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Irish Mathematical Society Bulletin 61, Summer 2008

EDITORIAL

This summer issue of the Bulletin once again contains a mix of con-
tributions of varying kind—which is the preferred format. However,
it appears to be difficult to attract research notes of a good quality for

the Bulletin. Many of the submissions have to be rejected outright.
Maybe members of the Society can consider to submit well-written,
short article (of up to 10 pages length, say) that highlight their re-

search and can also encourage their colleagues and collaborators at
other universities to do the same? This would be much appreciated,
since the only way to attract good-quality papers is to publish some.

The section “Announcements of Conferences” will be closed due
to too little material provided by organisers; in future, please refer to
the IMS website at

http://www.maths.tcd.ie/pub/ims/Calendar-ie/

for up-to-date and quickly accessible information. Only the annual
IMS meeting, and maybe events very closely connected with it, will be
announced in the future, always in the winter issue for the following

year.
However, I would like to resurrect the “Departmental News”, which

were stopped some time ago, again because of too little material. A
reminder to provide the Editor with pertinent material (new appoint-

ments, prizes, etc.) shall be sent out via mathdep later this year, to
be published in Volume 62.

—MM
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2 Notices from the Society

Applying for I.M.S. Membership

1. The Irish Mathematical Society has reciprocity agreements with
the American Mathematical Society, the Irish Mathematics Teach-
ers Association, the New Zealand Mathematical Society and the
Real Sociedad Matemática Española.

2. The current subscription fees (as from 1 January 2002) are given
below:

Institutional member 130 euro
Ordinary member 20 euro
Student member 10 euro
I.M.T.A., NZMS or RSME reciprocity member 10 euro
AMS reciprocity member 10 US$

The subscription fees listed above should be paid in euro by means
of a cheque drawn on a bank in the Irish Republic, a Eurocheque,
or an international money-order.

3. The subscription fee for ordinary membership can also be paid in
a currency other than euro using a cheque drawn on a foreign bank
according to the following schedule:

If paid in United States currency then the subscription fee is
US$ 25.00.
If paid in sterling then the subscription is £15.00.
If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$ 25.00.

The amounts given in the table above have been set for the current
year to allow for bank charges and possible changes in exchange
rates.

4. Any member with a bank account in the Irish Republic may pay
his or her subscription by a bank standing order using the form
supplied by the Society.

5. Any ordinary member who has reached the age of 65 years and
has been a fully paid up member for the previous five years may
pay at the student membership rate of subscription.
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6. Subscriptions normally fall due on 1 February each year.

7. Cheques should be made payable to the Irish Mathematical So-
ciety. If a Eurocheque is used then the card number should be
written on the back of the cheque.

8. Any application for membership must be presented to the Com-
mittee of the I.M.S. before it can be accepted. This Committee
meets twice each year.

9. Please send the completed application form with one year’s sub-
scription to:

The Treasurer, I.M.S.
Department of Mathematics
St Patrick’s College
Drumcondra
Dublin 9, Ireland
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Information from the European Mathematical Society

The European Mathematical Society is increasing its activities and
its membership. We are working harder than ever to make sure
that mathematics is represented properly when funding decisions
are taken at a European level, and this is beginning to bear fruit.
An example is the recent call by the European Science Foundation
for proposals for research conferences in mathematics

http://www.esf.org/index.php?id=4602

Also, we now have 56 national member societies from all over Europe,
which brings huge opportunities for collaborative work of all kinds.

We would like to increase our individual membership, which now
comes with free access to Zentralblatt

http://www.zentralblatt-math.org/portal/en/

as well as our superb Newsletter

http://www.ems-ph.org/journals/journal.php?jrn=news

and many other benefits, as you can see from our new web site

http://www.euro-math-soc.eu/

Membership is not expensive, and joining is easy: you can do it
either through the Irish Mathematical Society or on the EMS web
page.

Ari Laptev, President
Pavel Exner, Vice-President
Helge Holden, Vice-President
Stephen Huggett, Secretary
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IRISH MATHEMATICAL SOCIETY

President’s Report 2007

Thanks: The first item to be noted in my report is to thank Mau-
rice O’Reilly for the extraordinary job he did as President in 2005
and 2006. Two other notable Officers of the IMS whose term of office
ended in 2007 are David Wraith (Treasurer) and Ann O’Shea (Sec-
retary), they have held these positions over the last four to six years
and the IMS owes a large debt of gratitude to them. Finally the
Society would like to thank David Armitage, who is retiring. David
has been a long-standing committee member of the IMS and served
as President of the Society too.

Future fees: The Society has decided to raise its fees for 2009 for
normal members from e 20 to e 25 with commensurate changes in
other membership categories.

Membership communication: To improve communications with
our members, we will be including an insert in the next Bulletin for
members to update their details including e-mail addresses.

Foyles’ Discount: Foyles’ Bookshop in London offers IMS members
a 10% discount on all orders. To avail of this offer (negotiated by
David Wraith) members will need to set up an account with Foyles,
see:

http://www.maths.tcd.ie/pub/ims/Books/foylesform.pdf

For security reasons, on your application you will need to enter your
IMS membership number, the latter can be obtained by e-mailing
the IMS Treasurer.

Links: The IMS has established links (via Maurice O’Reilly) with
the Société Mathématique de France, these links take the form of
exchanging information regarding our respective societies’ activities
in the others’ publications and it is hoped there will be SMF in-
volvement at the BMC in 2009 in Galway. The Society has set up a
reciprocity agreement with the New Zealand Mathematical Society
(http://www.waikato.ac.nz/NZMS/NZMS.html), which will start in
2008. In Ireland, the Society has established links with the newly
founded Irish Applied Mathematics Teachers Association
(http://www.iamta.ie/).
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Website: The IMS website (http://www.maths.tcd.ie/pub/ims/)
continues to be maintained by Richard Timoney and in 2007 he
added the IMS Diary page. This page lists conferences that are be-
ing held in Ireland and is designed for conference organisers to avoid
clashes.

SFI Mathematics Initiative: I twice circulated (via MATHDEP)
mathematicians in Ireland asking for their views and comments on
this year’s SFI Mathematics Initiative. I received about 30 replies
mostly from people who did not apply this year under the initiative.
Consequently, I met with Dr Gary Crawley in July to discuss the
opinions expressed, and his responses are on the IMS website

http://www.maths.tcd.ie/pub/ims/business/SFIMaths2.pdf

Annual conferences: Dr Crawley opened and addressed the IMS
September conference in UCD in September 2007. The conference
was well attended and featured a diverse range of talks over the
two days. The IMS expressed its thanks to the five main organizers
Christopher Boyd, Sean Dineen, Michael Mackey, Rhona Preston
and myself for their work in this regard.

The Society also held a joint symposium with DIAS in December,
which covered a range of topics in mathematics and physics over two
days. The IMS would like to thank DIAS for the financial support
they provided for this symposium.

Fergus Gaines’ Cup: The Irish Mathematical Society awards the
Fergus Gaines’ Cup annually to the best performer in the Irish Math-
ematical Olympiad. The cup was awarded on 16th November 2006
to Galin Ganchev in St Patrick’s College, Dublin and on 15th No-
vember 2007 to Stephen Dolan again in St Patrick’s College.

Teaching: A special committee (chaired by Tom Carroll) produced
a discussion document on service teaching of mathematics, which can
be found on the IMS website. This document was developed by the
standing committee on teaching and educational matters (chaired by
Ann O’Shea) and may be viewed here:

http://www.maths.tcd.ie/pub/ims/business/2007-09-CSTM2.pdf

Brendan Guilfoyle joined both these committees and also kindly
agreed to act as the Public Relations Officer of the Society.
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Institute of Technology members: I have particularly been try-
ing to recruit members from the IoT sector in 2007 and have met
with some limited success. In order to attract and maintain such
members it is important that the Society changes from its university
focus to a more inclusive one. This would take the form of support-
ing IoT sector conferences financially and having IoT speakers at
IMS conferences. This policy is being implemented as we now have
a good representation of the IoT sector on the Committee of the
Society. We are also including talks on educational matters and of
more general interest at our September conference (however, more
needs to be done). To address the last point I set up a sub-committee
on IoT membership with Jim Cruickshank as Chairperson. He has
peopled this sub-committee with four IoT members (so far) and their
remit is to:

1. report back on what the IMS is expected/can do for IoT
members and

2. consider the timing of our ‘September’ conference.

The report will be prepared for the Committee meeting in September
2008.

Conference support: The number of conference organisers ap-
plying for support from the IMS for conferences has dropped. The
reasons for this may be two-fold: The IMS is not a cash-rich Society
and so our average grant is only about e 250 to e 350, secondly con-
ference organisers had to write a short report on the conference if
they had received support. There is little the Society can do about
the general level of funding, but the second condition has now been
eliminated and instead organisers will just be asked to acknowledge
that we helped to fund the conference and perhaps to distribute some
membership forms at it.

Future meetings: Future planned meetings of the IMS are as fol-
lows:

• September 1-2, 2008, Cork IoT: IMS Conference and AGM
• December 2008, DIAS (Dublin): Joint DIAS/IMS Sympo-

sium
• April 6-9 2009, NUI Galway: Joint meeting of the British

Mathematical Colloquium and the IMS
• December 2009, DIAS (Dublin): Joint DIAS/IMS Sympo-

sium and IMS AGM
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• September 2010, Dublin IoT: IMS Conference and AGM
• September 2011: A non-Dublin venue is being sought for the

IMS Conference and AGM
• September 2012: Tallaght IoT? IMS Conference and AGM

Russell Higgs
President of the Irish Mathematical Society

15th December 2007
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Algebraic Properties of the Index of Invariant
Subspaces of Operators on Banach Spaces

GEORGE CHAILOS

Abstract. For an operator S on a Banach space X, let
Lat (S,X) be the collection of all its invariant subspaces. We

consider the index function on Lat (S,X) and establish vari-

ous algebraic properties of it. Amongst others we show that
if S is a bounded below operator, then

indM + indN ≥ ind(M ∩N) + ind(M ∨N).

If, in addition, indM = indN = 1 and M ∩ N 6= {0} then

ind(M ∨N) = 1.

1. Introduction

If S is an operator on a Banach space X, then a closed subspace M of
X is called invariant for S if SM ⊂ M . The collection of invariant
subspaces of an operator S is denoted by Lat (S,X). It forms a
complete lattice with respect to intersections and closed spans. One
of the important notions in the general theory of operators, such as
bounded below operators, is the index of an element in Lat (S,X),
which is defined as follows. (This definition is taken from [1].)

Definition 1.1. The map

ind : Lat (S,X) −→ {0} ∪ N ∪ {∞}
is defined as indM = dim (M/SM) and indM = 0 if and only if
M = {0}. We say that M has index n if indM = n.

The index function plays an essential role in the study of invariant
subspaces of Banach spaces. (For example, see an extensive study
in [5] of index 1 invariant subspaces in Banach spaces of analytic

2000 Mathematics Subject Classification. Primary: 47A15, 16D40. Sec-

ondary: 47A53.
Key words and phrases. Free modules, index, invariant subspaces.
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functions.) In this article we give various algebraic properties of
the index function. Amongst others, and as a corollary to our main
result, we show that if M,N ∈ Lat(S,X), indM = indN = 1 and
M ∩N 6= {0} then ind(M ∨N) = 1, where M ∨N denotes the closed
span of M and N . (Equivalently, M ∨N is the closure of M +N).
This result, but in not such a general setting as the one presented
here, was proved by Richter ([5], Corollary 3.12), using operator
theoretical tools and results from analysis. Here we prove it using
only algebraic tools and a rather standard result from functional
analysis.

2. Algebraic Properties of the Index Function

Theorem 2.1. Let R be a commutative ring with identity and let
A, A′, B′ be free unitary R-modules such that A′ and B′ are free
submodules of A. Then

rank(A/A′)+rank(A/B′) = rank(A/(A′∩B′))+rank(A/(A′+B′)).

Proof. Consider the following sequence

0 −→ A/(A′ ∩B′)
f−→ A/A′ ⊕A/B′ g−→ A/(A′ +B′) −→ 0,

where f([y]) = ([y], [y]), g([x], [y]) = [x − y] and [·] denotes the
equivalence class in the appropriate quotient module. We claim that
the sequence above is exact.

To prove the claim we first show that f and g are well-defined
homomorphisms. Letting [y] ∈ A/(A′ ∩ B′) and x ∈ A′ ∩ B′, we
obtain that f([y+x]) = ([y+x], [y+x]) = ([y], [y]). Hence, f is well
defined. Moreover, f is a homomorphism, since

f([y] + [z]) = ([y] + [z], [y] + [z]) = ([y], [y]) + ([z], [z])

f(r[y]) = (r[y], r[y]) = r([y], [y]), r ∈ R.

Similarly, if ([x], [y]) ∈ A/A′ ⊕A/B′, and x1 ∈ A′, x2 ∈ B′, then

g([x+ x1], [y + y1]) = [(x+ x1)− (y + y1)]

= [(x− y) + (x1 − y1)] = [x− y],

since x1 − y1 ∈ A′ +B′. Thus, g is well defined.
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Moreover, g is a homomorphism, since

g(([x], [y]) + ([x′], [y′])) = g([x] + [x′], [y] + [y′])

= g([x+ x′], [y + y′])

= [(x+ x′)− (y + y′)] = [x− y + x′ − y′]
= [x− y] + [x′ − y′]

and g(r([x], [y])) = g([rx], [ry]) = [rx− ry] = r[x− y], r ∈ R.

It remains to show that ker g = im f . For this let ([x], [y]) ∈
A/A′⊕A/B′ be such that g([x], ][y]) = 0. Then [x−y] = 0, and thus
x − y ∈ A′ + B′. This implies that x + A′ = y + B′, i.e., [x]A/A′ =
[y]A/B′ wherefore ([x]A/A′ , [y]A/B′) ∈ im f , and hence ker g ⊂ im f .

Conversely, if ([x], [y]) ∈ im f then x + A′ = y + B′ and hence
x+A′ +B′ = y+A′ +B′. It follows that g([x], [y]) = [x− y] = 0 so
that im f ⊂ ker g. The proof of the claim is complete.

Since A/(A′ + B′) is a free module, it is in particular projective,
and hence the above exact sequence splits (see [4]). Therefore

A/A′ ⊕A/B′ = A/(A′ ∩B′)⊕A/(A′ +B′).

This immediately implies that

rank(A/A′)+rank(A/B′) = rank(A/(A′∩B′))+rank(A/(A′+B′))

concluding the proof of the theorem. �
As every vector space is free over its ground field, the following is

an immediate consequence of the above theorem.

Corollary 2.2. If X is a Banach space and S an operator on X,
for all M,N ∈ Lat(S,X)

indM + indN = ind(M ∩N) + ind(M +N).

In then case when S is a bounded below operator, like the shift
operator on Banach spaces of analytic functions, the following holds.

Lemma 2.3. Suppose M,N ∈ Lat(S,X), where S is a bounded
below operator on a Banach space X. Then

ind(M ∨N) ≤ ind(M +N) ≤ indM + indN.
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Proof. If either indM or indN is infinite, then there is nothing
to prove. So we may assume that indM < ∞ and indN < ∞.
Thus there are finite-dimensional subspaces M1 and N1 of M and
N , respectively, such that M = SM + M1, N = SN + N1, where
dimM1 = indM and dimN1 = indN . We find that

M +N = SM +M1 + SN +N1

= S(M +N) +M1 +N1

⊆ S(M ∨N) + (M1 +N1)

⊆M ∨N.
Since S is a bounded below operator, its range is closed (see, e.g., [2],
Proposition 6.4, chapter VII), and hence the second to last expression
is the sum of a closed and a finite-dimensional subspace, hence it is
closed. Since M + N is dense in M ∨ N we obtain that the last
inclusion in above is actually an equality. From this it follows that

ind(M ∨N) ≤ dim(M1 +N1) = ind(M +N) ≤ indM + indN.

�
The next theorem, which is our main result, follows immediately

from Corollary 2.2 and Lemma 2.3.

Theorem 2.4. If X is a Banach space and S a bounded below op-
erator on X then, for all M,N ∈ Lat(S,X),

indM + indN ≥ ind(M ∩N) + ind(M ∨N).

Corollary 2.5. Suppose that M1,M2 ∈ Lat(S,X) are such that
indM1 = indM2 = 1, where S, X are as in the previous theorem.
If M1 ∩M2 6= {0} then ind (M1 ∨M2) = 1.

Proof. If M1∩M2 6= {0} then ind(M1∩M2) ≥ 1. As ind(M1∨M2) ≥
1, Theorem 2.4 implies that ind (M1 ∨M2) = 1. �
Example 2.6. In [5], Proposition (2.16 b), Richter considered the
case where S is the shift operator on any Banach space B of analytic
functions on an open and connected subset of the complex plane.
He showed that if m ≥ 2 and there is a space in Lat(S,B) of index
m, and furthermore if n1, n2 ∈ N ∪ {∞}, n1 + n2 = m, then there
are invariant subspaces N1, N2 such that indNi = ni, i = 1, 2 and
ind(N1 ∨N2) = indN1 + indN2. In these cases, Theorem 2.4 implies
that ind(N1 ∩N2) = 0 and hence N1 ∩N2 = {0}. Thus, N1 ∨N2 =
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N1 ⊕ N2. (For example, it is well known ([3], Corollary 6.5) that
when S is the shift operator on a weighted Bergman space on the
unit disk, then for all 1 ≤ m ≤ ∞ there are invariant subspaces of
index m.)

References

[1] G. Chailos, On Reproducing Kernels and Invariant Subspaces of the Bergman

Shift, Ph.D. dissertation, University of Tennessee, Knoxville, 2002.
[2] J.B. Conway, A Course in Functionl Analysis, 2nd ed., Springer-Verlag,

New York, 1990.

[3] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces,
Springer-Verlag, New York, 2000.

[4] T. Hungerford, Algebra, Springer-Verlag, New York, 1996.

[5] S. Richter, Invariant Subspaces in Banach Spaces of Analytic Functions,
Trans. Amer. Math. Soc. 304 no.2 (1987), 585–616.

George Chailos,

Department of Computer Science,

University of Nicosia,

Nicosia 1700, Cyprus,

chailos.g@unic.ac.cy

Received on 6 June 2008.



Irish Math. Soc. Bulletin 61 (2008), 15–27 15

Lipschitz Character of Solutions to the Inner
Obstacle Problems

S LAWOMIR JAGODZIŃSKI, ANNA OLEK AND KUBA SZCZEPANIAK

Abstract. In our paper we consider the inner problem with

l ∈ N impediments from below, the inner problem with m ∈
N impediments from above and the double inner problem

with l + m impediments. Assuming the Lipschitz character

of the obstacles we show that the corresponding solutions
are also Lipschitz. We extend here the result given in [SV],

where the author considered the inner obstacle problem with

a single impediment from below. Our work is based on the
ideas introduced by J. Jordanov from 1982 who investigated

H1,p(Ω) regularity of solutions to inner obstacle problems.

1. Introduction

In many physical processes “obstacles” appear in a natural way hav-
ing strong influence on the character of the examined problem. A
simple example of such a situation is the study of contrast between
a vibrating membrane and a vibrating membrane set between obsta-
cles.

In the 1970’s there was considerable interest in the analysis of
obstacle problems. This was connected with the development of
research on variational inequalities and has been studied by many
authors (see [BC], [BS], [T] and references therein). The majority of
results concentrated on, natural from a mathematical point of view,
problems of existence and uniqueness of the solutions. However, in
case of variational inequalities corresponding to obstacle problems
additional questions regarding, e.g., the coincidence set (cf. [DS1],
[DS2]) or regularity of the solutions (cf. [BS]) can be posed. These
problems seem to be interesting due to possible applications.

2000 Mathematics Subject Classification. 35J85, 49J40.
Key words and phrases. Inner obstacle problems, Lipschitz continuity, vari-

ational inequalities.
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The fundamental result where regularity of solutions with regard
to regularity of obstacles is studied in case of global obstacle prob-
lems can be found in [KS].

Recently the interest in the analysis of the obstacle problems has
increased. This is due to appearance of works on the inner problems
(see [BSz], [JOS], [Ro] and references therein). Among other things
examination of regularity of solutions to the inner obstacle problems
is a matter of significant importance.

A study of the Lipschitz character of the solutions to the obstacle
problems was initiated in [SV]. The authors showed that the solution
of the global problem and the inner problem with one obstacle from
below is Lipschitz continuous assuming that the impediments are
Lipschitz. Later on the papers [Ch1], [Ch2] appeared where one can
find theorems concerning the Lipschitz continuity of the solutions to
the global inverse and double global problems.

In our work we aim at transferring results concerning Lipschitz
character of solutions of global obstacle problems to the case of inner
ones. It is worth mentioning that the construction presented in our
paper enables us to identify each inner problem with the correspond-
ing global one. This fact makes it possible to carry out the complete
analysis of the inner problems with the help of methods available for
the global ones.

We offer a comprehensive study of the Lipschitz regularity of so-
lutions of the inner obstacle problems. The present paper is a part
of the research program on free boundary problems.

2. Notation and Basic Definitions

Throughout the paper we assume that Ω ⊂ Rn is an open, bounded
set with the smooth boundary ∂Ω. The functions aij : Ω̄ → R for
1 ≤ i, j ≤ n belong to C1(Ω) and satisfy the ellipticity condition,
i.e., there exist γ, µ > 0 such that

µ|ξ|2 ≥ aij(x)ξiξj ≥ γ|ξ|2 for x ∈ Ω and ξ ∈ Rn, (1)

where the summation convention is adopted. We also introduce the
second order elliptic operator

L = −∂xi

(
aij(x)∂xj

)
. (2)

Remark 2.1. The operator L defined by (2) considered as the map-
ping L : H1

0 (Ω) → H−1(Ω) defines (see [KS]) a bilinear, continuous
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and coercive form on H1
0 (Ω) as follows:

a(u, v) = 〈Lu, v〉 =

∫

Ω

aij(x)uxi(x)vxj (x) dx (u, v ∈ H1
0 (Ω)). (3)

Now we pass to the precise definitions of fundamental concepts
of this work. Let us consider l ∈ N functions Ψi ∈ H1(Ei) where
Ei ⊂ Ω are compact sets such that ∂Ei is smooth, Ei ∩ Ej = ∅ for
i, j = 1, . . . , l and i 6= j. Next we take m ∈ N functions Φi ∈ H1(Fi)
where Fi ⊂ Ω are compact sets such that ∂Fi is smooth, Fi ∩Fj = ∅
for i, j = 1, . . . ,m and i 6= j. Moreover, we assume that:

Ψi ≤ Φj on Ei ∩ Fj for i = 1, . . . , l and j = 1, . . . ,m. (4)

We denote by Kl, K
m and Km

l the following admissible sets:

Kl = {v ∈ H1
0 (Ω) : v ≥ Ψi on Ei for 1 ≤ i ≤ l}, (5)

Km = {v ∈ H1
0 (Ω) : v ≤ Φi on Fi for 1 ≤ i ≤ m}, (6)

Km
l = {v ∈ H1

0 (Ω) : v ≥ Ψi on Ei ∧ v ≤ Φj on Fj , (7)

for 1 ≤ i ≤ l, 1 ≤ j ≤ m}.
Definition 2.2. Let l be a fixed natural number. For the form
defined by (3) and f ∈ H−1(Ω) the problem:
Find ul ∈ Kl such that

a(ul, v − ul) ≥ 〈f, v − ul〉 for any v ∈ Kl, (8)

where Kl is defined by (5) is called an l−inner obstacle problem with
the impediments Ψi (i = 1, . . . , l).

We shall use the notation l − IP to denote the l−inner obstacle
problem.

Definition 2.3. Let m be a fixed natural number. For the form
defined by (3) and f ∈ H−1(Ω) the problem:
Find um ∈ Km such that

a(um, v − um) ≥ 〈f, v − um〉 for any v ∈ Km, (9)

where Km is defined by (6) is called an m−inner inverse obstacle
problem with the impediments Φi (i = 1, . . . ,m).

We shall use the notation m−IIP to denote the m−inner inverse
obstacle problem.

Definition 2.4. Let l, m be fixed natural numbers. For the form
defined by (3) and f ∈ H−1(Ω) the problem:
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Find uml ∈ Km
l such that

a(uml , v − uml ) ≥ 〈f, v − uml 〉 for any v ∈ Km
l , (10)

where Km
l is defined by (7) is called an l,m−double inner obsta-

cle problem with the impediments Ψi (i = 1, . . . , l) and Φj (j =
1, . . . ,m).

We shall use the notation l,m−DIP to denote the l,m−double
inner obstacle problem.

Remark 2.5. If we put l = 1, take E1 = Ω and assume that Ψ1 = Ψ
satisfies Ψ

∣∣
∂Ω
≤ 0 then Definition 2.2 in fact is identical with the

definition of the global obstacle problem with the impediment Ψ.
The admissible set K̃1 will be defined by

K̃1 = {v ∈ H1
0 (Ω) : v ≥ Ψ on Ω}. (11)

We shall use the notation GP to denote the global obstacle problem.

Remark 2.6. If we put m = 1, take F1 = Ω and assume that
Φ1 = Φ satisfies Φ

∣∣
∂Ω
≥ 0 then Definition 2.3 gives the definition

of the inverse global obstacle problem with the impediment Φ.The
admissible set K̃1 will be defined by

K̃1 = {v ∈ H1
0 (Ω) : v ≤ Φi on Ω}. (12)

We shall use the notation GIP to denote the inverse global obstacle
problem.

Remark 2.7. If we put l = m = 1, take E1 = F1 = Ω and assume
that Ψ1 = Ψ and Φ1 = Φ are such that Ψ

∣∣
∂Ω
≤ 0, Φ

∣∣
∂Ω
≥ 0 and

Ψ ≥ Φ then Definition 2.4 gives the definition of the double global
obstacle problem with the impediments Ψ and Φ. The admissible
set K̃1

1 will be defined by

K̃1
1 = {v ∈ H1

0 (Ω) : Ψ ≤ v ≤ Φ on Ω}. (13)

We shall use the notation DGP to denote the double global obstacle
problem.

The existence and uniqueness theorems for GP , GIP , DGP can
be found in [KS].
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3. Lipschitz Regularity

In this section we present the main results of our paper, i.e., the
Lipschitz regularity of the solutions in the case of the inner obsta-
cle problems. Since our approach is based on identification of the
inner problem with the corresponding global one, we now recall the
following lemma (see [SV], [Ch1], [Ch2]).

Lemma 3.1. The solutions: ũ1 — of GP with the impediment Ψ
and f = 0, ũ1 — of GIP with the impediment Φ and f = 0, ũ1

1 —
of DGP with the impediments Ψ, Φ and f = 0 are Lipschitz (ũ1, ũ

1,
ũ1

1 ∈ H1,∞(Ω)) provided Ψ, Φ ∈ H1,∞(Ω).

We start with presenting the result for l − IP (for l ≥ 1). The
following theorem is a generalisation of the one included in [SV]
where l = 1.

Theorem 3.2. If Ψi ∈ H1,∞(Ei) then there exists a unique solution
ul to l − IP with the impediments Ψi (i = 1, . . . , l). Moreover, if
f = 0 this solution is Lipschitz continuous.

Proof. Let us construct for each i = 1, . . . , l the functions Ψ̃i : Ω→
R in the following way

Ψ̃i =

{
wi in Ω\Ei

Ψi in Ei,
(14)

where wi ∈ H1(Ω\Ei) solves the following problem




Lwi = 0 in Ω\Ei

wi = Ψi in ∂Ei

wi = 0 in ∂Ω.
(15)

Next we put

Ψ = max{Ψ̃1, . . . , Ψ̃l}.
It is well known (see [KS]) that in order to show existence and unique-
ness of the solution ul of l− IP it is enough to show non-emptiness
of the set Kl. It is easy to see that Ψ ∈ Kl which yields the desired
conclusion.

On the other hand, we observe that Ψ̃i (i = 1, . . . , l) and conse-
quently Ψ are Lipschitz continuous. Then we notice that ul satisfies
Lul ≥ 0 in Ω. Indeed, for arbitrary v ∈ H1

0 (Ω) such that v ≥ 0 in Ω
we have ul + v ∈ Kl. Thus we can write

a(ul, ul + v − ul) ≥ 0.
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The above inequality gives that a(ul, v) ≥ 0 for arbitrary v ∈ H1
0 (Ω)

such that v ≥ 0 in Ω.
We have Ψ̃i = Ψi in Ei, LΨ̃i = 0 in Ω\Ei, Ψ̃i

∣∣
∂Ω

= 0 and Lul ≥ 0
in Ω\Ei. Therefore using the maximum principle we derive that

ul ≥ Ψ̃i in Ω.
Moreover, we have that ul ≥ Ψ in Ω. It is true due to the fact

that ul ≥ Ψ̃i in Ω for i = 1, . . . , l. This together with ul ∈ H1
0 (Ω)

implies that ul ∈ K̃1 where K̃1 is defined in (11).
Let us denote by ũ1 the solution to GP with the impediment Ψ

and f being equal to zero. Since ul ∈ K̃1 we can state that

a(ũ1, ul − ũ1) ≥ 0.

On the other hand, K̃1 ⊂ Kl since if v ∈ K̃1 then v ∈ H1
0 (Ω) and

v ≥ Ψ ≥ Ψi on Ei for i = 1, . . . , l. Hence we can write

a(ul, ũ1 − ul) ≥ 0,

because ul ∈ Kl solves the variational inequality (8) with f = 0.
Having added the last two inequalities we shall obtain (using the
coercivity of the form a(·, ·) in H1

0 (Ω)) that there exists ν > 0 such
that

ν ‖ ũ1 − ul ‖2≤ a(ũ1 − ul, ũ1 − ul) ≤ 0,

which implies that ũ1 = ul in Ω. Lipschitz continuity of ũ1 (see
Lemma 3.1) completes the proof. �

The result similar to the one presented in Theorem 3.2 can be
obtained for m− IIP (m ≥ 1).

Theorem 3.3. If Φi ∈ H1,∞(Fi) then there exists a unique solution
um to m− IIP with the impediments Φi (i = 1, . . . ,m). Moreover,
if f = 0 this solution is Lipschitz continuous.

The proof of Theorem 3.3 is almost identical to the previous one,
so we omit it.

In the third theorem we consider 1, 1 − DIP . In this case we
extend the result given in [SV] by adding one impediments from
above.

Theorem 3.4. If the functions Ψ1 ∈ H1,∞(E1), Φ1 ∈ H1,∞(F1)
satisfy

Ψ1 ≤ Φ1 in E1 ∩ F1, (16)
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then there exists a unique solution u1
1 to 1, 1 − DIP with the im-

pediments Ψ1, Φ1. Moreover, if f = 0 this solution is Lipschitz
continuous.

Proof. Firstly, applying the ideas presented in the proof of Theorem
3.2 (see (14)) we construct the Lipschitz extensions of Ψ1 and Φ1

onto the whole domain Ω. In order to reduce the complexity of
notations those extensions we still call Ψ1 and Φ1. Then we observe
that max{Ψ1, 0}+ min{Φ1, 0} ∈ K1

1 which gives us existence of the
unique solution u1

1 ∈ K1
1 to the 1, 1−DIP .

In the proof we shall construct two Lipschitz functions Ψ and Φ
such that the solution ũ1

1 of DGP with the impediments Ψ and Φ
and f being equal to zero will coincide with u1

1 – the solution of
1, 1−DIP .

Let us consider the coincidence set I[u1
1] for 1, 1−DIP . Obviously

it is contained in E1 ∪ F1 (as (16) holds). We denote by IF [u1
1] that

part of I[u1
1] which is contained in F1 ∩ (Ω\E1) where u1

1 = Φ1 and

by IE [u1
1] that part of I[u1

1] which is contained in E1∩ (Ω\F1) where
u1

1 = Ψ1. Now we define

Ψ̃1 =

{
Ψ1 in E1

min{Ψ1,Φ1} in Ω\E1,
(17)

Φ̃1 =

{
Φ1 in F1

max{Ψ1,Φ1} in Ω\F1.
(18)

Both functions Ψ̃1 and Φ̃1 are continuous. Moreover, they are both
Lipschitz.

Now let us take a Lipschitz function ξ ∈ H1,∞
0 (Ω) such that

ξ|∂(Ω\E1) = 0 and ξ < 0 in Ω\E1. Next we consider the Lipschitz

function δ ∈ H1,∞(Ω) where we put δ = Ψ̃1 + ξ. We know that

u1
1 = Φ1 = Φ̃1 in IF[u1

1]. (19)

It also satisfies

u1
1 > δ = Ψ̃1 + ξ in IF[u1

1] (20)

since Ψ̃1 + ξ = min{Ψ1,Φ1}+ ξ < Φ̃1 in IF [u1
1]. From the continuity

of u1
1, ξ and Ψ̃1 we state that there exists a neighbourhood OF of

IF [u1
1] where the inequality (20) holds.

Now we choose a set DF with the smooth boundary in the follow-
ing way:

IF [u1
1] ⊂ DF ⊂ D̄F ⊂ OF ∩ (Ω\E1).
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Let ψ be the solution of the problem:
{
Lψ = 0 in (Ω\E1)\D̄F

ψ = δ in ∂((Ω\E1)\D̄F ).
(21)

The function ψ is Lipschitz (see [ADN], [BC]). Next we remark that
the set D was chosen in such a way that (Ω\E1)\D̄F ⊂ Ω\I[u1

1].
Therefore using again the basic properties of the solutions to the
obstacle problems (see [KS]) we have that Lu1

1 = 0 in (Ω\E1)\D̄F .
Hence

L(u1
1 − ψ) = 0 in (Ω\E1)\D̄F.

Moreover, we have

u1
1 = ψ = Ψ1 in ∂Ω,

which follows from the definition of extension of Ψ1 and the con-
structions of Ψ̃1 and ξ,

u1
1 ≥ ψ = Ψ1 in ∂E1,

which follows from (16) and the constructions of Ψ̃1 and ξ,

u1
1 ≥ ψ in ∂DF ,

which follows from (20) and the construction of the set DF . Then
the maximum principle implies that

u1
1 ≥ ψ in (Ω\E1)\D̄F. (22)

Finally we put

Ψ =





Ψ1 in E1

δ in D̄F

ψ in (Ω\E1)\D̄F .
(23)

Clearly the function Ψ is Lipschitz continuous in Ω. Moreover,

u1
1 ≥ Ψ in Ω (24)

since u1
1 ∈ K1

1 , (22) holds and (20) is satisfied in D ⊂ OF ∩ (Ω\E1).
Now we pass to the remaining part of the proof. We choose

a Lipschitz function η ∈ H1,∞
0 (Ω) such that η > 0 in Ω\F1 and

η|∂(Ω\F1) = 0. Next we consider the Lipschitz function σ ∈ H1,∞(Ω)

where we put σ = Φ̃1 + η. We know that u1
1 = Ψ̃1 = Ψ1 in IE [u1

1].
It also satisfies the following:

u1
1 < σ = Φ̃1 + η in IE [u1

1] (25)
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as Ψ̃1 = Ψ < Φ̃1 + η in IE [u1
1]. From the continuity of u1

1, η and Φ̃1

we state that there exists a neighbourhood OE of IE [u1
1] where the

inequality (25) holds. Acting similarly as above we can choose a set
DE with smooth boundary such that:

IE [u1
1] ⊂ DE ⊂ D̄E ⊂ OE ∩ (Ω\F1).

Denoting by φ the solution of the problem
{
Lφ = 0 in (Ω\F1)\D̄E

φ = σ in ∂((Ω\F1)\D̄E),
(26)

we get that φ is Lipschitz provided σ is Lipschitz. Knowing that
(Ω\F1)\D̄E ⊂ Ω\I[u1

1] and using the maximum principle we deduce
that:

u1
1 ≤ φ in (Ω\F1)\D̄E. (27)

Finally we put

Φ =





Φ1 in F1

σ in D̄E

φ in (Ω\F1)\D̄E .
(28)

Clearly the function Φ is Lipschitz. Moreover,

u1
1 ≤ Φ in Ω (29)

as u1
1 ∈ K1

1 , (27) holds and (25) is satisfied in DE ⊂ OE ∩ Ω\F1.
Conditions (24), (29) together with u1

1 ∈ H1
0 (Ω) imply that u1

1 ∈
K̃1

1 , where K̃1
1 is defined in (12). Moreover, K̃1

1 ⊂ K1
1 . Indeed, if

v ∈ K̃1
1 then v ∈ H1

0 (Ω), v ≥ Ψ = Ψ1 in E1 and v ≤ Φ = Φ1 in F1

which gives that v ∈ K1
1 .

Let us denote by ũ1
1 the solution of the DGP with the impedi-

ments Ψ, Φ given by (23), (28), respectively and f being equal to
zero. Using coercivity of the form a(·, ·) on H1

0 (Ω) we shall deduce
that u1

1 = ũ1
1. This completes the proof (as ũ1

1 is Lipschitz — see
Lemma 3.1). �

The last theorem describes the Lipschitz continuity of the solu-
tions in the most general case, i.e., l,m−DIP .

Theorem 3.5. If the functions Ψi ∈ H1,∞(Ei) (i=1,. . . ,l), Φj ∈
H1,∞(Fj) (j=1,. . . ,m) satisfy

Ψi ≤ Φj in Ei ∩ Fj , (30)
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then there exists a unique solution uml to l,m − DIP with the im-
pediments Ψi, Φj. Moreover, if f = 0 this solution is Lipschitz
continuous.

Proof. At the beginning similarly to what we did in the proof of
Theorem 3.2 (see (14)) we construct the Lipschitz extensions of Ψi

and Φj onto the whole domain Ω. Again in order to avoid too much
complexity these extensions will be still called Ψi and Φj . Then we
observe that max{Ψ1, . . . ,Ψl, 0}+ min{Φ1, . . . ,Φm, 0} ∈ Km

l which
gives us existence of the unique solution uml ∈ Km

l to l,m−DIP .
It could be proved (see [ES]) that the following estimates for the

solutions to the inner obstacle problems are satisfied

um1(i) ≤ uml ≤ u
1(j)
l in Ω, (31)

where um1(i) denotes the solution of 1,m − DIP with an arbitrarily

fixed impediment Ψi and m impediments Φj , u
1(j)
l is the solution of

l, 1−DIP with l impediments Ψi and an arbitrarily fixed Φj .
Firstly, we examine 1,m−DIP with the fixed impediment Ψi and

m impediments Φj . Using the construction presented in the proof of
Theorem 3.4 for each pair of the obstacles (Ψi, Φj) we construct m

global obstacles Φ̃j according to (28) and next we put Φi = min
1≤j≤m

Φ̃j .

Then we consider 1, 1−DIP with the admissible set

K1
1(i) = {v ∈ H1

0 (Ω) : v ≥ Ψi on Ei ∧ v ≤ Φi on Ω}. (32)

Its solution exists and we denote it by u1
1(i).

It can be easily seen that um1(i) ∈ K1
1(i) since (29) is satisfied for all

j = 1, . . . ,m. On the other hand, K1
1(i) ⊂ Km

1(i). Indeed, if we take

v ∈ K1
1(i) then v ≥ Ψi on Ei and v ≤ Φi = min

1≤j≤m
Φ̃j and Φ̃j = Φj

on Fj . Using the coerciveness of the form a(·, ·) on H1
0 (Ω) we get

that um1(i) = u1
1(i).

Having 1, 1 − DIP with the pair of obstacles (Ψi,Φ
i) we apply

once again the construction described in the proof of the previous
theorem and we create the function Ψ̄i according to (23). Obviously

um1(i) ≥ Ψ̄i on Ω. (33)

Then we consider l, 1−DIP with the fixed impediment Φj . For

each pair of the obstacles (Ψi,Φj) we build l global obstacles Ψ̃i

according to (23) and next we put Ψj = max
1≤i≤l

Ψ̃i. Then we consider
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1, 1−DIP with the admissible set

K
1(j)
1 = {v ∈ H1

0 (Ω) : v ≤ Ψj on Ω ∧ v ≤ Φj on Fj}. (34)

Its solution exists and we call it u
1(j)
1 .

One can observe that u
1(j)
l ∈ K1(j)

1 since (24) is satisfied for all

i = 1, . . . , l. Moreover, K
1(j)
1 ⊂ K

1(j)
l . Indeed, if we take v ∈ K1(j)

1

then v ≤ Φj on Fj and v ≥ Ψj = max
1≤i≤l

Ψ̃i and Ψ̃i = Ψi on Ei. Using

the coerciveness of the form a(·, ·) onH1
0 (Ω) we get that u

1(j)
l = u

1(j)
1 .

Concentrating once again on 1, 1−DIP with the pair of obstacles
(Ψj ,Φj) we create using (28) the global impediment Φ̄j such that

u
1(j)
l ≤ Φ̄j on Ω. (35)

At this moment we deal with two Lipschitz function Ψ̄i, Φ̄j sat-
isfying (33), (35), respectively. Repeating for all i = 1, . . . , l and for
all j = 1, . . . ,m the constructions described above we can build l
functions Ψ̄i (i = 1, . . . , l) and m functions Φ̄j (j = 1, . . . ,m). Then
we define:

Ψ = max
i=1,...,l

Ψ̄i, Φ = min
j=1,...,m

Φ̄j .

From (31) we get the following estimates which hold for arbitrary i, j

Ψ̄i ≤ um1(i) ≤ uml ≤ u
1(j)
l ≤ Φ̄j .

Thus

Ψ ≤ uml ≤ Φ. (36)

This together with uml ∈ H1
0 (Ω) implies that uml ∈ K̃1

1 , where K̃1
1 is

defined in (13). Moreover, due to definition of Ψ and Φ, it is easy to

see that K̃1
1 ⊂ Km

l .
Let us denote by ũ1

1 the solution of DGP with the impediments
Ψ and Φ. Using the coercivity of the form a(·, ·) in H1

0 (Ω) we deduce
that uml equals ũ1

1 which is Lipschitz continuous (see Lemma 3.1).
This completes the proof. �

Remark 3.6. It is well known that in case of solutions of the global
problems one can expect their regularity up to H2,p. For the in-
ner problem the situation is much more complicated. Despite H2,p

regularity of the obstacle the same class of the solution can not be
obtained. However under certain assumptions it is possible to get
H2,p regularity of the solutions (see [BS], [JOS]).
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Remark 3.7. It is worth pointing out that it was possible to adopt
the method of identification of the inner problem with the global one
to obtain the results concerning continuous dependence on obstacle
of solutions (see [OS], [JOS]).
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Cartan Subalgebras in C*-Algebras

JEAN RENAULT

Abstract. According to J. Feldman and C. Moore’s well-
known theorem on Cartan subalgebras, a variant of the group

measure space construction gives an equivalence of categories

between twisted countable standard measured equivalence re-
lations and Cartan pairs, i.e., a von Neumann algebra (on a

separable Hilbert space) together with a Cartan subalgebra.

A. Kumjian gave a C∗-algebraic analogue of this theorem in
the early eighties. After a short survey of maximal abelian

self-adjoint subalgebras in operator algebras, I present a nat-

ural definition of a Cartan subalgebra in a C∗-algebra and an
extension of Kumjian’s theorem which covers graph algebras

and some foliation algebras.

1. Introduction

One of the most fundamental constructions in the theory of operator
algebras, namely the crossed product construction, provides a sub-
algebra, i.e., a pair (B,A) consisting of an operator algebra A and
a subalgebra B ⊂ A, where B is the original algebra. The inclusion
B ⊂ A encodes the symmetries of the original dynamical system.
An obvious and naive question is to ask whether a given subalge-
bra arises from some crossed product construction. From the very
construction of the crossed product, a necessary condition is that B
is regular in A, which means that A is generated by the normalizer
of B. In the case of a crossed product by a group, duality theory
provides an answer (see Landstad [30]) which requires an external
information, namely the dual action. Our question is more in line
with subfactor theory, where one extracts an algebraic object (such
as a paragroup or a quantum groupoid) solely from an inclusion

2000 Mathematics Subject Classification. Primary 37D35; Secondary 46L85.
Key words and phrases. Masas, pseudogroups, Cartan subalgebras, essen-

tially principal groupoids.
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of factors. Under the assumption that B is maximal abelian, the
problem is somewhat more tractable. The most satisfactory result
in this direction is the Feldman–Moore theorem [18, Theorem 1],
which characterizes the subalgebras arising from the construction of
the von Neumann algebra of a measured countable equivalence rela-
tion. These subalgebras are precisely the Cartan subalgebras, a nice
kind of maximal abelian self-adjoint subalgebras (masas) introduced
previously by Vershik in [47]: they are regular and there exists a
faithful normal conditional expectation of A onto B. The Cartan
subalgebra contains exactly the same information as the equivalence
relation. This theorem leaves pending a number of interesting and
difficult questions. For example, the existence or the uniqueness of
Cartan subalgebras in a given von Neumann algebra. Another ques-
tion is to determine if the equivalence relation arises from a free
action of a countable group and if one can expect uniqueness of the
group. There have been some recent breakthroughs on these ques-
tions: for example [36, 37, 38, 33]; in [33], Ozawa and Popa give the
first examples of II1 factors containing a unique Cartan subalgebra
up to unitary conjugacy.

It was then natural to find a counterpart of the Feldman–Moore
theorem for C∗-algebras. In [25], Kumjian introduced the notion of a
C∗-diagonal as the C∗-algebraic counterpart of a Cartan subalgebra
and showed that, via the groupoid algebra construction, they corre-
spond exactly to twisted étale equivalence relations. A key ingredient
of his theorem is his definition of the normalizer of a subalgebra (a
definition in terms of unitaries or partial isometries would be too re-
strictive). His fundamental result, however, does not cover a number
of important examples. For example, Cuntz algebras, and more gen-
erally graph algebras, have obvious regular masas which are not C∗-
diagonals. The same is true for foliations algebras (or rather their re-
duction to a full transversal). The reason is that the groupoids from
which they are constructed are topologically principal but not prin-
cipal: they have some isotropy that cannot be eliminated. It seems
that, in the topological context, topologically principal groupoids are
more natural than principal groupoids (equivalence relations). They
are exactly the groupoids of germs of pseudogroups. Groupoids of
germs of pseudogroups present a technical difficulty: they may fail
to be Hausdorff (they are Hausdorff if and only if the pseudogroup
is quasi-analytical). For the sake of simplicity, our discussion will
be limited to the Hausdorff case. We refer the interested reader to
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a forthcoming paper about the non-Hausdorff case. A natural defi-
nition of a Cartan subalgebra in the C∗-algebraic context is that it
is a masa which is regular and which admits a faithful conditional
expectation. We show that in the reduced C∗-algebra of a topologi-
cally principal Hausdorff étale groupoid (endowed with a twist), the
subalgebra corresponding to the unit space is a Cartan subalgebra.
Conversely, every Cartan subalgebra (if it exists!) arises in that fash-
ion and completely determines the groupoid and the twist. Our proof
closely follows Kumjian’s. The comparison with Kumjian’s theorem
shows that a Cartan subalgebra has the unique extension property
if and only if the corresponding groupoid is principal. As a corollary
of the main result, we obtain that a Cartan subalgebra has a unique
conditional expectation, which is clear when the subalgebra has the
unique extension property but not so in the general case.

Here is a brief description of the content of this paper. In Sec-
tion 2, I will review some basic facts about masas in von Neumann
algebras, the Feldman–Moore theorem and some more recent results
on Cartan subalgebras. In Section 3, I will review the character-
ization of topologically principal groupoids as groupoids of germs
of pseudogroups of local homeomorphisms. In Section 4, I will re-
view the construction of the reduced C∗-algebra of a locally compact
Hausdorff groupoid G with Haar system and endowed with a twist. I
will show that, when G is étale, the subalgebra of the unit space is a
masa if and only if G is topologically principal. In fact, this is what
we call a Cartan subalgebra in the C∗-algebraic context: it means a
masa which is regular and which has a faithful conditional expecta-
tion. In Section 5, we show the converse: every Cartan subalgebra
arises from an topologically principal étale groupoid endowed with
a twist. This groupoid together with its twist is a complete isomor-
phism invariant of the Cartan subalgebra. We end with examples of
Cartan subalgebras in C∗-algebras.

This paper is a written version of a talk given at OPAW2006 in
Belfast. I heartily thank the organizers, M. Mathieu and I. Todorov,
for the invitation and the participants, in particular P. Resende, for
stimulating discussions. I also thank A. Kumjian and I. Moerdijk
for their interest and their help and the anonymous referee for his
help to improve the paper.



32 Jean Renault

2. Cartan Subalgebras in von Neumann Algebras

The basic example of a masa in an operator algebra is the subalgebra
Dn of diagonal matrices in the algebra Mn of complex-valued (n, n)-
matrices. Every masa in Mn is conjugated to it by a unitary (this is
essentially the well-known result that every normal complex matrix
admits an orthonormal basis of eigenvectors). The problem at hand
is to find suitable generalizations of this basic example.

The most immediate generalization is to replace Cn by an infinite
dimensional separable Hilbert space H and Mn by the von Neumann
algebra B(H) of all bounded linear operators on H. The spectral the-
orem tells us that, up to conjugation by a unitary, masas in B(H)
are of the form L∞(X), acting by multiplication on H = L2(X),
where X is an infinite standard measure space. Usually, one distin-
guishes the case of X = [0, 1] endowed with Lebesgue measure and
the case of X = N endowed with counting measure. In the first case,
the masa is called diffuse and in the second case, it is called atomic.
Atomic masas A in B(H) can be characterized by the existence of
a normal conditional expectation P : B(H) → A. Indeed, when
H = `2(N), operators are given by matrices and P is the restriction
to the diagonal. What we are looking for is precisely a generalization
of these atomic masas.

There is no complete classification of masas in non-type I factors.
In fact, the study of masas in non-type I factors looks like a rather
formidable task. In 1954, J. Dixmier [13] discovered the existence
of non-regular masas. A masa A in a von Neumann algebra M is
called regular if its normalizer N(A) (the group of unitaries u in M
which normalize A, in the sense that uAu∗ = A) generates M as
a von Neumann algebra. On the other hand, it is called singular
if N(A) is contained in A. When N(A) acts ergodically on A, the
masa A is called semi-regular. Every masa in B(H) (or in a type I
von Neumann algebra) is regular. Dixmier gave an example of a
singular masa in the hyperfinite II1 factor. Later, Popa has shown
in [35] that singular masas do exist in every separable II1 factor (as
we shall see, this is in sharp contrast with regular masas). Moreover,
every von Neumann subalgebra of a separable II1 factor is the image
of a normal conditional expectation. Thus, in order to generalize
the atomic masas of B(H), it is natural to consider masas which are
both regular and the image of a normal conditional expectation:
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Definition 2.1. (Vershik [47], Feldman–Moore [18, Definition 3.1])
An abelian subalgebra A of a von Neumann algebra M is called a
Cartan subalgebra if

(i) A is a masa;
(ii) A is regular;
(iii) there exists a faithful normal conditional expectation of M

onto A.

Cartan subalgebras are intimately related to ergodic theory. Indeed,
if M arises by the classical group measure construction from a free
action of a discrete countable group Γ on a measure space (X,µ),
then L∞(X,µ) is naturally imbedded in M as a Cartan subalgebra
([32]). Following generalizations by G. Zeller-Meier [50, Remarque
8.11], W. Krieger [21] and P. Hahn [20], J. Feldman and C. Moore
give in [18] the most direct construction of Cartan subalgebras. It
relies on the notion of a countable standard measured equivalence
relation. Here is its definition: (X,B, µ) is a standard measured
space and R is an equivalence relation on X such that its classes
are countable, its graph R is a Borel subset of X ×X and the mea-
sure µ is quasi-invariant under R. The last condition means that
the measures r∗µ and s∗µ on R are equivalent (where r, s denote
respectively the first and the second projections of R onto X and
r∗µ(f) =

∫ ∑
y f(x, y)dµ(x) for a positive Borel function f on R).

The orbit equivalence relation of an action of a discrete countable
group Γ on a measure space (X,µ) preserving the measure class of
µ is an example (in fact, according to [17, Theorem 1], it is the
most general example) of a countable standard equivalence relation.
The construction of the von Neumann algebra M = W ∗(R) mim-
icks the construction of the algebra of matrices Mn. Its elements
are complex Borel functions on R, the product is matrix multipli-
cation and involution is the usual matrix conjugation. Of course,
in order to have an involutive algebra of bounded operators, some
conditions are required on these functions: they act by left multi-
plication as operators on L2(R, s∗µ) and we ask these operators to
be bounded. The subalgebra A of diagonal matrices (functions sup-
ported on the diagonal of R), which is isomorphic to L∞(X,µ), is
a Cartan subalgebra of M . When X = N and µ is the counting
measure, one retrieves the atomic masa of B(`2(N)). This construc-
tion can be twisted by a 2-cocycle σ ∈ Z2(R,T); explicitly, σ is a
Borel function on R(2) = {(x, y, z) ∈ X ×X ×X : (x, y), (y, z) ∈ R}
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with values in the group of complex numbers of modulus 1 such that
σ(x, y, z)σ(x, z, t) = σ(x, y, t)σ(y, z, t). The only modification is to
define as product the twisted matrix multiplication f ∗ g(x, z) =∑
f(x, y)g(y, z)σ(x, y, z). This yields the von Neumann algebra

M = W ∗(R, σ) and its Cartan subalgebra A = L∞(X,µ) of diagonal
matrices. The Feldman–Moore theorem gives the converse.

Theorem 2.2. [18, Theorem 1] Let A be a Cartan subalgebra of a
von Neumann algebra M on a separable Hilbert space. Then there ex-
ists a countable standard measured equivalence relation R on (X,µ),
a σ ∈ Z2(R,T) and an isomorphism of M onto W ∗(R, σ) carrying A
onto the diagonal subalgebra L∞(X,µ). The twisted relation (R, σ)
is unique up to isomorphism.

The main lines of the proof will be found in the C∗-algebraic ver-
sion of this result. This theorem completely elucidates the structure
of Cartan subalgebras. It says nothing about the existence and the
uniqueness of Cartan subalgebras in a given von Neumann algebra.
We have seen that in B(H) itself, there exists a Cartan subalgebra,
which is unique up to conjugacy. The same result holds in every
injective von Neumann algebra. More precisely, two Cartan subal-
gebras of an injective von Neumann algebra are always conjugate by
an automorphism (but not always inner conjugate, as observed in
[18]). This important uniqueness result appears as [7, Corollary 11].
W. Krieger had previously shown in [22, Theorem 8.4] that two Car-
tan subalgebras of a von Neumann algebra M which produce hyper-
finite ([17, Definition 4.1]) equivalence relations are conjugate (then,
M is necessarily hyperfinite). On the other hand, it is not difficult
to show that a Cartan subalgebra of an injective von Neumann al-
gebra produces an amenable ([7, Definition 6]) equivalence relation.
Since Connes–Feldman–Weiss’s theorem states that an equivalence
relation is amenable if and only if it is hyperfinite, Krieger’s unique-
ness theorem can be applied. The general situation is more complex.
Here are some results related to Cartan subalgebras of type II1 fac-
tors. In [8], A. Connes and V. Jones give an example of a II1 factor
with at least two non-conjugate Cartan subalgebras. Then S. Popa
constructs in [36] a II1 factor with uncountably many non-conjugate
Cartan subalgebras. These examples use Kazhdan’s property T . In
[48], D. Voiculescu shows that for n ≥ 2, the von Neumann algebra
L(Fn) of the free group Fn on n generators has no Cartan subalge-
bra. Despite these rather negative results, it seems that the notion
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of Cartan subalgebra still has a rôle to play in the theory of II1 fac-
tors. For example, S. Popa has recently (see [37, 38]) constructed
and studied a large class of type II1 factors (from Bernoulli actions
of groups with property T ) which have a distinguished Cartan sub-
algebra, unique up to inner conjugacy; moreover, these factors sat-
isfy remarkable rigidity properties: isomorphisms of these factors
essentially arise from conjugacy of the actions. Still more recently
N. Ozawa and S. Popa give in [33] on one hand many examples of II1

factors which do not have any Cartan subalgebra and on the other
hand a new class of II1 factors which have a unique Cartan subalge-
bra, in fact unique not only up to conjugacy but to inner conjugacy.
This class consists of all the profinite ergodic probability preserving
actions of free groups Fn with n ≥ 2 and their products.

3. Topologically Principal Groupoids.

The purpose of this section is mainly notational. It recalls elemen-
tary facts about étale groupoids and pseudogroups of homeomor-
phisms. Concerning groupoids, we shall use the notation of [1].
Other relevant references are [40] and [34]. Given a groupoid G,
G(0) will denote its unit space and G(2) the set of composable pairs.
Usually, elements of G will be denoted by Greek letters as γ and ele-
ments of G(0) by Roman letters as x, y. The range and source maps
from G to G(0) will be denoted respectively by r and s. The fibers
of the range and source maps are denoted respectively Gx = r−1(x)
and Gy = s−1(y). The inverse map G → G is written γ 7→ γ−1,

the inclusion map G(0) → G is written x 7→ x and the product
map G(2) → G is written (γ, γ′) 7→ γγ′. The isotropy bundle is
G′ = {γ ∈ G : r(γ) = s(γ)}. It is the disjoint union of the isotropy
subgroups G(x) = Gx ∩Gx when x runs over G(0).

In the topological setting, we assume that the groupoid G is a
topological space and that the structure maps are continuous, where
G(2) has the topology induced by G×G and G(0) has the topology
induced by G. We assume furthermore that the range and source
maps are open. A topological groupoid G is called étale when its
range and source maps are local homeomorphisms from G onto G(0).

We shall be exclusively concerned here with groupoids of germs.
They are intimately connected with pseudogroups. Here are the defi-
nitions. LetX be a topological space. A homeomorphism ϕ : U → V ,
where U, V are open subsets ofX, is called a partial homeomorphism.
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Under composition and inverse, the partial homeomorphisms of X
form an inverse semigroup. A pseudogroup on X is a family G of
partial homeomorphisms of X stable under composition and inverse.
We say that the pseudogroup G is ample if every partial homeomor-
phism ϕ which locally belongs to G (i.e., every point in the domain
of ϕ has an open neighborhood U such that ϕ|U = β|U with β ∈ G)
does belong to G. Given a pseudogroup G, we denote by [G] the
set of partial homeomorphisms which belong locally to G; it is an
ample pseudogroup called the ample pseudogroup of G. Given a
pseudogroup G on the topological space X, its groupoid of germs is

G = {[x, ϕ, y], ϕ ∈ G, y ∈ dom(ϕ), x = ϕ(y)}.

where [x, ϕ, y] = [x, ψ, y] if and only if ϕ and ψ have the same germ
at y, i.e., there exists a neighborhood V of y in X such that ϕ|V =
ψ|V . Its groupoid structure is defined by the range and source maps
r[x, ϕ, y] = x, s[x, ϕ, y] = y, the product [x, ϕ, y][y, ψ, z] = [x, ϕψ, z]
and the inverse [x, ϕ, y]−1 = [y, ϕ−1, x]. Its topology is the topology
of germs, defined by the basic open sets

U(U,ϕ, V ) = {[x, ϕ, y] ∈ G : x ∈ U, y ∈ V }

where U, V are open subsets of X and ϕ ∈ G. Observe that the
groupoid of germs G of the pseudogroup G on X depends on the
ample pseudogroup [G] only.

Conversely, an étale groupoid G defines a pseudogroup G on X =
G(0) as follows. Recall that a subset A of a groupoid G is called an
r-section [resp. an s-section] if the restriction of r [resp. s] to A is
injective. A bisection is a subset S ⊂ G which is both an r-section
and an s-section. If G is an étale topological groupoid, it has a cover
of open bisections. The open bisections of an étale groupoid G form
an inverse semigroup S = S(G): the composition law is

ST = {γγ′ : (γ, γ′) ∈ (S × T ) ∩G(2)}

and the inverse of S is the image of S by the inverse map. The inverse
semigroup relations, which are (RS)T = R(ST ), (ST )−1 = T−1S−1

and SS−1S = S, are indeed satisfied. A bisection S defines a map
αS : s(S)→ r(S) such that αS(x) = r(Sx) for x ∈ s(S). If moreover
G is étale and S is an open bisection, this map is a homeomorphism.
The map α : S 7→ αS is an inverse semigroup homomorphism of the
inverse semigroup of open bisections S into the inverse semigroup of



Cartan Subalgebras in C*-Algebras 37

partial homeomorphisms of X. We call it the canonical action of S
on X. The relevant pseudogroup is its range G = α(S).

Proposition 3.1. Let G be a pseudogroup on X, let G be its groupoid
of germs and let S be the inverse semigroup of open bisections of G.
Then

(i) The pseudogroup α(S) is the ample pseudogroup [G] of G.
(ii) The canonical action α is an isomorphism from S onto [G].

Proof. We have observed above that G and [G] define the same
groupoid of germs G. Thus, every ϕ ∈ [G] defines the open bi-
section S = Sϕ = U(X,ϕ,X). By construction, αS = ϕ. Con-
versely, let S be an open bisection of G. It can be written as a union
S = ∪iU(Vi, ϕi, Ui), where Ui, Vi are open subsets of X and ϕi ∈ G.
This shows that ϕ = αS belongs to [G] and that Sϕ = S. In other
words, the maps S → αS and ϕ→ Sϕ are inverse of each other. �
Proposition 3.2. Let G be an étale groupoid over X and let α be
the canonical action of the inverse semigroup of its open bisections
S on X. Let H be the groupoid of germs of the pseudogroup α(S).
Then we have a short exact sequence of étale groupoids

int(G′) � G� H

where int(G′) is the interior of the isotropy bundle.

Proof. We define α∗ : G→ H by sending γ ∈ G into [r(γ), αS , s(γ)],
where S is an open bisection containing γ. This does not depend
on the choice of S, because αS , αT and αS∩T , where T is another
open bisection containing γ, have the same germ at s(γ). It is read-
ily verified that α∗ is a continuous and surjective homomorphism.
Moreover, α∗(γ) is a unit in H if and only if the germ of S at s(γ)
is the identity. This happens if and only if γ belongs to the interior
of G′ because αS is an identity map if and only if S is contained
in G′. �
Corollary 3.3. Let G be an étale groupoid over X and let S be
the inverse semigroup of its open bisections. Let α be the canonical
action of S on X. The following properties are equivalent:

(i) The map α is one-to-one.
(ii) The interior of G′ is reduced to G(0).

Proof. Assume that the map α is one-to-one. Then, the above map
α∗ : G→ H is one-to-one. Hence its kernel int(G′) is reduced toG(0).
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Conversely, if int(G′) = G(0), then G is isomorphic to H. Hence it
is a groupoid of germs. Therefore, according to Proposition 3.1(ii),
α is one-to-one. �

Definition 3.4. An étale groupoid which satisfies above equivalent
conditions is called effective.

The reader will find a good discussion of this notion in the mono-
graph [31, Section 5.5] by I. Moerdijk and J. Mrc̃un .

Definition 3.5. Let us a say that an étale groupoid G is

(i) principal if G′ = G(0)

(ii) topologically principal if the set of points of G(0) with trivial
isotropy is dense.

The property (ii) appears under the name essentially principal
in some previous articles (e.g., [3]). The present terminology agrees
with the notion of a topologically free action introduced in [45, Def-
inition 2.1].

The following proposition links effective groupoids and topologi-
cally principal groupoids.

Proposition 3.6. Let G be an étale groupoid.

(i) If G is Hausdorff and topologically principal, then it is ef-
fective;

(ii) If G is a second countable effective groupoid and its unit
space G(0) has the Baire property, then it is topologically
principal.

Proof. Let us introduce the set Y of units with trivial isotropy and
its complement Z = G(0) \Y . Let us suppose that G is topologically
principal. Then Z has an empty interior. Let U be an open subset
of G contained in G′. Since G is Hausdorff, G(0) is closed in G and
U \G(0) is open. Therefore r(U \G(0)), which is open and contained
in Z, is empty. This implies that U \G(0) itself is empty and that U
is contained in G(0).

Let us assume that G is second countable, that its unit space G(0)

has the Baire property and that it is effective. We choose a countable
family (Sn) of open bisections which covers G. We introduce the
subsets An = r(Sn ∩ G′) of G(0). By definition, for each n, Yn =
int(An) ∪ ext(An) is a dense open subset of G(0). By the Baire
property, the intersection ∩nYn is dense in G(0). Let us show that
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∩nYn is contained in Y . Suppose that x belongs to ∩nYn and that γ
belongs to G(x). There exists n such that γ belongs to Sn. Then γ
belongs to Sn∩G′ and x = r(γ) belongs to An. Since it also belongs
to Yn, it must belong to int(An). Let V be an open set containing
x and contained in An. Since r is a bijection from Sn ∩G′ onto An,
the open set V Sn is contained in G′. According to condition (ii) of
Corollary 3.3, it is contained in G(0) and γ = xSn belongs to G(0).
Therefore x belongs to Y . �

There are easy examples of groupoids of germs which are not
topologically principal. For example, the groupoid of germs of the
pseudogroup of all partial homeomorphisms of R, which is transitive,
is not topologically principal.

4. The Analysis of the Twisted Groupoid C∗-Algebra.

Following [25], one defines a twisted groupoid as a central groupoid
extension

T×G(0) � Σ � G

where T is the circle group. Thus, Σ is a groupoid containing T×G(0)

as a subgroupoid. One says that Σ is a twist over G. We assume that
Σ and G are topological groupoids. In particular, Σ is a principal
T-space and Σ/T = G. We form the associated complex line bundle
L = (C×Σ)/T over G, where T acts by the diagonal action z(λ, σ) =
(λz, zσ). The class of (λ, σ) is written [λ, σ]. We write σ̇ ∈ G the
image of σ ∈ Σ. The line bundle L is a Fell bundle over the groupoid
G, as defined in [27] (see also [16]): it has the product Lσ̇⊗Lτ̇ → Lσ̇τ ,
sending ([λ, σ], [µ, τ ]) into [λµ, στ ] and the involution Lσ̇ → Lσ̇−1

sending [λ, σ] into [λ, σ−1]. An element u of a Fell bundle L is called
unitary if u∗u and uu∗ are unit elements. The set of unitary elements
of L can be identified to Σ through the map σ ∈ Σ 7→ [1, σ] ∈ L.
In fact, this gives a one-to-one correspondence between twists over
G and Fell line bundles over G (see [12]). It is convenient to view
the sections of L as complex-valued functions f : Σ → C satisfying
f(zσ) = f(σ)z for all z ∈ T, σ ∈ Σ and we shall usually do so. When
there is no risk of confusion, we shall use the same symbol for the
function f and the section of L it defines.

In order to define the twisted convolution algebra, we assume
from now on that G is locally compact, Hausdorff, second countable
and that it possesses a Haar system λ. It is a family of measures
{λx} on G, indexed by x ∈ G(0), such that λx has exactly Gx as its
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support, which is continuous, in the sense that for every f ∈ Cc(G),
the function λ(f) : x 7→ λx(f) is continuous, and invariant, in the
sense that for every γ ∈ G, R(γ)λr(γ) = λs(γ), where R(γ)γ′ = γ′γ.
When G is an étale groupoid, it has a canonical Haar system, namely
the counting measures on the fibers of s.

Let (G,λ) be a Hausdorff locally compact second countable group-
oid with Haar system and let Σ be a twist over G. We denote by
Cc(G,Σ) the space of continuous sections with compact support of
the line bundle associated with Σ. The following operations

f ∗ g(σ) =

∫
f(στ−1)g(τ)dλs(σ)(τ̇) (1)

f∗(σ) = f(σ−1) (2)

turn Cc(G,Σ) into a ∗-algebra. Furthermore, we define for x ∈ G(0)

the Hilbert space Hx = L2(Gx, Lx, λx) of square-integrable sections
of the line bundle Lx = L|Gx

. Then, for f ∈ Cc(G,Σ), the operator
πx(f) on Hx defined by

πx(f)ξ(σ) =

∫
f(στ−1)ξ(τ)dλx(τ̇)

is bounded. This can be deduced from the useful estimate:

‖πx(f)‖ ≤ ‖f‖I = max (sup
y

∫
|f |dλy, sup

y

∫
|f∗|dλy).

Moreover, the field x 7→ πx(f) is continuous when the family of
Hilbert spaces Hx is given the structure of a continuous field of
Hilbert spaces by choosing Cc(G,Σ) as a fundamental family of con-
tinuous sections. Equivalently, the space of sections C0(G(0), H) is a
right C∗-module over C0(G(0)) and π is a representation of Cc(G,Σ)
on this C∗-module.

The reduced C∗-algebra C∗red(G,Σ) is the completion of Cc(G,Σ)
with respect to the norm ‖f‖ = supx ‖πx(f)‖.

Let us now study the properties of the pair (A = C∗red(G,Σ), B =

C0(G(0))) that we have constructed from a twisted étale Hausdorff
locally compact second countable groupoid (G,Σ).

The main technical tool is that the elements of the reduced C∗-
algebra C∗red(G,Σ) are still functions on Σ (or sections of the line
bundle L).
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Proposition 4.1. [40, II.4.1] Let G be an étale Hausdorff locally
compact second countable groupoid and let Σ be a twist over G. Then,
for all f ∈ Cc(G,Σ) we have:

(i) |f(σ)| ≤ ‖f‖ for every σ ∈ Σ and
(ii)

∫
|f |2dλx ≤ ‖f‖2 for every x ∈ G(0).

Proof. This is easily deduced (see [40, II.4.1]) from the following
equalities:

f(σ) =< εσ, πs(σ)(f)εs(σ) >, f|Σx
= πx(f)εx,

where f ∈ Cc(G,Σ), σ ∈ Σ, x ∈ G(0) and εσ ∈ Hs(σ) is defined by
εσ(τ) = z if τ = zσ and 0 otherwise. �

As a consequence ([40, II.4.2]) the elements of C∗red(G,Σ) can
be viewed as continuous sections of the line bundle L. Moreover,
the equations (1) and (2) defining f ∗ g and f∗ are still valid for
f, g ∈ C∗red(G,Σ) (the sum defining f ∗ g(σ) is convergent). It will
be convenient to define the open support of a continuous section f
of the line bundle L as

supp′(f) = {γ ∈ G : f(γ) 6= 0}.

Note that the unit space G(0) of G is an open (and closed) subset of
G and that the restrictions of the twist Σ and of the line bundle L
to G(0) are trivial. We have the following identification:

C0(G(0)) = {f ∈ C∗red(G,Σ) : supp′(f) ⊂ G(0)}

where h ∈ C0(G(0)) defines the section f defined by f(σ) = h(x)z
if σ = (x, z) belongs to G(0) × T and f(σ) = 0 otherwise. Then
B = C0(G(0)) is an abelian sub-C∗-algebra of A = C∗red(G,Σ) which
contains an approximate unit of A.

Here is an important application of the fact that the elements of
C∗red(G,Σ) can be viewed as continuous sections.

Theorem 4.2. [40, II.4.7] Let (G,Σ) be a twisted étale Hausdorff
locally compact second countable groupoid. Let A = C∗red(G,Σ) and

B = C0(G(0)). Then

(i) an element a ∈ A commutes with every element of B if and
only if its open support supp′(a) is contained in G′;

(ii) B is a masa if and only if G is topologically principal.
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Proof. Since the elements of C∗red(G,Σ) are continuous sections of
the associated line bundle L, it is straightforward to spell out the
condition ab = ba for all b ∈ B. It implies the given condition on
the support of a. We refer to [40, II.4.7] for details. One deduces
from (i) that B is a masa if and only if the interior of G′ is G(0).
According to Proposition 3.6, this is equivalent under our hypotheses
to G being topologically principal. �

Another piece of structure of the pair (A = C∗red(G,Σ), B =

C0(G(0))) is the restriction map P : f 7→ f|G(0) from A to B.

Proposition 4.3. [40, II.4.8] Let (G,Σ) be a twisted étale Hausdorff
locally compact second countable groupoid. Let P : C∗red(G,Σ) →
C0(G(0)) be the restriction map. Then

(i) P is a conditional expectation onto C0(G(0)).
(ii) P is faithful.
(iii) If G is topologically principal, P is the unique conditional

expectation onto C0(G(0)).

Proof. This is proved in [40, II.4.8] in the principal case. The main
point of (i) is that P is well defined, which is clear from the above.
There is no difficulty checking that it has all the properties of an
expectation map. Note that for h ∈ C0(G(0)) and f ∈ C∗red(G,Σ),
we have (hf)(σ) = h(r(σ))f(σ) and (fh)(σ) = f(σ)h(s(σ)). The
assertion (ii) is also clear: for f ∈ C∗red(G,Σ) and x ∈ G(0), we have

P (f∗ ∗ f)(x) =

∫
|f(τ)|2dλx(τ̇).

Hence, if P (f∗∗f) = 0, f(τ) = 0 for all τ ∈ Σ. Let us prove (iii). Let
Q : C∗red(G,Σ) → C0(G(0)) be a conditional expectation. We shall
show that Q and P agree on Cc(G,Σ), which suffices to prove the
assertion. Let f ∈ Cc(G,Σ) with compact support K in G. We first
consider the case when K is contained in an open bisection S which
does not meet G(0) and show that Q(f) = 0. If x ∈ G(0) does not
belong to s(K), then Q(f)(x) = 0. Indeed, we choose h ∈ Cc(G(0))
such that h(x) = 1 and its support does not meet s(K). Then fh =
0, therefore Q(f)(x) = Q(f)(x)h(x) = (Q(f)h)(x) = Q(fh)(x) = 0.
Let x0 ∈ G(0) be such that Q(f)(x0) 6= 0. Then Q(f)(x) 6= 0 on an
open neighborhood U of x0. Necessarily, U contained in s(S). Since
G is topologically principal and S does not meet G(0), the induced
homeomorphism αS : s(S) → r(S) is not the identity map on U .
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Therefore, there exists x1 ∈ U such that x2 = αS(x1) 6= x1. We
choose h ∈ Cc(G(0)) such that h(x1) = 1 and h(x2) = 0. We have
hf = f(h ◦ αS). Therefore,

Q(f)(x1) = h(x1)Q(f)(x1) = Q(hf)(x1)

= Q(f(h ◦ αS))(x1) = Q(f)(x1)h(x2) = 0.

This is a contradiction. Therefore Q(f) = 0. Next, let us consider
an arbitrary f ∈ Cc(G,Σ) with compact support K in G. We use
the fact that G(0) is both open and closed in G. The compact set
K \G(0) can be covered by finitely many open bisections S1, . . . , Sn
of G. Replacing if necessary Si by Si \ G(0), we may assume that
Si ∩G(0) = ∅. We set S0 = G(0). We introduce a partition of unity
(h0, h1, . . . , hn) subordinate to the open cover (S0, S1, . . . , Sn) of K:
for all i = 0, . . . , n, hi : G → [0, 1] is continuous, it has a compact
support contained in Si and

∑n
i=0 hi(γ) = 1 for all γ ∈ K. We define

fi ∈ Cc(G,Σ) by fi(σ) = hi(σ̇)f(σ). Then, we have f =
∑n
i=0 fi,

f0 = P (f) and fi has its support contained in Si for all i. Since
f0 ∈ C0(G(0)), Q(f0) = f0. On the other hand, according to the
above, Q(fi) = 0 for i = 1, . . . , n. Therefore, Q(f) = f0 = P (f). �

The C∗-module C0(G(0), H) over C0(G(0)) introduced earlier to
define the representation π and the reduced norm on Cc(G,Σ) is the
completion of A with respect to the B-valued inner product P (a∗a′);
the representation π is left multiplication.

The conditional expectation P will be used to recover the elements
of A as sections of the line bundle L:

Lemma 4.4. Let (G,Σ) be a twisted étale Hausdorff locally compact
second countable groupoid. Let P : A = C∗red(G,Σ)→ B = C0(G(0))
be the restriction map. Then we have the following formula: for all
σ ∈ Σ, for all n ∈ A such that supp′(n) is a bisection containing σ̇
and all a ∈ A:

P (n∗a)(s(σ)) = n(σ)a(σ).

Proof. This results from the definitions. �

The last property of the subalgebra B = C0(G(0))) of (A =
C∗red(G,Σ) which interests us is that it is regular. This requires
the notion of normalizer as introduced by A. Kumjian.

Definition 4.5. [25, 1.1] LetB be a sub C∗-algebra of a C∗-algebraA.
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(i) Its normalizer is the set

N(B) = {n ∈ A : nBn∗ ⊂ B and n∗Bn ⊂ B}.
(ii) One says that B is regular if its normalizer N(B) generates

A as a C∗-algebra.

Before studying the normalizer of C0(G(0))) in C∗red(G,Σ), let
us give some consequences of this definition. We first observe that
B ⊂ N(B) and N(B) is closed under multiplication and involution.
It is also a closed subset of A. We shall always assume that B
contains an approximate unit of A. This condition is automatically
satisfied when B is maximal abelian and A has a unit but this is not
so in general (see [49]). We then have the following obvious fact.

Lemma 4.6. Assume that B be is a sub C∗-algebra of a C∗-algebra
A containing an approximate unit of A. Let n ∈ N(B). Then
nn∗, n∗n ∈ B.

Assume also that B is abelian. Let X = B̂ so that B = C0(X).
For n ∈ N(B), define dom(n) = {x ∈ X : n∗n(x) > 0} and ran(n) =
{x ∈ X : nn∗(x) > 0}. These are open subsets of X.

Proposition 4.7. [25, 1.6] Given n ∈ N(B), there exists a unique
homeomorphism αn : dom(n)→ ran(n) such that, for all b ∈ B and
all x ∈ dom(n),

n∗bn(x) = b(αn(x))n∗n(x).

Proof. See [25]. The proof uses the polar decomposition n = u|n|
of n in the envelopping von Neumann algebra A∗∗. The partial
isomorphism of B: b 7→ u∗bu implemented by the partial isometry u
gives the desired homeomorphism αn. �
Proposition 4.8. Let (G,Σ) be a twisted étale Hausdorff locally
compact second countable groupoid. Let A = C∗red(G,Σ) and B =

C0(G(0)) be as above. Then

(i) If the open support S = supp′(a) of a ∈ A is a bisection of
G, then a belongs to N(B) and αa = αS;

(ii) If G is topologically principal, the converse is true. Namely
the normalizer N(B) consists exactly of the elements of A
whose open support is a bisection.

Proof. Suppose that S = supp′(a) is a bisection. Then, for b ∈ B,

a∗ba(σ) =

∫
a(τσ−1)b ◦ r(τ)a(τ)dλs(σ)(τ̇).



Cartan Subalgebras in C*-Algebras 45

The integrand is zero unless τ̇ ∈ S and ˙τσ−1 ∈ S, which implies that
σ̇ is a unit. Therefore supp′(a∗ba) ⊂ G(0) and a∗ba ∈ B. Similarly,
aba∗ ∈ B. Moreover, if σ̇ = x is a unit, we must have τ̇ = Sx and
therefore

a∗ba(x) = a∗a(x)b ◦ r(Sx) = a∗a(x)b ◦ αS(x).

This shows that αa = αS .
Conversely, let us assume that a belongs to N(B). Let S =

supp′(a). Let us fix x ∈ dom(a). The equality

b(αa(x)) =

∫ |a(τ)|2
a∗a(x)

b ◦ r(τ)dλx(τ̇)

holds for all b ∈ B. In other words, the pure state δαa(x) is ex-
pressed as a (possibly infinite) convex combination of pure states.
This implies that a(τ) = 0 if r(τ) 6= αa(x). Let

T = {γ ∈ G : s(γ) ∈ dom(a), and r(γ) = αa ◦ s(γ)}.
We have established the containment S ⊂ T . This implies SS−1 ⊂
TT−1 ⊂ G′. If G is topologically principal, SS−1 which is open
must be contained in G(0). Similarly, S−1S must be contained in
G(0). This shows that S is a bisection. �
Corollary 4.9. Let (G,Σ) be a twisted étale Hausdorff locally com-
pact second countable groupoid. Let A = C∗red(G,Σ). Then B =

C0(G(0)) is a regular sub-C∗-algebra of A.

Proof. Since G is étale, the open bisections of G form a basis of
open sets for G. Every element f ∈ Cc(G,Σ) can be written as a
finite sum of sections supported by open bisections. Thus the linear
span of N(B) contains Cc(G,Σ). Therefore, N(B) generates A as a
C∗-algebra. �

We continue to investigate the properties of the normalizer N(B).

Lemma 4.10. [25, 1.7] Let B be a sub-C∗-algebra of a C∗-algebra A.
Assume that B is abelian and contains an approximate unit of A.
Then

(i) If b ∈ B, αb = iddom(b).

(ii) If m,n ∈ N(B), αmn = αm ◦ αn and αn∗ = α−1
n .

This shows that G(B) = {αa, a ∈ N(B)} is a pseudogroup on
X. By analogy with the canonical action of the inverse semigroup
of open bisections of an étale groupoid, we shall call the map α :
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N(B) → G(B) such that α(n) = αn the canonical action of the
normalizer.

Definition 4.11. We shall say that G(B) is the Weyl pseudogroup
of (A,B). We define the Weyl groupoid of (A,B) as the groupoid of
germs of G(B).

Proposition 4.12. Let B be a sub-C∗-algebra of a C∗-algebra A.
Assume that B is abelian and contains an approximate unit of A.
Then:

(i) The kernel of the canonical action α : N(B)→ G(B) is the
commutant N(B) ∩B′ of B in N(B).

(ii) If B is maximal abelian, then kerα = B.

Proof. If n ∈ N(B) ∩ B′, then for all b ∈ B, n∗bn = bn∗n. By
comparing with the definition of αn, we see that αn(x) = x for all
x ∈ dom(n). Conversely, suppose that n ∈ N(B) satisfies n∗bn(x) =
b(x)n∗n(x) for all b ∈ B and all x ∈ dom(n). We also have n∗bn(x) =
b(x)n∗n(x) = 0 when x /∈ dom(n) because of the inequality 0 ≤
n∗bn ≤ ‖b‖n∗n for b ∈ B+. Therefore n∗bn = bn∗n for all b ∈ B. As
observed in [25, 1.9], this implies that (nb− bn)∗(nb− bn) = 0 for all
b ∈ B and nb = bn for all b ∈ B. The assertion (ii) is an immediate
consequence of (i). �

Let us study the normalizer N(B) in our particular situation,
where A = C∗red(G,Σ) and B = C0(G(0)).

Proposition 4.13. Let (G,Σ) be a twisted étale Hausdorff locally
compact second countable groupoid. Let A = C∗red(G,Σ) and B =

C0(G(0)) be as above. Assume that G is topologically principal.
Then,

(i) the Weyl pseudogroup G(B) of (A,B) consists of the partial
homeomorphisms αS where S is an open bisection of G such
that the restriction of the associated line bundle L to S is
trivializable;

(ii) the Weyl groupoid G(B) of (A,B) is canonically isomorphic
to G.

Proof. Recall that S denotes the inverse semigroup of open bisections
of G and G denotes the pseudogroup defined by S. We have defined
the canonical action α : S → G and the canonical action α : N(B)→
G(B). We have seen that α and α are related by α = α ◦ supp′,
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where supp′(n) denotes the open support of n ∈ N(B), Moreover,
the restriction of the line bundle to S = supp′(n) is trivializable,
since it possesses a non-vanishing section. Conversely, let S be an
open bisection such that the restriction L|S is trivializable. Let us
choose a non-vanishing continuous section u : S → L. Replacing
u(γ) by u(γ)/‖u(γ)‖, we may assume that ‖u(γ)‖ = 1 for all γ ∈
S. Then, we choose h ∈ C0(G(0)) such that supp′(h) = s(S) and
define the section n : G → L by n(γ) = u(γ)h ◦ s(γ) if γ ∈ S
and n(γ) = 0 otherwise. Let (hi) be a sequence in Cc(G

(0)), with
supp(hi) ⊂ s(S), converging uniformly to h. Then uhi ∈ Cc(G,Σ)
and the sequence (uhi) converges to n in the norm ‖.‖I introduced
earlier. This implies that n belongs to A. We have S = supp′(n) as
desired. This shows that G(B) is exactly the pseudogroup consisting
of the partial homeomorphisms αS such that S is an open bisection
of G on which L is trivializable. According to a theorem of Douady
and Soglio-Hérault (see Appendix of [16]), for all open bisection S
and all γ ∈ S, there exists an open neighborhood T of γ contained in
S on which L is trivializable. Therefore G(B) and the pseudogroup
G defined by all open bisections have the same groupoid of germs,
which is isomorphic to G by Corollary 3.6. �

Let us see next how the twist Σ over G can be recovered from the
pair (A,B). This is done exactly as in Section 3 of [25]. Given an

abstract pair (A,B), we set X = B̂ and introduce

D = {(x, n, y) ∈ X ×N(B)×X : n∗n(y) > 0 and x = αn(y)}
and its quotient Σ(B) = D/ ∼ by the equivalence relation: (x, n, y) ∼
(x′, n′, y′) if and only if y = y′ and there exist b, b′ ∈ B with
b(y), b′(y) > 0 such that nb = n′b′. The class of (x, n, y) is de-
noted by [x, n, y]. Now Σ(B) has a natural structure of groupoid
over X, defined exactly in the same fashion as a groupoid of germs:
the range and source maps are defined by r[x, n, y] = x, s[x, n, y] =
y, the product by [x, n, y][y, n′, z] = [x, nn′, z] and the inverse by
[x, n, y]−1 = [y, n∗, x].

The map (x, n, y) → [x, αn, y] from D to G(B) factors through
the quotient and defines a groupoid homomorphism from Σ(B) onto
G(B). Moreover the subset B = {[x, b, x] : b ∈ B, b(x) 6= 0} ⊂ Σ(B)
can be identified with the trivial group bundle T ×X via the map
[x, b, x] 7→ (b(x)/|b(x)|, x). In general, B → Σ(B) → G(B) is not an
extension, but this is the case when B is maximal abelian.
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Proposition 4.14. Assume that B is a masa in A containing an
approximate unit of A. Then

B → Σ(B)→ G(B)

is (algebraically) an extension.

Proof. We have to check that an element [x, n, y] of Σ(B) which has
a trivial image in G(B) belongs to B. If the germ of αn at y is the
identity, then x = y and we have a neighborhood U of y contained in
dom(n) such that αn(z) = αn∗(z) = z for all z ∈ U . We choose b ∈ B
with compact support contained in U and such that b(x) > 0 and we
define n′ = nb. Then αn′ is trivial. According to Proposition 4.12,
n′ belongs to B and [x, n, x] = [x, n′, x] belongs to B. �

We shall refer to Σ(B) as the Weyl twist of the pair (A,B).

Proposition 4.15. Let (G,Σ) be a twisted étale Hausdorff locally
compact second countable topologically principal groupoid. Let A =
C∗red(G,Σ) and B = C0(G(0)) be as above. Then we have a canonical
isomorphism of extensions:

B −−−−→ Σ(B) −−−−→ G(B)
y

y
y

T×G(0) −−−−→ Σ −−−−→ G

Proof. The left and right vertical arrows have been already defined
and shown to be isomorphisms. It suffices to define the middle ver-
tical arrow and show that it is a groupoid homomorphism which
makes the diagram commutative. Let (x, n, y) ∈ D. Since n belongs
to N(B) and G is topologically principal, S = supp′(n) is an open

bisection of G. The element n(Sy)/
√
n∗n(y) is a unitary element

of L because n∗n(y) = ‖n(Sy)‖2 and can therefore be viewed as an
element of Σ. Let (x, n′, y) ∼ (x, n, y). There exist b, b′ ∈ B with
b(y), b′(y) > 0 such that nb = n′b′. This implies that the open sup-
ports S = supp′(n) and S = supp′(n) agree on some neighborhood
of Sy. In particular, Sy = S′y . Moreover, the equality n(Sy)b(y) =

n′(Sy)b′(y) implies that n(Sy)/
√
n∗n(y) = n′(Sy)/

√
n′∗n′(y). Thus

we have a well-defined map Φ : [x, n, y] 7→ (n(Sy)/
√
n∗n(y), Sy)

from Σ(B) to Σ. Let us check that it is a groupoid homomorphism.
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Suppose that we are given (x,m, y), (y, n, z) ∈ D. Let S = supp′(m),
T = supp′(n). Then supp′(mn) = ST . We have to check the equality

mn(STz)√
(mn)∗mn(z)

=
m(Sy)√
m∗m(y)

n(Tz)√
n∗n(z)

.

It is satisfied because mn(STz) = m(Sy)n(Tz) and

(mn)∗(mn)(z) = (n∗(m∗m)n)(z)

= (m∗m)(αn(z))n∗n(z) = m∗m(y)n∗n(z).

The image of [x, n, y]−1 = [y, n∗, x] is

n∗(S−1x)/
√
nn∗(x) = (n(xS))∗/

√
nn∗(x).

It is the inverse of n(Sy)/
√
n∗n(y) because xS = Sy and nn∗(x) =

n∗n(y) and the involution agrees with the inverse on Σ ⊂ L. Let us
check that we have a commutative diagram. The restriction of Φ to
B sends [x, b, x] to (b(x)/|b(x)|, x). This is exactly the left vertical
arrow. The image of [x, n, y] in G(B) is the germ [x, αn, y]. The

image of (n(Sy)/
√
n∗n(y), Sy) in G is Sy. The map [x, αn, y] 7→ Sy

is indeed the canonical isomorphism from G(B) onto G. �

In the previous proposition, we have viewed Σ(B) as an algebraic
extension. It is easy to recover the topology of Σ(B). Indeed, as
we have already seen, every n ∈ N(B) defines a trivialization of
the restriction of Σ(B) to the open bisection S = supp′(n). This
holds in the abstract framework. Assume that B is a masa in A.
Let n ∈ N(B). Its open support is by definition the open bisection
S ⊂ G(B) which induces the same partial homeomorphism as n. We
define the bijection

ϕn : T× dom(n)→ Σ(B)|S ,

by ϕn(t, x) = [αn(x), tn, x].

Lemma 4.16. (cf. [25, Section 3]) Assume that B is a masa in A
containing an approximate unit of A. With above notation,

(i) Two elements n1, n2 ∈ N(B) which have the same open
support S define compatible trivializations of Σ(B)|S.

(ii) Σ(B) is a locally trivial topological twist over G(B).

Proof. For (i), assume that n1 and n2 have the same open support S.
Then, according to Proposition 4.12, there exist b1, b2 ∈ B, non
vanishing on s(S) and such that n1b1 = n2b2. A simple computation
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from the relation ϕn1(t1, x) = ϕn2(t2, x) and the fact that for n ∈
N(B) and b ∈ B, the equality nb = 0 implies b(x) = 0 whenever

n∗n(x) > 0 gives t2 = t1u(x) where u(x) = b2(x)|b1(x)|
|b2(x)|b1(x) . Therefore,

the transition function is a homeomorphism. We deduce (ii). Indeed,
we have given a topology to Σ(B)|S whenever S is a bisection arising
from the Weyl pseudogroup G(B). This family, which is stable under
finite intersection and which covers Σ(B), is a base of open sets for
the desired topology. �

5. Cartan Subalgebras in C∗-Algebras

Motivated by the properties of the pair
(
A = C∗red(G,Σ), B =

C0(G(0))) arising from a twisted étale locally compact second count-
able Hausdorff topologically principal groupoid, we make the follow-
ing definition, analogous to [18, Definition 3.1] of a Cartan subal-
gebra in a von Neumann algebra. We shall always assume that the
ambient C∗-algebra A is separable.

Definition 5.1. We shall say that an abelian sub-C∗-algebra B of
a C∗-algebra A is a Cartan subalgebra if

(i) B contains an approximate unit of A;
(ii) B is maximal abelian;
(iii) B is regular;
(iv) there exists a faithful conditional expectation P of A onto

B.

We shall say that (A,B) is a Cartan pair when B is a Cartan subal-
gebra.

Let us give some comments about the definition. First, when A
has a unit, a maximal abelian sub-C∗-algebra necessarily contains the
unit; however, as said earlier, there exist maximal abelian sub-C∗-
algebras which do not contain an approximate unit for the ambient
C∗-algebra. Since in our models, namely étale groupoid C∗-algebras,
the subalgebra corresponding to the unit space always contains an
approximate unit of A, we have to make this assumption. Second
this definition of a Cartan subalgebra should be compared to the
Definition 1.3 of a C∗-diagonal given by A. Kumjian in [25] (see also
[41]): there it is assumed that B has the unique extension property,
a property introduced by J. Anderson and studied by R. Archbold et
al. If B has the unique extension property (and under the assump-
tion that it contains an approximate unit of A), it is maximal abelian



Cartan Subalgebras in C*-Algebras 51

and there exists one and only one conditional expectation onto B.
We shall say more about the unique extension property when we
compare Theorem 5.9 and Kumjian’s theorem. The analysis of the
previous section can be summarized by the following result.

Theorem 5.2. Let (G,Σ) be a twisted étale Hausdorff locally com-
pact second countable topologically principal groupoid. Then C0(G(0))
is a Cartan subalgebra of C∗r (G,Σ).

Given a Cartan pair (A,B), we construct the normalizer N(B),

the Weyl groupoid G(B) on X = B̂, the Weyl twist Σ(B) and the
associated line bundle L(B). In fact, these constructions can be
made under the sole assumption that B is a masa. Let us see how the
elements of A define sections of the line bundle L(B) or equivalently,
functions f : Σ → C satisfying f(tσ) = tf(σ) for all t ∈ T and
σ ∈ Σ(B). The answer is given by Lemma 4.4 (this formula also
appears in [25]). Recall that Σ(B) is defined as a quotient of

D = {(x, n, y) ∈ X ×N(B)×X : n∗n(y) > 0 and x = αn(y)}.
Lemma 5.3. Given a ∈ A and (x, n, y) ∈ D, we define

â(x, n, y) =
P (n∗a)(y)√
n∗n(y)

.

Then

(i) â(x, n, y) depends only on its class in Σ(B);
(ii) â defines a continuous section of the line bundle L(B);
(iii) the map a 7→ â is linear and injective.

Proof. Assertion (i) is clear, since â(x, nb, y) = â(x, n, y) for all b ∈ B
such that b(y) > 0. For (ii), the equality â(x, tn, y) = tâ(x, n, y)
for all t ∈ T shows that â defines a section of L(B). To get the
continuity, it suffices to check the continuity of â on the open subsets
Σ(B)|S , where S is the open support of n ∈ N(B). But this is

exactly the continuity of the function y 7→ P (n∗a)(y)/
√
n∗n(y) on

dom(n). The linearity in (iii) is clear. Let us assume that â = 0.
Let n ∈ N(B). Then P (n∗a)(y) = 0 for all y ∈ dom(n), hence also
in its closure. If y does not belong to the closure of dom(n), we
can find b ∈ B such that b(y) = 1 and nb = 0. Then P (n∗a)(y) =
P (b∗n∗a)(y) = 0. Therefore P (n∗a) = 0 for all n ∈ N(B). By
regularity of B, this implies P (a∗a) = 0. By faithfulness of P , this
implies that a = 0. �
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Definition 5.4. The map Ψ : a 7→ â from A to the space of continu-
ous sections of L(B) will be called the evaluation map of the Cartan
pair (A,B).

Lemma 5.5. Let (A,B) be a Cartan pair. For n ∈ N(B) and
x ∈ dom(n) such that the germ of αn at x is not trivial, we have
P (n)(x) = 0.

Proof. Since the germ of αn at x is not trivial, there exists a sequence
(xi) in dom(n) which converges to x and such that αn(xi) 6= xi.
We fix i. There exist b′, b′′ ∈ B such that b′(xi) = 1, b′′(xi) = 0
and b′′n = nb′. Indeed, there exists b ∈ B with compact support
contained in ran(n) such that b(αn(xi))(n

∗n)(x) = 1 and b(xi) = 0.
Then b′ = (b ◦ αn)(n∗n) and b′′ = (nn∗)b satisfy the conditions. We
have

P (n)(xi) = P (n)(xi)b
′(xi) = P (nb′)(xi)

= P (b′′n)(xi) = b′′(xi)P (n)(xi) = 0.

By continuity of P (n), P (n)(x) = 0. �

Corollary 5.6. Let a 7→ â be the evaluation map of the Cartan pair
(A,B).

(i) Suppose that b belongs to B; then b̂ vanishes off X and its
restriction to X is its Gelfand transform.

(ii) Suppose that n belongs to N(B); then the open support of n̂
is the open bisection of G(B) defined by the partial homeo-
morphism αn.

Proof. Let us show (i). If γ = [αn(x), αn, x] ∈ G(B) is not a unit,
the germ of αn at x is not trivial. According to the lemma, for all

b ∈ B, P (n∗b)(x) = P (n)(x)b(x) = 0. Therefore, b̂(γ) = 0. On the

other hand, if γ = x is a unit, b̂(x) = P (b1
∗b)(x) = b1

∗(x)b(x) = b(x)
for b1 ∈ B such that b(x) = 1. Let us show (ii). If n ∈ N(B), the
lemma shows that n̂[x,m, y] = 0 unless y ∈ dom(n) and αm has the
same germ as αn at y. Then [x, αm, y] = [x, αn, y] belongs to the
open bisection Sn of G(B) defined by the partial homeomorphism

αn. On the other hand, n̂(x, n, y) = n∗n(y)/
√
n∗n(y) is non zero for

y ∈ dom(n). �

Proposition 5.7. The Weyl groupoid G(B) of a Cartan pair (A,B)
is a Hausdorff étale groupoid .
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Proof. By construction as a groupoid of germs, G(B) is étale. Let
us show that the continuous functions â, where a ∈ A separate the
points of G(B) in the sense that for all σ, σ′ ∈ Σ such that σ̇ 6=
σ̇′, there exists a ∈ A such that â(σ) 6= 0 and â(σ′) = 0. By
construction, σ = [x, n, y], σ′ = [x′, n′, y′] where n, n′ ∈ N(B) and
y ∈ dom(n), y′ ∈ dom(n′). If y 6= y′, we can take a of the form nb
where b(y) 6= 0 and b(y′) = 0. If y = y′, since αn and αn′ do not have
the same germ at y, we have by Lemma 5.5 that P (n′∗n)(y) = 0,

which implies n̂(σ′) = 0. On the other hand, n̂(σ) =
√
n∗n(y) is

non-zero. We can furthermore assume that â(σ) = 1. Let U = {τ :

|â(τ)− 1| < 1/2} and V = {τ : |â(τ)| < 1/2}. Their images U̇ , V̇ in

G(B) are open, disjoint and σ̇ ∈ U̇ , σ̇′ ∈ V̇ . �

Lemma 5.8. Let (A,B) be a Cartan pair. Let Nc(B) be the set of
elements n in N(B) such n̂ has compact support and let Ac be its
linear span. Then

(i) Nc(B) is dense in N(B) and Ac is dense in A;
(ii) the evaluation map Ψ : a 7→ â defined above sends bijectively

Ac onto Cc(G(B),Σ(B)) and Bc = B ∩Ac onto Cc(G
(0));

(iii) the evaluation map Ψ : Ac → Cc(G(B),Σ(B)) is a ∗-algebra
isomorphism.

Proof. For (i), given n ∈ N(B), there exists b ∈ B such that nb = n.

There exists a sequence (bi) in B such that b̂i ∈ Cc(G
(0)) and

(bi) converges to b. Then nbi belongs to Nc(B) and the sequence
(nbi) converges to n. Note that Nc(B) is closed under product
and involution and that Ac is a dense sub-∗-algebra of A. Let
us prove (ii). By construction, Φ(Ac) is contained in Cc(G,Σ).
The injectivity of Φ has been established in Lemma 5.4. Let us
show that Φ(Ac) = Cc(G,Σ). The family of open bisections Sn =
{[αn(x), αn, x], x ∈ dom(n)}, where n runs overN(B), forms an open
cover of G(B). If f ∈ Cc(G,Σ) has its support contained in Sn, then
n̂ is a non-vanishing continuous section over Sn and there exists

h ∈ Cc(G(0)) such that f = n̂h. Since h = b̂ with b ∈ Bc, f = â,
where a = nb belongs to Nc(B). For a general f ∈ Cc(G,Σ), we use
a partition of unity subordinate to a finite open cover Sn1

, . . . , Snl

of the support of f . Let us prove (iii). By linearity of Ψ, it suffices
to check the relations Ψ(mn) = Ψ(m) ∗ Ψ(n) and Ψ(n∗) = Ψ(n)∗

for m,n ∈ N(B). According to Corollary 5.6, Ψ(mn)(σ) = 0 unless
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σ = t[x,mn, z] with z ∈ dom(mn) and t ∈ T; then we have

Ψ(mn)(t[x,mn, z]) = t
√

((mn)∗mn)(z).

On the other hand, Ψ(m)Ψ(n)(σ) = 0 unless σ is of the form

σ = t[x,m, y][y, n, z] = t[x,mn, z]

and then

Ψ(m)Ψ(n)(t[x,mn, z]) = Ψ(m)(t[x,m, y])Ψ(n)([y, n, z]

= t
√

(m∗m)(y)(n∗n)(z).

The equality results from

(mn)∗(mn)(z) = (n∗(m∗m)n)(z)

= (m∗m)(αn(z))n∗n(z) = m∗m(y)n∗n(z).

Similarly, Ψ(n∗)(σ) = 0 unless σ = t[y, n∗, x] with x ∈ dom(n∗) and
t ∈ T and then we have

Ψ(n∗)(t[y, n∗, x]) = t
√

(nn∗)(x).

On the other hand, Ψ(n)∗(σ) = Ψ(n)(σ−1) = 0 unless σ−1 =
t[x, n, y] with y ∈ dom(n) and t ∈ T and then we have

Ψ(n)∗(t[y, n∗, x]) = t
√

(n∗n)(y).

These numbers are equal because nn∗(x) = n∗n(y). �

Theorem 5.9. Let B be a Cartan sub-algebra of a separable C*-
algebra A. Then

(i) there exists a twist (G,Σ) where G is a second countable lo-
cally compact Hausdorff, topologically principal étale groupoid
and an isomorphism of C∗r (G,Σ) onto A carrying C0(G(0))
onto B;

(ii) the above twist is unique up to isomorphism; it is isomorphic
to the Weyl twist (G(B),Σ(B)).

Proof. Let (G,Σ) = (G(B),Σ(B)). Let us show that the evaluation
map Ψ : Ac → Cc(G,Σ) is an isometry with respect to the norms
of A and C∗r (G,Σ). Since P is faithful, we have for any a ∈ A the
equality

‖a‖ = sup{‖P (c∗a∗ac)‖1/2 : c ∈ Ac, P (c∗c) ≤ 1}.
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If we assume that a belongs to Ac, then â belongs to C∗r (G,Σ) and
satisfies a similar formula:

‖â‖ = sup{‖P̂ (f∗(â)∗âf)‖1/2 : f ∈ Cc(G,Σ), P̂ (f∗f) ≤ 1}
= sup{‖P̂ ((ĉ)∗(â)∗âĉ)‖1/2 : c ∈ Ac, P̂ ((ĉ)∗ĉ) ≤ 1}.

Since Ψ : Ac → Cc(G,Σ) satisfies the relation P̂ ◦ Ψ = Ψ ◦ P ,

where P̂ is the restriction map to B̂, we have the equality of the
norms: ‖ĉ‖ = ‖c‖. Hence Ψ extends to a C∗-algebra isomorphism

Ψ̃ : A → C∗r (G,Σ). By continuity of point evaluation, Ψ̃(a) = Ψ(a)
as defined initially. Therefore, the evaluation map is a C∗-algebra
isomorphism of of C∗r (G,Σ) onto A carrying C0(G(0)) onto B. The
separability of C∗r (G,Σ) implies that of C0(G,E). One deduces that
G is second countable. Since G = G(B) is a groupoid of germs, it
results from Proposition 3.6 that G is topologically principal. The
uniqueness of the twist up to isomorphism has been established in
Proposition 4.15. �

We have mentioned earlier that the unique extension property of
B implies the uniqueness of the conditional expectation onto B. The
uniqueness still holds for Cartan subalgebras.

Corollary 5.10. Let B be a Cartan subalgebra of a C∗-algebra A.
Then, there exists a unique expectation onto B.

Proof. This results from the above theorem and Proposition 4.3. �
The following proposition is essentially a reformulation of Kum-

jian’s theorem (see [25] and [41]). For the sake of completeness, we
recall his proof. One says that the subalgebra B has the unique
extension property if every pure state of B extends uniquely to a
(pure) state of A. A C∗-diagonal is a Cartan subalgebra which has
the unique extension property.

Proposition 5.11. (cf. [25], [41]) Let (A,B) be a Cartan pair. Then
B has the unique extension property if and only if the Weyl groupoid
G(B) is principal.

Proof. We may assume that (A,B) = (C∗r (G,Σ), C0(G(0))), where
G is an étale topologically principal Hausdorff groupoid and Σ is a
twist over G. Suppose that G is principal. A. Kumjian shows that
this implies that the linear span of the set Nf (B) of free normalizers
is dense in the kernel of the conditional expectation P , where a
normalizer n ∈ N(B) is said to be free if n2 = 0. Indeed, since
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an arbitrary element of the kernel can be approximated by elements
in Cc(G,Σ) ∩Ker(P ), it suffices to consider a continuous section f
with compact support which vanishes on G(0). Since the compact
support of f does not meet the diagonal G(0), which is both open
and closed, it admits a finite cover by open bisections Ui such that
r(Ui) ∩ s(Ui) = ∅. Let (hi) be a partition of unity subordinate to
the open cover (Ui). Then, f =

∑
gi, where gi(σ) = f(σ)hi(σ̇)

is a free normalizer. Then, he observes that free normalizers are
limits of commutators ab − ba, with a ∈ A and b ∈ B. This show
that A = B + span[A,B], which is one of the characterizations of
the extension property given in Corollary 2.7 of [2]. We suppose
now that B has the unique extension property and we show that
the isotropy of G is reduced to G(0). It suffices to show that for
n ∈ N(B) and x ∈ dom(n), the equality αn(x) = x implies that
the germ of αn at x is trivial. According to Lemma 5.5, it suffices
to show that P (n)(x) 6= 0. Given n ∈ N(B) and x ∈ dom(n), the
states x◦P and αn(x)◦P are unitarily equivalent and their transition

probability ([43]) is |P (n)(x)|2
n∗n(x) . Indeed, let (H, ξ, π) be the GNS triple

constructed from the state x ◦P . By construction, x ◦P is the state
defined by the representation π and the vector ξ. On the other hand,
αn(x) ◦ P is the state of A defined by π and the vector η = π(u)ξ,
where u is the partial isometry of the polar decomposition n = u|n|
of n in A∗∗. To show that, one checks the straightforward relation
b(αn(x)) = (η, π(b)η) for b ∈ B and one uses the unique extension
property. The transition probability can be computed by the formula

|(ξ, η)|2 = |P (n)(x)|2
n∗n(x) . If αn(x) = x, the transition probability is 1. In

particular, P (n)(x) 6= 0. �

6. Examples of Cartan Subalgebras in C∗-Algebras

6.1. Crossed products by discrete groups. In his pioneering
work [50] on crossed product C∗ and W∗-algebras by discrete groups,
G. Zeller-Meier gives the following necessary and sufficient condi-
tion (Proposition 4.14) for B to be maximal abelian in the reduced
crossed product C∗r (Γ;B;σ), where Γ is a discrete group acting by
automorphisms on a commutative C∗-algebra B and σ is a 2-cocycle:
the action of Γ on X = B̂ must be topologically free, meaning that
for all s ∈ Γ \ {e}, the set Xs = {x ∈ X : sx = x} must have an
empty interior in X. This amounts to the groupoid G = Γ×X of the
action being topologically principal. Proposition 2.4.7 of [40] extends
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this result. Note that G is principal if and only if the action is free,
in the sense that for all s ∈ Γ \ {e}, the set Xs = {x ∈ X : sx = x}
is empty. The particular case of the group Γ = Z is well studied (see
for example [45]) and we consider only this case below.

Irrational rotations and minimal homeomorphisms of the Cantor
space are examples of free actions. The C∗-algebras of these dy-
namical systems are well understood and completely classified. I
owe to I. Putnam the remark that the C∗-algebra of a Cantor min-
imal system may contain uncountably many non-conjugate Cartan
subalgebras (which are in fact diagonals in the sense of Kumjian).
Indeed, according to [19], such a C∗-algebra depends only, up to
isomorphism, on the strong orbit equivalence class of the dynamical
system; however, two minimal Cantor systems which are strongly or-
bit equivalent need not be flip conjugate (flip conjugacy amounts to
groupoid isomorphism). More precisely, Boyle and Handelman show
in [5] that the strong orbit equivalence class of the dyadic adding
machine contains homeomorphisms of arbitrary entropy. These will
give the same C∗-algebra but the corresponding Cartan subalgebras
will not be conjugate.

On the other hand, two-sided Bernoulli shifts are examples of
topologically free actions which are not free. They provide examples
of Cartan subalgebras which do not have the extension property.
In [45], J. Tomiyama advocates the view that in relation with op-
erator algebras, the notion of topologically free action, rather than
that of free action, is the counterpart for topological dynamical sys-
tems of the notion of free action for measurable dynamical systems.
The comparison of Theorem 5.9 and of the Feldman–Moore theorem
completely supports this view.

6.2. AF Cartan subalgebras in AF C∗-algebras. Approximately
finite dimensional (AF) C∗-algebras have privileged Cartan subalge-
bras. These are the maximal abelian subalgebras obtained by the
diagonalization method of Strătilă and Voiculescu ([44]). In that
case, the twist is trivial and the whole information is contained in
the Weyl groupoid. The groupoids which occur in that fashion are
the AF equivalence relations. These are the equivalence relations R
on a totally disconnected locally compact Hausdorff space X which
are the union of an increasing sequence of proper equivalence rela-
tions (Rn). The proper relations Rn are endowed with the topology
of X × X and R is endowed with the inductive limit topology. As
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shown by Krieger in [23], AF C∗-algebras and AF equivalence re-
lations share the same complete invariant, namely the dimension
group. One deduces that these privileged Cartan subalgebras, also
called AF Cartan subalgebras, are conjugate by an automorphism
of the ambient AF algebra. However, AF C∗-algebras may contain
other Cartan subalgebras. An example of a Cartan subalgebra in an
AF C∗-algebra without the unique extension property is given in [40,
III.1.17]. A more striking example is given by B. Blackadar in [4].
He constructs a diagonal in the CAR algebra whose spectrum is not
totally disconnected. More precisely, he realizes the CAR algebra as
the crossed product C(X)×Γ where X = S1 × Cantor space and Γ
is a locally finite group acting freely on X. Note that the groupoid
X×Γ is also an AP equivalence relation, in the sense that it is the
union of an increasing sequence of proper equivalence relations (Rn).

6.3. Cuntz-Krieger algebras and graph algebras. The Cuntz
algebra Od is the prototype of a C∗-algebra which has a natural
Cartan subalgebra without the unique extension property. By defi-
nition, Od is the C∗-algebra generated by d isometries S1, . . . , Sd such

that
∑d
i=1 SiS

∗
i = 1. The Cartan subalgebra in question is the sub

C∗-algebra D generated by the range projections of the isometries
Si1 . . . Sin . It can be checked directly that D is a Cartan subalgebra
of Od; however, it is easier to show first that (Od,D) is isomor-
phic to (C∗(G), C(X)), where X = {1, . . . , d}N and G = G(X,T )
is the groupoid associated to the one-sided shift T : X → X (see
[40, 11, 42]):

G = {(x,m− n, y) : x, y ∈ X,m, n ∈ N, Tmx = Tny}.

This groupoid is not principal but it is topologically principal. In
fact, the groupoid G(X,T ) associated to the local homeomorphism
T : X → X is topologically principal if and only if T is topologically
free, meaning that for all pairs of distinct integers (m,n), the set
Xm,n = {x ∈ X : Tmx = Tnx} must have an empty interior in X.

Condition (I) introduced by Cuntz and Krieger in their fundamen-
tal work [10] ensures that the subalgebra DA is a Cartan subalgebra
of OA. Here, A is a d× d matrix with entries in {0, 1} and non-zero
rows and columns. The associated dynamical system is the one-sided
subshift of finite type (XA, TA); condition (I) guarantees that this
system is topologically free. In subsequent generalizations, in terms
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of infinite matrices in [14] and in terms of graphs in [29], exit condi-
tion (L) replaces condition (I). On the topological dynamics side, it
is a necessary and sufficient condition for the relevant groupoid to be
topologically principal. On the C∗-algebraic side, it is the condition
which ensures that the natural diagonal subalgebra D is maximal
abelian, hence a Cartan subalgebra. Moreover, it results from [29]
that this subalgebra has the extension property if and only if the
graph contains no loops. Condition (II) of [9] or its generalization
(K) in [28] implies that each reduction of the groupoid to an invari-
ant closed subset is topologically principal and therefore that the
image of D in the corresponding quotient is still maximal abelian.

6.4. Cartan subalgebras in continuous-trace C∗-algebras. Let
us first observe that a Cartan subalgebra of a continuous-trace C∗-
algebra necessarily has the unique extension property. The proof
given in [15, Théorème 3.2] for foliation C∗-algebras is easily adapted.

Proposition 6.1. Let B be a Cartan subalgebra of a continuous-
trace C∗-algebra A. Then B has the unique extension property.

Proof. From the main theorem, we can assume that (A,B) =
(C∗r (G,Σ), C0(G(0))), where G is an étale topologically principal
Hausdorff groupoid and Σ is a twist over G. Since A is nuclear,
we infer from [1, 6.2.14, 3.3.7] that G is topologically amenable and
from [1, 5.1.1] that all its isotropy subgroups are amenable. Since
A is CCR, we infer from [6, Section 5,] that G(0)/G injects contin-

uously in Â and that all the orbits of G are closed (the presence of
a twist does not affect this result nor its proof). Since G is étale,
these closed orbits are discrete. Now, each h ∈ Cc(G(0)) belongs to
the Pedersen ideal K(A). Therefore, it defines a continuous function

on Â whose value at [x] ∈ G(0)/G is

h[x] =
∑

y∈[x]

h(y).

Suppose that G(x) is not reduced to {x}. Then there exists an open
neighborhood V of x such that [x] ∩ V = {x} and [y] ∩ V contains
at least two elements for y 6= x. For h ∈ Cc(G(0)) supported in V
and equal to 1 on a neighborhood of x, we would obtain h[x] = 1
and h[y] ≥ 2 for y close to x, which contradicts the continuity of h.
Hence G is principal and B has the unique extension property. �
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When a Cartan subalgebra B of a continuous-trace C∗-algebra
A exists, the cohomology class [Σ(B)] of its twist is essentially the
Dixmier–Douady invariant of A. Indeed, just as in the group case,
the groupoid extension Σ(B) defines an element of the cohomology
group H2(G(B),T) (see [46] for a complete account of groupoid

cohomology). Since G(B) is equivalent to B̂/G(B) = Â, this can be

viewed as an element of H2(Â, T ), where T is the sheaf of germs of
T-valued continuous functions. Its identification with the Dixmier–
Douady invariant is done in in [25, 41, 39]. Moreover, a simple

construction shows that every C̆ech cohomology class in H3(T,Z),
where T is a locally compact Hausdorff space, can be realized as the
Dixmier–Douady invariant of a continuous-trace C∗-algebra of the
above form C∗(G,Σ).

However, Cartan subalgebras B of a continuous-trace C∗-algebra
A do not always exist. It has been observed (see [2, Remark 3.5.(iii)])
that there exist non-trivial n-homogeneous C∗-algebras which do not
have a masa with the unique extension property. Therefore, these
C∗-algebras do not have Cartan subalgebras. In [24, Appendix],
T. Natsume gives an explicit example. Given a Hilbert bundle H
over a compact space T , let us denote by AH the continuous-trace
C∗-algebra defined by H. Let B be a Cartan subalgebra of AH . The
inclusion map gives a map B̂ → T which is a local homeomorphism
and a surjection. If T is connected and simply connected, this is a
trivial covering map and B decomposes as a direct sum of summands
isomorphic to C(T ). Therefore H decomposes as a direct sum of line
bundles. This is not always possible. For example there exists a vec-
tor bundle of rank 2 on the sphere S4 which cannot be decomposed
into a direct sum of line bundles.

6.5. Concluding remarks. Just as in the von Neumann setting,
the notion of Cartan subalgebra in C∗-algebras provides a bridge
between the theory of dynamical systems and the theory of oper-
ator algebras. Examples show the power of this notion, in partic-
ular to understand the structure of some C∗-algebras, but also its
limits. This notion has to be modified if one wants to include the
class of the C∗-algebras of non-Hausdorff topologically principal étale
groupoids. In the case of continuous-trace C∗-algebras, we have seen
that the twist attached to a Cartan subalgebra is connected with the
Dixmier–Douady invariant. It would be interesting to investigate its
C∗-algebraic significance in other situations.
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The Undergraduate Ambassadors Scheme in Ireland

MARIA MEEHAN

Abstract. In this article I will briefly describe the Under-

graduate Ambassadors Scheme which has been running in
the UK since 2002. This scheme provides university depart-

ments with a framework for running a module that awards

academic credit to undergraduates for developing transfer-
able skills, while working with teachers in local schools. I will

explain why I chose to coordinate an Undergraduate Ambas-

sadors Scheme module in mathematics in University College
Dublin and discuss what is involved in setting-up, running,

and assessing such a module.

1. Introduction

The Undergraduate Ambassadors Scheme (UAS) first started in the
United Kingdom in 2002. The scheme was founded by Simon Singh
and Hugh Mason out of a concern over teacher shortages in math-
ematics, science and technology, and the declining number of uni-
versity applicants to these subject areas. The basic idea behind the
UAS is that undergraduate students gain academic credit for devel-
oping their transferable skills, while working with a teacher in a local
school. The scheme has grown rapidly since 2002 when 28 students
from four university departments took part. In the academic year
2007–2008, 107 departments from 41 universities across the UK and
Ireland participated in the scheme—with the School of Mathematical
Sciences, University College Dublin (UCD) offering a UAS Module
to its undergraduates this year for the first time.

In this article, I will explain why I chose to coordinate a UAS mod-
ule in mathematics in UCD and discuss what is involved in setting-
up, running, and assessing a module of this kind. It is my hope
that should a colleague want to offer a similar module to his or her
undergraduate students, this article will act as a check-list of some
of the main issues to be considered.



66 Maria Meehan

2. Why Offer a UAS Module?

In 2004, on reading an article by Ray d’Inverno and Paul Cooper in
Educational Studies in Mathematics [2], I decided that a UAS mod-
ule was something I’d like to introduce in UCD. In this article the
authors describe setting-up and running one of the first UAS mod-
ules in 2002 at the University of Southampton. (For the interested
reader, there are some additional articles written on the scheme [1,
3, 4].)

My main motivation for offering a UAS module in mathematics
was because of the benefits it offers the final-year undergraduate stu-
dent. Firstly, it gives the undergraduate a chance to explore a career
in teaching by giving him or her the opportunity of gaining some
experience in the classroom before graduation. Each year, a number
of final year students on the BA in Mathematical Studies Degree
in UCD apply for a place on a Postgraduate Diploma in Education
(PGDE). The UAS module can give them the chance to decide if
this is right graduate programme for them. The module might also
encourage undergraduates, who may not already have done so, to
seriously consider a career in teaching. We need enthusiastic, inter-
ested, well-qualified mathematics teachers in our second-level schools
and this module has the potential to help address this issue, if only
in a small way.

Secondly, the student gains academic credit for developing his or
her key transferable skills. These can include communication and
presentation skills; the ability to work in a team; to manage time
and prioritise; to improvise and take initiative when appropriate; to
give and receive feedback; and to critically reflect on one’s strengths
and weaknesses. A skill I place particular importance on in the
UCD module, is the ability to communicate mathematics effectively
to others. Every mathematics department wants its graduates, not
just to have good mathematical knowledge, but to present well in
interviews and to act professionally in the workplace. For this reason
I feel, as mathematics lecturers, we cannot ignore the issue of how
we might help our undergraduates develop these key skills.

Of course the undergraduate student is not the only stakeholder
in this module—the second-level mathematics teachers and students,
along with the mathematics department and the university, should
also benefit from taking part. Benefits to the second-level teacher
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might include teaching assistance in a large class; support in pro-
viding additional assistance to students at either end of the ability
spectrum; support in providing after-school activities such as math-
ematics study groups; lasting classroom resources as a result of the
undergraduate’s Special Project; and links with mathematicians at a
local university. For the second-level students, benefits from taking
part in the module might include the opportunity to gain individual
or small-group mathematics support; to avail of after-school mathe-
matics support; and to learn about mathematics and university life
from an enthusiastic undergraduate. University departments have
the potential to benefit from having more confident, employable,
professional graduates; from creating and maintaining links with lo-
cal second-level schools; and from an improvement in the number of
students entering undergraduate degrees in mathematics (perhaps!).

3. Setting-up a UAS Module

I took advantage of the introduction of modularisation to UCD in
order to offer MST30060—Undergraduate Ambassadors Scheme in
Mathematics—as an optional or elective module to final year BA
in Mathematical Studies students in the second semester of the
academic year 2007-2008. I would not advocate making a mod-
ule of this nature compulsory or core for all final year mathematics
undergraduates—placing a student with a bad attitude or poor peo-
ple skills in a local school, could do immense harm to the scheme
and reflect very badly on the mathematics department.

And so it was, that in September 2007, I found myself drawing
up a list of things I needed to do before students embarked on the
module in January 2008. I had three immediate concerns: firstly, I
needed to find schools and teachers willing to take part; secondly, I
needed to find suitable undergraduates who wanted to enrol on the
module; and thirdly, I had to find out if my students needed Garda
Clearance in order to work with children under 18. I will now address
each of these in turn.

In order to find teachers and schools willing to take part, I con-
tacted the UCD New ERA Office who run the widening participation
programme in UCD. By planning interventions at the primary and
second level in local government designated-disadvantaged schools,
the New ERA Office aims to encourage more students from socially-
disadvantaged backgrounds to consider obtaining a third-level edu-
cation. Fiona Sweeney and Michelle King from this office were very
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keen to have some of these schools participate in the UAS module.
Of the 18 schools contacted, 14 wanted to participate and each wrote
a short paragraph explaining why. In most cases, the schools were
keen to host an undergraduate in order to provide additional math-
ematics support for their Junior and Leaving Certificate students at
either end of the ability spectrum.

With 14 schools willing to participate, I then needed to find suit-
able undergraduates who wanted to enrol in the module. Any final-
year Mathematical Studies student interested in taking part had to
complete and submit an application form by 5 October. On the ap-
plication form, students had to explain why they wanted to take part
in the module, and to describe any relevant experience they had that
might benefit them on the module. I received nine applications—just
under half the class.

All nine students were invited to interviews which were held in
mid-October. Each interview lasted approximately 15 minutes, and
was jointly conducted by the module tutor, Cathy Paolucci, and
me in as formal an atmosphere as possible in order to make the
experience more realistic for the student. Based on their application
forms, interviews, and mathematics grades, six students were offered
places on the module. All accepted and were officially enrolled.

One criticism at this point may be that it was not worth offering
this module, if only six students were taking it. However, given that
I was running it for the first time, I wanted to treat the module more
as a pilot project. In the coming year, I would hope to double the
number of students on the module.

Now that I had six undergraduates, I needed to chose six schools
from the fourteen that wanted to participate. Primarily I made the
decision based on the proximity of the school from UCD, and access
to the school from the university on public transport. However, one
student did agree to go to a school in Killinarden near Tallaght, an-
other went to Ballyfermot, and yet another to Bray. It is important
to consider whether the undergraduate has a car, when assigning
him or her to a particular school.

At the start of November, I visited each school and spoke to the
host mathematics teacher. While this was time-consuming, I wanted
to meet each teacher face-to-face in order to establish a working re-
lationship with him or her. Ray d’Inverno, the Director of the UAS
in the UK, has suggested that the teachers could all be invited into
the university for a presentation and lunch, and this might be more
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practical in the future should the number of schools participating
increase. I asked each teacher what advice I should give the un-
dergraduates before entering the school, and I received some great
suggestions which were then incorporated into the UAS Handbook
and training day materials.

My third concern at the start of the semester had been in rela-
tion to Garda Clearance. Since 2006, Garda vetting has become a
condition of employment for new teachers and appointees who have
unsupervised access to children and vulnerable adults (see the web-
site at www.teachingcouncil.ie). One cannot apply directly to
the Garda Central Vetting Unit—there is usually a contact person
in each university through which all applications must be submit-
ted. The UCD contact supplied me with the application forms and
advised me that they can take up to three months to be processed.
In our case, it took four.

By mid-November, my three concerns had been addressed—each
undergraduate was assigned to a school and had submitted a Garda
vetting application form. The UAS in the UK advise that the un-
dergraduates attend a training day before they enter the schools.
Consequently, two training sessions for the undergraduates were ar-
ranged from 5–8pm on the first two days of the second semester. All
was now in order until after Christmas!

4. UAS Training Sessions and Handbook

At the start of January I had to think about what should be in-
cluded in the training sessions, and about developing an accompa-
nying handbook, which would act both as a training and resource
manual. Here the UAS website (www.uas.ac.uk) proved to be an
excellent starting point as one can access and edit a number of hand-
books and materials already developed by others. With the UAS
handbook as a template, Cathy and I developed a handbook more
suitable for the Irish context. It contains five chapters. After a
brief introduction to the UAS in Chapter 1, the second chapter en-
titled What’s Involved in the UAS Module? describes the learning
outcomes of the module, and elaborates on how the module will be
assessed.

A key point about the assessment of this module, is that stu-
dents simply don’t get an A+ because they have spent 20–30 hours
working in a local school. They are assessed on whether or not they
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have achieved the learning objectives, which in the case of the UCD
module were as follows:

On completion of this module the student should be
able to provide evidence of how he or she has:

• Communicated mathematics effectively to oth-
ers;

• Developed key transferable skills.

Evidence is provided by the undergraduate in a reflective journal
that is kept throughout the semester (worth 30%); a final report
of 2, 000 words to be submitted at the end of the semester (worth
30%); and a 15-minute presentation held during the last week of the
semester (worth 30%). The final 10% is awarded by the host teacher
who writes a few lines of feedback on each student and gives him or
her a mark out of 10.

Given that the typical mathematics undergraduate may not be
used to these forms of assessment, an hour and a half of the first
training session was spent outlining the learning objectives of the
module and what was expected from each assessment. An addi-
tional part of the assessment required each undergraduate to design
a Special Project for use in the school, and to describe this in the
final report. Some time in the training session was spent discussing
what might be involved in a Special Project.

An hour and a half of the second training session was spent cover-
ing the material in Chapters 3 and 4 of the handbook. Chapter 3—
Second-level Mathematics Education in Ireland—describes the Irish
second-level education system, and outlines current issues in second-
level mathematics education in this country. Chapter 4—The Class-
room Situation—outlines the advice given to me by the participating
teachers; advises the undergraduates on how to work with the host
teacher; and encourages the student to think about possible situa-
tions that may arise when working with second-level students.

Chapter 5—Teaching Mathematics—discusses points to consider
when planning a mathematics lesson. During the first training ses-
sion, Cathy spent an hour and a half on this topic, and during the
second training session the undergraduates were asked to put the
theory into practice. In pairs, they had to consider how they would
plan a lesson on graphing a line, and then present the lesson to the
rest of the class. This proved to be a great success, and a tremendous
learning experience for the students.



The Undergraduate Ambassadors Scheme 71

With the training sessions completed, the module had officially
begun.

5. During a UAS Module

As the module coordinator, the demands on my time for the duration
of the twelve weeks of the semester were actually quite low. Cathy
and I met twice with the students to get some feedback on what
type of experiences they were having in the schools, and to discuss
any issues or problems which might have arisen. Mid-way through
the semester, I also rang each teacher to get some initial feedback
on how each student was doing. Two weeks before the semester
ended, I wrote to the teachers requesting formal feedback on the
undergraduates, and I also invited them to write a testimonial on
their UAS experiences. The reflective journals and final reports had
to be submitted by the Monday of the last week of the semester, and
the presentations were arranged from 5–7pm on the Wednesday of
the same week.

If the demands on my time during the second semester were quite
low, the same could not be said of the undergraduates! They were
requested to spend a minimum of 20 hours in their schools, but
almost all spent more than this. All were given the opportunity to
observe and assist teachers in a variety of mathematics classes, from
first year through to sixth year. Most got the opportunity to teach a
whole class or a subset of a class. Two of the undergraduates set-up
and ran after-school study groups for Higher Level Junior and/or
Leaving Certificate students. One undergraduate also taught (one-
on-one) a fifth year student taking Higher Level Leaving Certificate
Mathematics a complete topic from the higher level curriculum.

With regard to Special Projects, one of the undergraduates de-
signed a mathematics quiz for first year students and ran it on an
interactive whiteboard that the school had just acquired; another
designed and ran a mathematics competition with a first year class;
and yet another held a sudoku competition with a class. The other
three undergraduates designed or developed revision packs or ses-
sions for Junior and Leaving Certificate students.

6. Assessing a UAS Module

In grading the assessments, the main thing I was looking for was
that the students had given serious reflection to how they had com-
municated mathematics to others and developed their transferable
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skills. Cathy also graded the three assessment components indepen-
dently, and then we agreed on a mark. For anyone coordinating a
UAS module, I feel it is essential that there is a second grader for
each assessment—at least until the coordinator gains a few years of
experience at grading these types of assessments.

For me the highlight of the module was the students’ presenta-
tions at the end of the semester. Most of the undergraduates had
little experience at making a presentation, and very few had used
powerpoint before. At the start of the semester I felt that they were
very nervous about this assessment component, and for that rea-
son, I only invited the Head of the UCD School of Mathematical
Sciences and the host teachers along (one teacher came). However,
despite initial nervousness, the presentations were of an extremely
high standard. All had mastered powerpoint, all kept within the
allocated 15-minute time-slot, and the confidence, passion and en-
thusiasm with which they all spoke was overwhelming.

Next year, I would not invite along the host teachers as I would be
afraid that an undergraduate, in all sincerity, might express a view
about teaching mathematics or school discipline, which a teacher
may take umbrage with. However I would invite along any under-
graduate interested in taking part in the UAS the following year—the
presentations would give them an idea of what to expect and, if this
year’s standard was anything to go by, would set the bar very high
for future students.

In relation to the assessment component graded by the teacher,
there was only one instance where, given the teacher’s written feed-
back and comparing it with the written feedback from the other
teachers, we felt that the undergraduate deserved a slightly higher
mark out of ten and we duly altered it.

Overall, given the rigorous selection process and the small number
of students chosen to take part in the module, it was not surprising
that in the end, no student received an overall grade lower than
a B+.

7. Conclusions

From the point of view of a module coordinator, setting-up and
running a UAS module for the first time requires a substantial in-
vestment of time and effort, at least in the initial year. However, the
UAS website and the UAS manager in the UK, Brian Lockwood,
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proved invaluable to me in terms of providing materials and support
respectively. If any colleague would like to set-up such a module, I
am more than happy to send all the materials developed to anyone
to use or edit as he or she wishes.

Throughout the article, I have mentioned a few things I would do
differently next year, but on the whole I was quite happy with the
framework that I employed. Again, I feel this is due to the shared
nature of advice and materials on the UAS website—others before
me had ironed out many of the major issues and difficulties with
running a module of this nature.

From the perspective of the six undergraduates who took part,
in an end-of-semester questionnaire all felt that participating in the
module had improved their overall key/transferable skills. They were
given a list of ten transferable skills, and asked to select the skills
which they felt had improved as a result of the module. The results
are given in Table 1 below.

Transferable skill No. of students
Communication skills on a one-to-one basis 6
Communication skills with a group 4
Presentation skills 5
Planning skills 4
Team working 2
Time management 5
Ability to prioritise tasks 5
Ability to negotiate 1
Confidence 5
Essay/report writing 4

Table 1

Five of the six undergraduates said they were interested in a career
in teaching, with two already accepted onto PGDE programmes. All
six said they would recommend the module to others. In an informal
discussion with the six undergraduates, they told me that the module
may have involved more work than some of their other mathematics
modules. However because the work was so different in nature, they
really didn’t mind. They also liked the fact that there was no final
examination involved.

I will conclude this article with some testimonials from the un-
dergraduates and teachers who took part:
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“I am in the final year of a Mathematical Studies degree in UCD and
have always wanted to be a teacher. This module has given me the
opportunity to experience first hand, what teaching mathematics
at a secondary level entails and has given me an accurate idea of
how much work would be involved in this career choice. I am now
more certain than ever that I want to pursue a career in teaching
mathematics as I have had a chance to witness, first hand, the lack of
teachers in this area and the lack of understanding of maths within
the classroom.”

Jennifer Keeler, Undergraduate Ambassador 2008

“As a final year student who was thinking about teaching as a career,
this module has been invaluable to me. The amount of knowledge
I have gained could never be equalled in a lecture situation. The
hands-on aspect was so beneficial. The school and I both benefited
immensely.”

Annette Larkin, Undergraduate Ambassador 2008

“This module gave me a great opportunity to start making the tran-
sition into the professional working world. I would strongly recom-
mend this module to anyone interested in teaching, as it helped me
develop key skills needed in the classroom.”

Rebekah Holmes, Undergraduate Ambassador 2008

“We, at St. Kilian’s C.S., have had a very positive first experience
of the UAS. Our assigned student developed a Maths Study Club,
which our students greatly enjoyed, and from which they benefited
greatly. He developed revision material which the students will use
while preparing for their J. Cert. examinations. There was excellent
communication between the student, the facilitator, and our school
which ensured that participation in the scheme was hassle-free.”

Mr John Murphy, St. Kilian’s CS, Bray

“St. Tiernan’s greatly appreciated the interest and support given to
our maths students by a young 3rd level student. Motivating our
students to have the confidence to pursue maths and science at hon-
ours level is in line with our learning objectives in terms of ongoing
school development planning.”

Mr Declan Hughes, St. Tiernan’s, Dundrum
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“[Our undergraduate] provided practical assistance by offering after-
school classes to a group of third year students sitting honours level
in their Junior Cert. She also took a 5th year honours student and
covered a complete topic with him over the weeks she was in the
school. [She] also provided general classroom assistance which was
of great benefit to the students, teachers and school.”

Ms Anne Brogan, Killinarden CS, Killinarden
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