f(x), 0) and f−(x) ≡
f+(x)− f(x) for a real function f .

The following theorem is taken from [5].

Theorem 4.8. Let λ < λn. Then the eigenvalues of (4.7) satisfy
the following inequality,

λn ≤ λ+
(π(n+ 1)

2(b− a)
+

[ (n+ 1)2π2

4(b− a)2
+

∫ b

a
(λ− q(x))− dx

b− a

]1/2)2

(1),

which implies that

λn ≤ λ+
(n+ 1)2π2

(b− a)2
+ 2

∫ b

a
(λ− q(x))− dx

b− a
(2).

Proof. In the equation −φ′′n + qφn = λnφn we apply the modified
Prüfer transformation

φn = r sin θ, φ′n =
√
λn − λr cos θ, r(x) > 0.

This yields to

θ′ =
√
λn − λ cos2 θ− (q − λn) sin2 θ√

λn − λ
=

√
λn − λ− (q − λ) sin2 θ√

λn − λ
(3).
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From (3) we have,

θ′ ≥
√
λn − λ− (λ− q)− sin2 θ√

λn − λ
≥

√
λn − λ− (λ− q)−√

λn − λ
(4).

Since φn has exactly n zeros in (a,b) and vanishes at a, b, (see The-
orem 4.2) we may take θ(a) = 0 which implies that θ(b) = (n+ 1)π.
Now we integrate (4) to conclude that

(n+ 1)π ≥ (b− a)
√
λn − λ−

∫ b

a
(λ− q(x))− dx√

λn − λ
(5).

This is equivalent to A ≤ B
√
A+ C, where

A ≡ (λn−λ), B ≡ (b−a)−1(n+1)π, C ≡ (b−a)−1

∫ b

a

(λ−q(x))− dx.

Hence
√
A ≤ [B+

√
B2 + 4C]/2, which is equivalent to (1). Moreover√

B2 + 4C = B
√

1 + 4C/B2 ≤ B(1 + 2C/B2) = B + 2C/B, since√
1 + x ≤ 1 + x/2 ∀x ≥ 0. Thus, A ≤ [B2 + 2B(B + 2C/B) +B2 +

4C]/4 ≤ B2+2C, which is exactly (2). This concludes the proof. �

Remark 4.9. The proof of Theorem 4.8 gives necessary and suf-
ficient conditions for constructing q which will make (1) equality.
Equality holds in (1) if and only if equality holds in (5). Conse-
quently, ∫ b

a

(λ− q(x))− sin2 θ(x) dx =
∫ b

a

(λ− q(x))− dx,

which implies that (λ − q(x))− cos2 θ(x) = 0, a.e[m]. We integrate
(3) and we get (λ − q(x))+ sin2 θ(x) = 0, a.e[m]. Since θ′(x) > 0, if
x = kπ, (k ∈ Z), then (λ − q(x))+ = 0, a.e[m]. Thus, (λ − q(x)) =
(λ−q(x))− and (λ−q(x))− = 0 a.e on E, where E = {x : sin2 θ(x) 6=
1}.

For example take n = 0 and λ = 0. Then q(x) ≥ 0, and by (3) we
have that

q(x) =
{
λo {x : θ(x) = π/2}
0 elsewhere.

In the following theorems we are trying to find, under certain general
conditions on the coefficient q, a best possible (optimal) upper bound
on the real parameter λ in order for the differential equation y′′(x)+
(λ − q(x))y(x) = 0, x ∈ [a,∞), to have a nontrivial solution in
L2(a,∞).
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We consider the equation of the form

y′′ + (f2 + fg + fk)y = 0, x ∈ [a,∞), (4.10)

where all quantities are real, subject to the following:
(i) f(x) is positive, locally absolutely continuous in [a,∞), and

satisfies
lim

x→∞
f ′(x)f−2(x) = 0. (4.11)

(ii) g(x) is locally L1[a,∞) and satisfies

lim
x→∞

g(x)f−1(x) = 0, (4.12)

k(x) ∈ L1(a,∞). (4.13)

We define
ψ1(x) = sup

t≥x
|f ′(t)/f2(t)|, (4.14)

ψ2(x) = sup
t≥x

|g(t)/f(t)|, (4.15)

and we assume that

ψ2
1f, ψ2

2f are both in L1(a,∞). (4.16)

Then we have the following theorem (see [2]).

Theorem 4.17. Let the above (4.11) to (4.16) conditions hold, and
let y be a nontrivial solution for (4.10). Define R(x) by

R2 = fy2 + f−1(y′)2 R > 0. (4.18)

Then for some constant A we have,

| logR(x)| ≤ A+1/π
∫ x

a

f(t)(ψ1(t)+ψ2(t)) dt ∀x ∈ [a,∞). (4.19)

Proof. Consider the modified Prüfer transformation

y = Rf−1/2 cos θ, y′ = −Rf1/2 sin θ. (4.20)

Then we obtain the following differential equations for R, θ :

θ′ = f − (1/2)f ′f−1 sin 2θ + g cos2 θ + k cos2 θ (4.21)

R′R−1 = (1/2)f ′f−1 cos 2θ + (1/2)g sin 2θ + (1/2)k sin 2θ. (4.22)

We integrate (4.22) over (a, x) in order to obtain the bound in (4.19).
The last term of (4.22), due to (4.13), yields a bounded integral.
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Thus we only have to consider the other two terms. The first term
in (4.22), using (4.14), yields to∣∣∣∣∫ x

a

f ′f−1 cos 2θ dt
∣∣∣∣ ≤ ∫ x

a

ψ1f | cos 2θ| dt.

Now we use (4.21) to obtain,∣∣∣∣∫ x

a

f ′f−1 cos 2θ dt
∣∣∣∣ ≤ ∫ x

a

ψ1θ
′| cos 2θ| dt

+
∫ x

a

ψ1(1/2ψ1f + |g|+ |k|) dt

=
∫ x

a

ψ1θ
′(2/π) dt

+
∫ x

a

ψ1θ
′(| cos 2θ| − 2/π) dt

+
∫ x

a

ψ1(1/2ψ1f + |g|+ |k|) dt.

Substituting θ′ from (4.21), we have,∣∣∣∣∫ x

a

f ′f−1 cos 2θ dt
∣∣∣∣ ≤ ∫ x

a

ψ1f(2/π) dt+
∫ x

a

ψ1θ
′(| cos 2θ| − 2/π) dt

+ (1 + 2/π)
∫ x

a

[(1/2)ψ2
1f + ψ1|g|+ ψ1|k|] dt.

(4.23)

The first integral on the right yields to the term ψ1 (see (4.14)).
Now we will prove that the other two terms in (4.23) are bounded.
Indeed, for the case of the second integral in (4.23), we observe that
ψ1 is non-negative, non-increasing and that∫ x

a

θ′(| cos 2θ| − 2/π) dt =
∫ x

a

(| cos 2θ| − 2/π) dt (4.24)

is uniformly bounded for x ≥ a. From the mean value theorem for
integrals, and since

∫ x

a
(θ′| cos 2θ|−2/π) dt is uniformly bounded, we

obtain ξ ∈ (a, x) such that∫ x

a

ψ1θ
′(| cos 2θ| − 2/π) dt = ξ

∫ x

a

(θ′| cos 2θ| − 2/π) dt ≤ C,

where C is a constant. Hence the second term in (4.23) is bounded.
Now in the last integral in (4.23) all three summands of the integrand
are in L1(a,∞). For the first term this was assumed in (4.16). For
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the second term note that |g| ≤ ψ2f , and again the result follows
from (4.16). For the third term note that ψ1 is bounded, and then
use (4.13). Therefore

∫ x

a
|f ′f−1 cos 2θ| dt is bounded. Similarly we

can prove that the second term in (4.22) yields to a bounded integral.
(Just replace ψ1 by ψ2 and cos 2θ by sin 2θ.) This concludes the proof
of the theorem. �

The following theorem is from [2].

Theorem 4.25. Let r(x) be locally L1(a,∞) and let limx→∞ r(x) =
0. Set p(x) = supt≥x |r(x)| and assume that p ∈ L2(a,∞). Moreover,
let y be a nontrivial solution to y′′+(λ−r(x))y = 0, where x ∈ [a,∞),
and define R > 0 by R2 = λ1/2y2 +λ−1/2(y′)2. Then for fixed λ > 0
and for some fixed constant A > 0, we have that

| logR(x)| ≤ A+
λ−1/2

π

∫ x

a

p(x) dt ∀x ∈ [a,∞). (4.26)

Proof. Apply Theorem 4.17 with f = λ1/2, g = −rλ−1/2, k = 0. The
result now is immediate. �

Using the above theorem it is possible to prove that the constant
λ−1/2π in (4.26) is the best possible, in the way that for any other
constant c < λ−1/2π the inequality in (4.26) does not hold.

The Prüfer transformations are extremely useful in obtaining up-
per bounds for ratios of eigenvalues of certain Differential Operators.
Before we close this section we will give a theorem describing the op-
timal bounds for ratios of eigenvalues of one dimensional Schrödinger
Operator with Dirichlet boundary conditions and positive potential.

Theorem 4.27. Let H = − d2

dx2
+ V (x) be a Schrödinger Operator

acting on L2(I), where I ⊂ R is a finite closed interval and where
Dirichlet boundary conditions are imposed at both endpoints of I.
Assume that V ∈ L1(I) and V (x) ≥ 0 a.e on I. Then the ratio λn

λ1
,

of the nth eigenvalue of H to the first eigenvalue of H, satisfies the
bound λn

λ1
≤ n2. This bound is optimal, and for V ∈ L2(I) and n > 1

equality is obtained if and only if V ≡ 0 a.e. on I.

The proof of the theorem is given in [1]. The Prüfer transforma-
tion needed for the proof is

y(x) = r(x) sin(
√
λθ(x))

y′(x) =
√
λr(x) cos(

√
λθ(x)).
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