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IRISH MATHEMATICAL SOCIETY BULLETIN 60, WINTER 2007

EDITORIAL

The bulk of this issue of the Bulletin is made up by four papers of
speakers at the Mini- Workshop on Elliptic Curves, which was held at
the Mary Immaculate College in Limerick on 29th and 30th Novem-
ber 2006, together with a foreword by Bernd Kreussler. These survey-
style papers provide a nice introduction to the topic and are quite the
kind of contributions to the Bulletin the Editor would like to see
more.

The section on PhD abstracts, which started a year ago, has very
nicely picked up and contains this time 12 contributions covering a
fair variety of mathematical areas. Certainly, there must have been
more PhD degrees awarded in 2007 in Ireland but maybe the message
of the possibility to have an abstract published in the Bulletin has not
yet reached everyone. I like to emphasize here that only abstracts of
PhD theses and not even exceptionally good MSc theses are published,
and these have to be in mathematics and not in statistics.

It appears that the Society’s communication with its members could
improve were an up-to-date e-mail list available. For this reason, an
insert coming with this issue requests members to provide updated
information in a very simple way. Please do follow this suggestion
by the executive of the Society!

—MM
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NOTICES FROM THE SOCIETY
Applying for I.M.S. Membership

. The Irish Mathematical Society has reciprocity agreements with
the American Mathematical Society, the Irish Mathematics Teach-
ers Association, the New Zealand Mathematical Society and the
Real Sociedad Matematica Espanola.

. The current subscription fees (as from 1 January 2002) are given
below:

Institutional member 130 euro
Ordinary member 20 euro
Student member 10 euro
ILM.T.A., NZMS or RSME reciprocity member 10 euro
AMS reciprocity member 10 US$

The subscription fees listed above should be paid in euro by means
of a cheque drawn on a bank in the Irish Republic, a Eurocheque,
or an international money-order.

. The subscription fee for ordinary membership can also be paid in
a currency other than euro using a cheque drawn on a foreign bank
according to the following schedule:

If paid in United States currency then the subscription fee is
US$ 25.00.

If paid in sterling then the subscription is £15.00.

If paid in any other currency then the subscription fee is the
amount in that currency equivalent to US$ 25.00.

The amounts given in the table above have been set for the current
year to allow for bank charges and possible changes in exchange
rates.

. Any member with a bank account in the Irish Republic may pay
his or her subscription by a bank standing order using the form
supplied by the Society.

. Any ordinary member who has reached the age of 65 years and
has been a fully paid up member for the previous five years may
pay at the student membership rate of subscription.
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. Subscriptions normally fall due on 1 February each year.

. Cheques should be made payable to the Irish Mathematical So-
ciety. If a Eurocheque is used then the card number should be
written on the back of the cheque.

. Any application for membership must be presented to the Com-
mittee of the I.M.S. before it can be accepted. This Committee
meets twice each year.

. Please send the completed application form with one year’s sub-
scription to:

The Treasurer, I.M.S.
Department of Mathematics
St Patrick’s College
Drumcondra

Dublin 9, Ireland
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Minutes of the Meeting
of the Irish Mathematical Society
Annual General Meeting
4th September 2007

The Irish Mathematical Society held its Annual General Meeting
from 12:00 to 13:05 on Tuesday 4th September at UCD. There were
25 members present at the meeting.

1. Minutes

After a minor adjustment the minutes of the meeting of September
2006 were approved and signed.

2. Matters arising

All matters arising were discussed under the headings below.

3. Correspondence

There were 4 items of correspondence:

(i)
(i)

(iii)

(iv)

A call for nominations for the Abel prize.

A letter from Mr Frank Turpin, chair of the NCCA Board of
Studies for Mathematics, in reply to a letter from the Math-
ematics Education subcommittee concerning the NCCA’s re-
view of post-primary Mathematics. Mr Turpin informed the
society that work was on-going on a new syllabus for second
level Mathematics. M. O Reilly informed the meeting that the
Mathematics Education in Ireland Conference will be held on
14th and 15th of September 2007 in St Patrick’s Drumcondra.

A letter from Ms Margaret Kelly, Principal Officer in the De-
partment of Education and Science, in reply to a request from
the IMS for information on the provision of Higher Level Math-
ematics in post-primary schools. Ms Kelly informed the society
that the Department of Education and Science did not have the
information required and suggested that the society contact the
State Examinations Commission. The secretary informed the
meeting that this had already been done.

A letter from Ms Mariosa Kelly of the Department of Educa-
tion and Science together with a list of 58 schools where no
pupil was returned for the 2005/2006 year as pursuing Higher
Level Mathematics at Leaving Certificate.
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4. Membership Applications

Thomas Unger, Romina Gubburro, Remo Hiigli, Helena Smigoc, Nu-
ala Curley, Sarbari Mukherjee, Declan Walsh, Ciaran O’Sullivan,
Paul Robinson, Gloria Crispino-O’Connell, Martin Marjoram, Noel
Gorman, Fergus Gaughran, Ciaran Taylor, Cora Stack, Fiona Wat-
son, Dmitri Zaitsev, Madeeha Khalid, Leo Creedon, Grace Corco-
ran, Partrick McKenna, John Boncek, Violetta Moloney, Laurence
Cuffe, Christine Horn and Richard Stafford were approved as ordi-
nary members.

An insert will be prepared for the next edition of the Bulletin. The
purpose of this insert is to allow members to update their details with
the society. It is hoped that an up-to-date email list of members can
then be created.

5. President’s Report

The President presented an interim report on issues that have arisen
this year. He thanked David Armitage for his long service to the
society, he also thanked Maurice O’Reilly, David Wraith and Ann
O’Shea whose terms of office have come to an end.

6. Treasurer’s Report

The Treasurer presented his report for 2006. It shows a shortfall of
466.39 €. The report was approved.

7. The Bulletin

The Editor reported that Volume 59 is ready and is being distributed.
He noted that short survey articles were welcome. He asked the ab-
stracts of PhD theses written at Irish institutions be submitted for
publication in the Winter issue. It has been decided to discontinue
the section on reports of conferences funded by the IMS. The com-
mittee decided to continue producing the Bulletin in print form.

8. Election to Committee

The following were elected unopposed to the committee:
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Committee Member Proposer Seconder

S. Breen (Treasurer) A. O’Shea | D. Wraith
S. O’'Rourke (Secretary) | R. Timoney | D. Wraith
B. Guilfoyle R. Higgs A. O’Shea
N. O’Sullivan R. Higgs A. O’Shea
T. Carroll R. Higgs A. O’Shea
N. Kopteva D. Wraith | G. Lessells
S. Buckley D. Wraith | G. Lessells
A. Wickstead M. O’Reilly | G. Lessells
S. Wills R. Timoney | G. Lessells

As editor, M. Mathieu will be invited to committee meetings.
The total number of years each existing member will have been on
the committee as of 31 December 2007 will be: M. O Reilly (6),
D. Wraith (6), A. O’Shea (6), D. Armitage (5), T. Carroll (4), J.
Cruickshank (5), N. O’Sullivan (4), R. Timoney (3), R. Higgs (3),
N. Kopteva (2), B. Guilfoyle (2), S. Breen (1), S. O’'Rourke (1).

The following will then have one more year of office: R. Higgs (Pres-
ident), J. Cruickshank (Vice-President), R. Timoney.

9. Fee Increase

The Treasurer proposed that subscription rates should be raised.
The rule change was passed unanimously. The new rates are: Or-
dinary member: 25 € (or 18 £); Student, Reciprocity and Retired
members: 12.50 €; AMS reciprocity members: 15 $; Life members:
300 €; Institutional members: 160 €. The fee increase will come
into effect in January 2009.

10. Report from the Committee for Service Teaching of
Mathematics

A discussion document on service teaching of Mathematics was cir-
culated. The document recommends:

1. that the IMS puts down a marker that service mathematics
is important to Irish society, in order to counter any percep-
tion that the IMS does not currently give service mathematics
sufficient attention;

2. that the IMS plays a more active and prominent role in the
area of service teaching of mathematics and, in particular, that
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service mathematics become a special interest group within the
IMS;

3. that the IMS makes the point repeatedly that fourth level ed-
ucation in many areas is predicated on students’ solid foun-
dations in the fundamentals of mathematics and that this can
only be achieved if mathematics is taught by mathematicians;

4. that the IMS agrees that the teaching of service mathematics
alone at most of the institutes of technology represents a lost
opportunity to reach a critical mass in mathematics at these
institutes and to build viable and identifiable groups of math-
ematicians with common interests and goals.

The document will be made available on the IMS website. It will
also be circulated via mathdep. Comments on the document should
be sent to A. O’Shea who agreed to consult with the Committee
for Service Teaching of Mathematics and the Mathematics Educa-
tion subcommittee and to produce a policy document on this subject
by Christmas 2007. The policy document will be circulated in ad-
vance of the 2008 AGM. The members of the Committee for Service
Teaching of Mathematics were thanked for their work.

11. SFI Mathematics Initiative

The President met with Dr Gary Crawley of SFI in July 2007. An
account of the meeting can be found at
http://www.maths.tcd.ie/pub/ims/business/SFIMaths2.pdf

12. Links

M. O Reilly has attended two SMF meetings and it is hoped that a
representative of the SMF will speak at the IMS/BMC meeting in
2009. The President has drafted a reciprocity agreement between
the IMS and the New Zealand Mathematics Society and is waiting
for a reply. There is now a link to the Irish Applied Mathematics
Teachers Association on the IMS website and a representative of the
TAMTA may speak at the DIAS meeting in December 2007.

13. Website

The calendar of events for mathematical activities in Ireland is now
up and running.
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14. Public Image Issues
B. Guilfoyle is the PRO for the society.
15. IMO

Stephen Dolan won a bronze medal at the 2007 IMO. J. Cruickshank
will write a short report on the competition for the Bulletin. G.
Lessells was thanked for organising the Irish team’s training camp in
UL each year. The Fergus Gaines cup will be presented to Stephen
Dolan in November.

16. Future Conferences and Meetings

The 2008 meeting will be held in the Cork Institute of Technology.
The 2009 meeting will be a joint meeting with the BMC in Galway
and will be held from 6-9 April. The 2010 meeting may take place
in DIT. The 2007 DIAS Winter Symposium will take place in De-
cember, however dates are not yet known. The next general meeting
will be held in CIT in 2008. It was noted that the 2009 AGM will
be held at DIAS.

11. Any Other Business

(i) The treasurer received an email from consultants to Failte Ire-
land encouraging the IMS to host the 2016 Congress of the
European Mathematical Society.

(ii) M. O Reilly plans to conduct a survey of the membership. He
asked for volunteers and will report to the December committee
meeting.

(iii) P. Kirwan reminded the meeting that Maths Week 2007 will
take place in the week beginning 15 October.

(iv) R. Watson informed the meeting of his intention to set up the
Irish Mathematical Trust. The main purpose of the trust would
be to coordinate mathematics competitions at second level. A
committee member will be chosen to liase with R. Watson on
this matter.

Ann O’Shea,
NUI Maynooth

These minutes still need to be approved by the next AGM.



PROGRAMME
20th SEPTEMBER MEETING

UNIVERSITY COLLEGE DUBLIN
3-4 SEPTEMBER 2007

Monday 3rd
10:00-10:30  Registration and coffee
10:30 Opening address — Gary Crawley (SFI)

11:00-11:50 David H Armitage (QUB)
Unfinished business: some open questions
in classical analysis

12:00-12:25 Shane O’Rourke (Cork IT)

The equation xPy? = 2" in tree-free groups

12:30-12:55 Ciaran Mac an Bhaird (NUIM)
“Gauss” method for the determination of the
minimal polynomial of the Gaussian period

13:00-14:00 Lunch

14:00-14:55 Peter Lynch (UCD)
Calculating the weather: the mathematics of
atmospheric modelling

15:00-15:20 Coffee

15:00-15:25 Huizhong Wu (DCU)
Large fluctuations in stochastic dynamical
systems

15:30-16:00  Coffee
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16:00-16:50 Keith Weber (Rutgers, USA)
How do students learn to understand formal
mathematical concepts?

17:00-18:15 IMS Committee Meeting

Tuesday 4th
9:30-9:55 Anca Mustata (UCC)

On spaces of rational curves and their cohomology

10:00-10:25 Stephen Buckley (NUIM)
Nonpositive curvature on metric spaces

11:10-11:30  Coffee

11:00-11:50 Geraldo Botelho
(Valencia, Spain & Uberlandia, Brazil)
Ideals of homogeneous polynomials from a
historical viewpoint

12:00-12:50 IMS Annual General Meeting
13:00-14.00  Lunch

14:00-14:50 Robert Osburn (UCD)
Ramanujan, partitions, and overpartitions

15:00-15:30  Coffee

15:30-15:55 Claire Gormley (UCD)
FEzxploring voting blocs in the Irish
electorate: a statistical modelling approach

16:00-16:25 Martin Mathieu (QUB)
A multivariable Cayley—Hamilton theorem
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The IMS September Meeting 2007 at UCD
Abstracts of Invited Lectures

Unfinished business:
Some open questions in classical analysis

DAVID ARMITAGE (QUEEN’S UNIVERSITY BELFAST)

Some easily stated open problems will be discussed.

(i) It is known (Zalcman, 1982) that the Radon transform is not
injective: there exist non-trivial continuous functions f: R*> — R
with zero (proper) integral on every (doubly infinite, straight) line.
All known examples of such functions have extremely rapid overall
growth. Can such a function have slow growth, or even be bounded?
Is it true that a continuous function on R*® with zero integral on
every line must be identically zero?

(ii) Every polygonal domain D in R? has the Pompeiu property (PP):
if f: R* — R is continuous and fJ(D) f(x)dx = 0 for every rigid mo-
tion o, then f = 0. The corresponding assertion for functions on the
sphere S? is false: there are infinitely many (non-congruent) regu-
lar spherical polygons that lack PP, and they can be characterised.
But it still seems unclear whether, for example, all non-trivial regu-
lar spherical triangles have PP, and whether (up to congruence) the
known example of a spherical square lacking PP is unique.

(iii) One formulation of the maximum principle asserts that if h is a
non-constant harmonic function on a ball centred at the origin O in
R™ and h(O) = 0, then h takes positive values and negative values on
every neighbourhood of O. In the case n = 2, this can be quantified:
it is easy to show that, with h as above, the subset of {z: ||z|| < r}
and the subset where h < 0 have roughly the same area. (The ratio
of the areas tends to 1 as r — 0+4.) What can be said in the case
n > 37
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Ideals of homogeneous polynomials
from a historical viewpoint

GERALDO BOTELHO (VALENCIA, SPAIN & UBERLANDIA, BRAZIL)

The main aim of this talk is to give an overview, from a histori-
cal viewpoint, of the study of ideals of homogeneous polynomials
between Banach spaces. We start by describing, on the one hand,
the beginnings of infinite-dimensional analytic function theory at the
turn of the 20th century; and, on the other hand, the emergence of
functional analysis in the 1920s and 30s. Our idea is to present the
theory of polynomial ideals as a natural and unifying evolution, ini-
tiated in the 1980s, of developments which these two theories had
undergone over the period 1950-70.

Nonpositive curvature on metric spaces
STEPHEN BUCKLEY (NUI MAYNOOTH)

We define various concepts related to negative or nonpositive curva-
ture on metric spaces. We discuss how these concepts are related to
each other, and how they lead to boundaries at infinity.

Exploring voting blocs in the Irish electorate:
a statistical modeling approach.

CLAIRE GORMLEY (UCD)

The electorate in any election is a heterogeneous population in that
voters have different political and idealistic persuasions. A voting
bloc is defined to be a group of voters who have similar voting ten-
dencies. It can be assumed that the electorate consists of a finite
number of voting blocs or ‘expert networks’. Such a framework is
known as a mixtures of experts model. Each voter has a proba-
bility of belonging to each of the voting blocs—the covariates of a
voter determine these voting bloc membership probabilities through
a multinomial logistic regression model. Interest lies in examining
the Irish electorate as in Irish elections voters rank some or all of the
candidates in order of preference. Rank data models are employed
to model the votes cast by members of the electorate. This allows
inferences to be drawn on the number of voting blocs present and
on their characterising voting patterns. Thus rank data models are
incorporated with a mixtures of experts model to provide a unique
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exploratory tool for rank data. Model fitting involves the exploita-
tion of properties of convex functions. The application of the model
to the 1997 presidential electorate reveals that age and current gov-
ernment opinion were influential factors on voter preferences.

Calculating the weather:
The mathematics of atmospheric modelling

PETER LyNcH (UCD)

Over recent decades, weather forecasting has evolved from a mainly
qualitative activity to a rigorous quantitative science. The accuracy
of weather predictions has increased steadily, and continues to im-
prove. The changing climate will have major implications for human-
ity. It is essential that we determine probable future changes with
as much precision as possible. The computer models for modelling
climate change rest on the same mathematical and physical foun-
dation as the models used for weather prediction. As the range of
prediction increases, the errors grow larger. For predictions beyond a
few days, probabilistic prediction is more apposite than deterministic
forecasting. This is achieved through the ensemble approach. In this
presentation we will review the mathematical foundations of mod-
ern numerical weather prediction and climate modelling. We will
describe the techniques used for assimilation of observational data
and for integration of the partial differential equations governing the
evolution of the atmospheric flow.

‘Gauss’ method for the determination of the
minimal polynomial of the Gaussian period

CIARAN MAC AN BHAIRD (NUI MAYNOOTH)

It is commonly believed that Gauss’ method for the determination
of Cyclotomic Numbers, and thus the determination of the minimal
polynomial of Gaussian Periods, is unwieldy for the general case. See
for example, the remarks of André Weil in Numbers of Solutions of
Equations in Finite Fields, Bull. A.M.S., v. 55, 1949, pp. 497-508.
The prevailing wisdom now seems to be that the determination of
the minimal polynomial of the Gaussian Periods, using Jacobi Sums
etc., should be done first and then the Cyclotomic numbers be de-
termined as a consequence. In fact, this was suggested by Weil in
the paper above. It appears that Gauss’ original method has now
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been abandoned. We have shown that Gauss’ method leads to a se-
ries of functional equations. We then obtain necessary and sufficient
conditions for these functional equations to have integer solutions.
This leads to a finite Diophantine system—the number of equations
is independent of the prime. We have shown that this purely Dio-
phantine system has precisely ¢([) solutions which correspond to
the Cyclotomic numbers of order [. This is, in fact, the first purely
Diophantine characterisation of the cyclotomic numbers and the co-
efficients of the minimal polynomial of the Gaussian periods and the
problem is solved for all orders. The bulk of the work involves prov-
ing that the Galois group of a related polynomial acts cyclically on
its roots and therefore the polynomial is irreducible. It is then not
too difficult to show that the polynomial is in fact the minimal poly-
nomial of the Gaussian Periods. In view of Weil’s belief, as alluded
to above, it is of interest that Jacobi sums appear nowhere in our ar-
gument and furthermore, that the determination of the Cyclotomic
numbers can be taken as a starting point for the determination of the
Gaussian periods. This of course was Gauss’ motivation for his work
on Cyclotomic numbers of orders 3 and 4. There are other descrip-
tions of the general Cyclotomic numbers which involved Diophantine
systems, but these descriptions all employ a rejection criterion and so
cannot be considered to be purely Diophantine. A purely Diophan-
tine description has the advantage that if one obtains alternative
formulae for the cyclotomic numbers, the result can be proved by
simply verifying that these formulae satisfy the system of equations.

A multivariable Cayley—Hamilton theorem

MARTIN MATHIEU (QUEEN’S UNIVERSITY BELFAST)

The Weyl calculus for a pair A = (A7, As) of selfadjoint n x n matri-
ces, due to H. Weyl, associates a matrix Wa(f) to each smooth func-
tion f defined on R? in a linear but typically not multiplicative way.
Letting CA(/\) = det((A1 — /\1)2 + (A2 — /\2)2) for A\ = ()\1, )\2) € R?
denote the joint characteristic polynomial of the pair A it is known,
for n < 3, that A1 4y = AsA; if and only if Wx(ca) = 0. It is an
open problem whether this is still true for n > 3. We shall discuss
two new approaches to this problem: the role of the canonical order
structure for selfadjoint matrices; and topological invariants arising
from continuity properties of the non-linear map (f, A) — Wa(f).
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This is joint work with W. Ricker, Eichstatt, Germany to be pub-
lished in Math. Proc. Royal Ir. Acad.

On spaces of rational curves and their cohomology
ANcA MusTATA (UCCQC)

Kontsevich and Manin have introduced the moduli spaces of sta-
ble maps to parametrize curves in complex projective manifolds.
Cohomological computations on these moduli spaces have provided
solutions to important enumerative problems regarding curves. In
this talk I will describe a new construction of the Kontsevich—-Manin
spaces for rational curves, starting from the simpler example of the
Grassmannian of lines in the projective space. This new construc-
tion allows us to understand the structure of their cohomology rings
in a natural, geometric way.
This talk is based on joint work with Andrei Mustata.

Ramanujan, partitions, and overpartitions
ROBERT OsBURN (UCD)

During his lifetime, Ramanujan made many beautiful discoveries
ranging from elegant identities and formulas to work which influ-
ences modern number theory. In this talk, we discuss his work on
the arithmetic of the ordinary partition function, Dyson’s rank, and
a generalization of partitions called overpartitions.

This is joint work with Jeremy Lovejoy (Paris).

The equation zPy? = z" in tree-free groups
SHANE O ROURKE

It is a classical result due to Lyndon and Schiitzenberger that in a
free group , solutions of the equation xzPy? = 2" commute for integers
p,q,r > 2. Groups that admit a free action (without inversions) on
a A-tree for some ordered abelian group A so-called tree-free groups
are a natural generalisation of free groups, and they satisfy many
of the same properties as free groups. On the other hand this class
properly contains fully residually free groups (called limit groups by
Sela). In this talk we will discuss the extent to which the result of
Lyndon and Schiitzenberger extends to tree-free groups.
This is joint work with N. Brady, L. Ciobanu and A. Martino.
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How do students learn to understand
formal mathematical concepts?

KEITH WEBER
(no abstract provided)

Large fluctuations in stochastic dynamical systems
Huiznong Wu (DCU)

Stochastic differential equations (SDEs) are commonly used in mod-
eling the trajectories of processes whose motion is determined by
random movements. In particular, we are interested in the applica-
tion of SDEs to inefficient financial markets (IFM) in which investors
take historical information into account when making their invest-
ment decisions. We study the almost sure asymptotic rate of growth
of the partial maxima and minima of solutions of both linear and
non-linear SDEs, as these represent the largest possible fluctuations
in the price or returns of the asset.

Since in IFM, prices or returns exhibit short run positive auto-
correlations (which mimic market bubbles), SDEs involving delay
factors are investigated and compared with SDEs under the classi-
cal Efficient Market Hypothesis. We also develop Markov models
driven by semi-martingales other than standard Brownian motion.
While these semi-martingales preserve the size of large fluctuations of
Brownian markets, they differ from Brownian motion by possessing
dependent increments, and so can create the presence of non-trivial
autocorrelations in security returns.

The work is joint with my supervisor Dr. John Appleby.



ANNOUNCEMENTS OF
MEETINGS AND CONFERENCES

This section contains announcements of meetings and conferences as
supplied by organisers. The Editor does not take any responsibility
for the accuracy of the information provided.

Duality and Involutions in Representation Theory

NUI Maynooth
August 1922, 2008

The conference “Duality and Involutions in Representation Theory”
will be held at the National University of Ireland, Maynooth from
August 19-22, 2008. The conference will focus on the representation
theory of finite groups.

The conference topic should be interpreted loosely. We welcome
participation from mathematicians working, e.g., on ‘classical’ Brauer
block theory, the theory of algebras, character theory, structure of
finite groups, representations of Lie groups, Hecke algebras, com-
binatorial representation theory, cohomology and invariant theory,
integral representation theory and the theory of lattices and orders.

The organisers are Dr. John Murray, NUI Maynooth; Professor
Rod Gow, University College Dublin; and Dr. Rachel Quinlan, NUI
Galway.

Full information on registration and a list of participants are avail-
able at

http://www2.maths.nuim.ie/conference/
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Instructional Workshop on
Subfactors and Planar Algebras

Queen’s University Belfast
August 26-28, 2008

The work of Vaughan Jones in the late 1980’s once again revolu-
tionised the theory of von Neumann algebras. The study of sub-
factors emerging from it took various directions; in particular their
structure theory became extremely important, also for other branches
of Mathematics and Mathematical Physics. The so-called ‘planar al-
gebras’ introduced by Jones and Bisch, which also play a role in Free
Probability Theory, appear to be particularly useful constructs.

The purpose of this three-day Instructional Workshop is to provide
a forum for information on the latest developments in this highly
specialised and vibrant area of Mathematics. The core activity will
be six one-hour lectures delivered by Prof Dietmar Bisch, Vanderbilt
(on the first afternoon and the mornings of the following two days).
The afternoons of the second and third day shall be used for informal
discussions or shorter talks by either advanced PhD students or other
researchers in the field of von Neumann algebras.

This workshop is organised by Dr Martin Mathieu and supported
by the School of Mathematics and Physics, the Irish Mathematical
Society and the London Mathematical Society. Graduate students
studying in the Rol or the UK can be supported; for details please
contact m.m@qub.ac.uk

Further information will be posted on the conference website
http://wuw.qub.ac.uk/puremaths/Conferences/Conferences.html

Irish Mathematical Society 21st September Meeting 2008

Cork Institute of Technology
September 1-2, 2008

The next IMS September meeting will be held at Cork Institute of

Technology on Monday and Tuesday, the 1st and 2nd of September.

It is organised by Shane O’Rourke.

For more information please see
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Abstracts of PhD Theses at Irish Universities 2007

On the Asymptotic Behaviour of Deterministic and
Stochastic Volterra Integro—Differential Equations

SIOBHAN DEVIN
s.devin@ucc.ie

This is an abstract of the PhD thesis On the asymptotic behaviour
of deterministic and stochastic Volterra integro—differential equations
written by Siobhdn Devin under the supervision of Dr John Appleby
and Dr David Reynolds at the School of Mathematical Sciences,
Dublin City University and submitted in March 2007.

This thesis examines a question of stability in stochastic and de-
terministic systems with memory, and involves studying the asymp-
totic properties of Volterra integro—differential equations. The type
of stability that has been established for this class of equations is im-
portant in a variety of real-world problems which involve feedback
from the past, and are subject to external random forces. These
include modelling endemic diseases, and more particularly the mod-
elling of inefficient financial markets.

The theme of the thesis is to subject a dynamical system with
memory to increasingly strong and unpredictable external noise.
Firstly, a fundamental deterministic Volterra equation is considered:

R'(t) = AR(t) + /t K(t—s)R(s)ds, t>0; R(0)=1I,
0

where the solution R is known as the resolvent, A is a constant
n X n-dimensional matrix, K is n X n-dimensional function-valued
matrix and [ is the n x n-dimensional identity matrix. Necessary and
sufficient conditions for the solution to approach a nontrivial limit
are known. A strengthened version of these conditions is shown to be
necessary and sufficient for exponential convergence to a nontrivial
limit.
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Next, a Volterra equation with a fading stochastic perturbation
is studied:

dX(t) = {AX(t) + /Ot K(t—s)X(s)ds| dt+ X(t)dB(t), t>0;
X(0) = Xo.

Here ¥ is a n x d-dimensional function-valued matrix known as
the noise term and the random behaviour is introduced using a d-
dimensional Brownian motion B. The influence of the noise fades
by allowing ¥(t) — 0 as t — oo.

Two types of stochastic convergence are considered: mean square
and almost sure convergence. Conditions are found which ensure
that the solution converges to a non-equilibrium random limit. More-
over, the rate at which this limit is approached is established. In the
mean square case, necessary and sufficient conditions on the resol-
vent, kernel and noise are determined to ensure this rate of conver-
gence. In the almost sure case, the same conditions are found to be
sufficient; furthermore, it is shown that the conditions on the resol-
vent and the kernel are necessary. A corresponding result was also
found to hold for a more general class of weakly singular kernels. As
in the deterministic case, necessary and sufficient conditions for the
solution to converge exponentially fast to its limit are found.

Finally, a stochastic Volterra equation with constant noise inten-
sity is considered. This gives rise to the process analogous to Brow-
nian motion, which has applications to mathematical finance. It can
be shown that the distribution of the increments of the process con-
verge to a stationary statistical distribution. The conditions under
which such convergence can take place are completely characterised.
In fact, a solution of a corresponding Volterra equation with infinite
memory is shown to have exactly stationary increments which match
the limiting distribution of the increments of the general solution.

Convergence Properties of Bimodules over
Maximal Abelian Self-adjoint Algebras

JOSEPH HABGOOD
joe.habgood@qub.ac.uk

This is an abstract of the PhD thesis Convergence properties of bi-
modules over mazimal abelian self-adjoint algebras written by Joseph
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Habgood under the supervision of Ivan Todorov at Queen’s Univer-
sity Belfast and submitted in September 2007.

Let Hy and H, be separable Hilbert spaces. Given maximal
abelian self-adjoint algebras (masas) Dy C B(Hy) and Dy C B(H>)
and a Dy, Dy-bimodule (masa-bimodule) U the projection bilattice of
U is the set

billd = {(Pl,PQ) S PI‘Ole X PI‘OjDQ : PBbUP, = 0}
If the masas are given coordinate representations D; = L (X, m)
(resp. Dy = L*°(Y,n)) for some standard Borel spaces (X, m) and

(Y,n) then the support of U is defined, up to marginal equivalence,
by taking a countable strongly dense subset S C bill/ and putting

suppU = ( U a X ﬁ)

(My, My, )ES

c

Indeed, any subset of X x Y whose complement is marginally equiv-
alent to a countable union of Borel rectangles is the support of some
masa-bimodule; such sets are said to be w-closed.

If Kk € X XY is an w-closed set then there is a largest weak* closed
masa-bimodule whose support is &, denoted by M,,..(x); and, less
obviously, a smallest weak™ closed masa-bimodule whose support is
, which is denoted by M,,in (k).

The main results of this thesis are (semi-)continuity theorems for
the map sending a masa-bimodule to its support and the maps which
take an w-closed set k € X X Y to Myaz(k) and My, (k). For a
precise meaning of the word continuity the reader is referred to [2].
It suffices here to note that continuity theorems of this kind have
been obtained by several authors in the past, notably: Haagerup
and Winslow’s [1] result on the continuity of the map sending a
von Neumann algebra to its commutant; and, in the setting of non-
self-adjoint operator algebras, the various results of Shulman and
Todorov [3] on the continuity of the map sending a weak* closed
unital operator algebra to its invariant subspace lattice. Indeed, it is
easy to extend a continuity theorem of [3], for operator algebras that
contain a masa, to show that the map sending a weak* closed masa-
bimodule to its projection bilattice is continuous. Difficulties seem
to arise however in translating this into a useful continuity result for
the support.

This problem is addressed by introducing a natural topology on
the collection of w-closed sets in terms of a family of set-functions on
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X x Y. The collection of w-closed sets, endowed with this topology,
is homeomorphic to the collection of weakly closed convex hulls of
projection bilattices endowed with a convergence derived from the
weak operator topology. This fact is used to show that, with this
topology on the codomain and a convergence on the domain derived
from the weak* and strong™ topologies on B(H;, Hs), the map send-
ing a bimodule to its support is continuous.

On the other hand, the maps M,,q, and M,,;, are both shown to
be discontinuous, with discontinuities occurring at the ‘non-synthetic’
w-closed sets (these are the w-closed sets x at which M, 4. (x) and
M in () differ). Semi-continuity results are obtained for these maps:
M hqz is upper-semi-continuous and, in a weaker sense, M,,;, is
lower-semi-continuous. In the special case when the bimodules are
ranges of weak* continuous masa-bimodule projections all relevant
w-closed sets are synthetic, hence the discontinuities mentioned above
do not occur. Using different techniques, specific to this situation, a
related continuity theorem is obtained.
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Degree Patterns of Projective Representations of
Finite Groups

DoNAL HEALY
donal.healy@ucd.ie

This is an abstract of the PhD thesis Degree patterns of projective
representations of finite groups written by Donal Healy under the
supervision of Dr Russell Higgs at the School of Mathematical Sci-
ences, University College Dublin and submitted in November 2006.

The study of projective representations was initiated by Schur [6]
in 1904, and the subject received renewed impetus in 1937, when
Clifford [1] showed that projective representations and projective
characters arise naturally in the study of ordinary representations
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and characters of a finite group G, and in particular in the restriction
of such characters to normal subgroups of G.

It is very well known that if all the ordinary characters of a group
G have equal degree, then G is abelian. We consider the projective
case, that is, if a group G has a fixed 2-cocycle « such that the set
of irreducible a-projective characters of G all have the same degree,
then is G solvable? This has been an open conjecture for at least
the last twenty years. The main result of this thesis verifies this
conjecture in one special case.

In 1964 Iwahori and Matsumoto [4] conjectured that a group G
with a fixed 2-cocycle « such that G has exactly one irreducible a-
projective character is solvable. This was verified by Howlett and
Isaacs [3] in 1982 after much work was done by Liebler and Yellen
[5] in a paper published in 1979.

In [2], Higgs proved that a group G with a fixed 2-cocycle a such
that G has exactly two irreducible a-projective characters is solvable.
The case where G has exactly three irreducible a-projective charac-
ters is an open conjecture. This thesis considers the more restricted
case that G has exactly three irreducible a-projective characters all
of the same degree and we prove that G is solvable under this hy-
pothesis.

In the thesis we provide the structure of the Schur multiplier for
each group of order less than 128. We also give one covering group for
most groups of order less than 128 and list all the different covering
groups for nearly all groups of order less than 45. We also present a
Magma program for computing projective character tables of groups
of order less than 32.

Next we work with projective character degree patterns of non-
abelian groups of order p™ for p an odd prime. We deal initially with
the case n = 4, and establish the structure of the Schur multiplier
of the four groups of order p* not available in the existing literature.
We also find all the groups of order p* which realise all their possi-
ble projective character degree patterns for non-trivial cohomology
classes. We then prove that no group of order p™ for n > 4 realises all
its projective character degree patterns for non-trivial cohomology
classes.

Finally we introduce a concept that will play a pivotal role in the
rest of the thesis, that is, a group G with a fixed 2-cocycle a such
that G has exactly three irreducible a-projective characters of equal
degree. We say that such a group is of 3a-central type. We prove
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that the property that a group G is of 3a-central type is ‘inherited’
by the Sylow 3-subgroup of G as well as certain factor groups of G
under certain conditions. Finally we prove using the Classification
of the Finite Simple Groups that a group G of 3a-central type is
solvable.
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Difference Sets with Classical Parameters in Abelian
Groups

KEVIN JENNINGS
kevin.jennings@spd.dcu.ie

This is an abstract of the PhD thesis Difference Sets with Classi-
cal Parameters in Abelian Groups written by Kevin Jennings under
the supervision of Rod Gow at the UCD School of Mathematical
Sciences, University College Dublin and submitted in April 2007.

Let G be a group of order v. Let D = {dy,ds,...,dr} be a
k-subset of G. Then D is a (v, k, A)-difference set for G if each non-
identity ¢ € G can be expressed in exactly A ways as a product
g= clidj_1 where d; and d; are elements of D.

If G is abelian and additive notation is used, the condition can
be read that each non-zero g € G has exactly )\ expressions as a
difference g = a — b where a,b € D. Hence the origin of the term
‘difference set’. For example, the set {1,2,4,10} is a difference set in
Z13 as can be easily verified by computing the differences modulo 13.
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Difference sets were introduced by James Singer in 1938. His
family of difference sets have parameters

(,07]{’)\) _ <qd _ 17 qd—l _ 1, qd—2 _ 1)
g—1" q—-1 q—1

where d > 2 and ¢ is a prime power. Any difference sets with these
parameters are said to have classical parameters and there are several
known families. These difference sets correspond to sequences with
ideal autocorrelation properties and are currently (2007) of interest
to applied mathematicians. There are several enticing but extremely
difficult conjectures on these difference sets. Firstly, it is conjectured
that ¢ must be a prime power. Secondly, if such a difference set is
in an abelian group, it is conjectured that the group must be cyclic.
Such questions are not addressed in this thesis.

In this thesis we investigate difference sets with classical parame-
ters in abelian groups. In particular, we study how a difference set in
a group interacts with subgroups and consequently how the param-
eters of a difference set can restrict the structure of the underlying
group. The thesis should be accessible to any mathematics graduate
as the arguments used are relatively elementary. The group theoretic
arguments are delicate but since we are working in abelian groups,
the problems are more combinatoric by nature. There is a geometric
interpretation underlying the work but we have not drawn insight
from this and it is rarely called upon here, although our results are
sometimes stated with the geometry in mind.

Our first two chapters introduce the topic and describe the clas-
sical constructions of difference sets, with the necessary techniques
from field theory and linear algebra.

Chapter 3 involves Hall’s multipliers and we reach here our first
result, proving the existence of a subgroup inside a certain difference
set. In Chapter 4 we generalise this observation, employing the more
technical tools of the Mann Test. We also prove that the Sylow 2-
subgroup often must be cyclic for an abelian group to support a
classical difference set.

In Chapter 5 we focus on the family of difference sets with pa-
rameters of the 3-dimensional finite projective geometries. These are
one dimension up from projective planes and we can discern precise
details of their structure from the mere parameters of these objects.
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In Chapter 6 we present our main result that a planar difference
set is embedded in a natural but not obvious way inside a difference
set with the parameters of a 5-dimensional projective geometry.

Models Of Rimming Flows

SEAN M. LACEY
sean.lacey@ul.ie

This is an abstract of the PhD thesis Models Of Rimming Flows writ-
ten by Sean M. Lacey under the supervision of Prof. Eugene Benilov
and Prof. Stephen O’Brien at the Department of Mathematics and
Statistics, University of Limerick and submitted in October 2007.

The dynamics of a thin film of viscous fluid on the inside of a
cylinder with horizontal axis, rotating about this axis, are examined
in this thesis. The stability of this film has been previously explored
using the leading order lubrication approximation, under which it
was found to be neutrally stable.

In this thesis, the effect of higher-order corrections (such as iner-
tia, described by the material derivatives in the Navier—Stokes equa-
tions, surface tension, and the hydrostatic pressure gradient) on the
stability of the film is examined. Assuming that these correction
terms are weak, an asymptotic equation is derived which takes into
account these effects as perturbations. This equation is used to ex-
amine the stability of the steady-state distribution of the film around
the cylinder (rimming flow) with respect to linear disturbances with
harmonic dependence on the axial variable and on time (normal
modes).

It has been shown by [3], in two-dimensional motion, that the
hydrostatic pressure gradient does not affect the stability of normal
modes at all, and the effect of surface tension is weak — whereas
inertia always causes instability. This thesis will investigate the effect
of these three higher-order corrections terms in three-dimensional
motion.

The leading order three-dimensional case has been investigated by
[1], where it was shown that there are infinitely many normal modes,
which are neutrally stable and where the eigenfunctions form a com-
plete set. [1] also showed that the film is nonetheless unstable with
respect to non-harmonic disturbances, which develop singularities in
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a finite time. [2] coined the phrase ‘explosive’ instability to describe
these singularities.

In [2], the explosion occurred in the azimuthal direction, while
in [1], it occurred in the axial direction. In this thesis, both the
azimuthal and axial components of the hydrostatic pressure gradient
are taken into account. One aim of the thesis is to determine if the
film thickness of the liquid can explode in both directions, and if
so, can the characteristics of this type of explosion be deduced. It
will also be shown that two types of explosions can occur — i.e.,
explosions with zero net mass and explosions with non-zero net mass.
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Gauss’ Method for the Determination of Cyclotomic
Numbers

CIARAN MAC AN BHAIRD
ciaran.macanbhaird@Qnuim.ie

This is an abstract of the PhD thesis Gauss’ Method for the Deter-
mination of Cyclotomic Numbers written by Ciardn Mac an Bhaird
under the supervision of Dr. Pat McCarthy at the Department of
Mathematics, NUI Maynooth and submitted in October 2007.

In this work we have shown that Gauss’ method for the determi-
nation of Cyclotomic numbers leads to a series of functional equa-
tions. We then obtain necessary and sufficient conditions for these
functional equations to have integer solutions. This leads to a finite
Diophantine system — the number of equations is independent of the
prime p. We have shown that this purely Diophantine system has
precisely ¢(1) solutions which correspond to the Cyclotomic numbers
of order [, where p = 1 mod .

This is the first purely Diophantine characterisation of the cyclo-
tomic numbers and the coefficients of the minimal polynomial of the
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Gaussian periods, and in fact, the problem is solved for all orders. A
purely Diophantine description has the advantage that if one obtains
alternative formulae for the Cyclotomic numbers, the result can be
proved by simply verifying that these formulae satisfy the system of
equations. There are other descriptions of the general Cyclotomic
numbers which involve Diophantine systems, but these descriptions
all employ a rejection criterion and so cannot be considered to be
purely Diophantine.

Most of the work involves proving that the Galois group of a re-
lated polynomial acts cyclically on its roots and therefore the poly-
nomial is irreducible. It is then not too difficult to show that the
polynomial is in fact the minimal polynomial of the Gaussian Peri-
ods.

It was commonly believed that Gauss’ method for the determi-
nation of Cyclotomic Numbers, and thus the determination of the
minimal polynomial of Gaussian Periods, was unwieldy for the gen-
eral case. See for example, the remarks of André Weil [1]. The pre-
vailing wisdom seemed to be that the determination of the minimal
polynomial of the Gaussian Periods, using Jacobi Sums etc., should
be done first and then the Cyclotomic numbers be determined as a
consequence. In fact, this was suggested by Weil [1]. It appeared
that Gauss’ original method was abandoned.

We have shown that Gauss’ method works. In view of Weil’s
comments, it is interesting that Jacobi sums appear nowhere in our
argument and furthermore, that the determination of the Cyclotomic
numbers can be taken as a starting point for the determination of
the Gaussian periods. This of course was Gauss’ motivation for his
work on Cyclotomic numbers of orders 3 and 4.

We demonstrate the beauty of this method by determining the
Cyclotomic numbers

clep +e; + €5)
i

of order 5. We have also characterised the algebraic variety for all

values, there are, in fact ¢(l) integer points on a torus of dim 1771
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The Paradigm Shift from Euclid to a Composite System of
Geometry in Intermediate Certificate Mathematics in
Ireland, 1966-1973

SusaN M. C. MAC DONALD
smcmacdonald@eircom.net

This is an abstract of the PhD thesis The Paradigm Shift from Eu-
clid to a Composite System of Geometry in Intermediate Certificate
Mathematics in Ireland, 1966-1973, written by Susan M. C. Mac
Donald under the supervision of Dr Richard O. Watson at the De-
partment of Mathematics, National University of Ireland, Maynooth
and Prof. Emeritus John Coolahan at the Department of Educa-
tion, National University of Ireland, Maynooth, and submitted in
February 2007.

For over a twenty-one year period, from the mid 1960s, logically
flawed geometry was prescribed to over one million second-level stu-
dents in Ireland.

A change took place in second-level geometry in Ireland in the mid
twentieth century that was influenced by international and national
factors including the reaction to an OECD-promulgated declaration
that ‘Euclid must go!’ [1] and the Department of Education’s distinc-
tive approach to geometry development. It resulted in the replace-
ment of a syllabus based on the 2300-year-old synthetic geometry of
FEuclid by one based on a foundationally imperfect, composite system
of geometry consisting partly of the traditional geometry of Euclid
and partly of the transformation geometry of the Belgian mathe-
matician Georges Papy [2]-[4].

This change was a paradigm shift that came about in two main
stages with the introduction of a new Intermediate Certificate Math-
ematics syllabus in 1966 and again in 1973. In each stage, parts of
the geometry of Papy were combined with some parts of traditional
synthetic geometry; the difficulty was that the parts did not cohere,
and the result, in particular in the 1973 syllabus, was an approach
to geometry without a solid, logical foundation, having flawed defi-
nitions, axioms and proofs.

The methods employed that brought about this paradigm shift
were determined by a system of syllabus development that was un-
suited to the task of preparing second-level mathematics syllabuses.
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In particular, the lack of formal university representation on Inter-
mediate Certificate syllabus committees together with the control
of syllabus committees exercised by the Irish Government Depart-
ment of Education resulted in the adoption of the defective geometry
syllabuses.

Ramifications of these syllabuses remain evident in second-level
geometry in Ireland: successive syllabuses have been influenced and
expertise in traditional deductive geometry will soon disappear.

REFERENCES

[1] OEEC, New Thinking in School Mathematics, Paris: OEEC, 1961.

[2] Papy, G., Methods and Techniques of Explaining New Mathematical Con-
cepts in the Lower Forms of Secondary Schools, in: Mathematics To-day: A
Guide for Teachers, OECD, 99-147, Paris: OECD, 1964.

[3] Papy, G., Modern Mathematics: Volume 1, London: Collier-Macmillan, 1968.

[4] Papy, G., Modern Mathematics: Volume 2, Real Numbers and the Vector
Plane, London: Collier-Macmillan, 1968.

A Priori Bounds on Derivatives of Solutions to
Singularly Perturbed Convection-Diffusion Problems

AIDAN NAUGHTON
a.naughton@ucc.ie

This is an abstract of the PhD thesis A priori bounds on deriva-
tives of solutions to singularly perturbed convection-diffusion prob-
lems written by Aidan Naughton under the supervision of Prof.
Martin Stynes at the School of Mathematical Sciences, University
College Cork and submitted in September 2006.

Mathematical models involving convection and diffusion occur fre-
quently throughout science, engineering and economics. Examples
range from fluid flows to oil extraction and the Black—Scholes fi-
nancial model (see [3, Chapter 1] for an extensive list of examples).
Often the diffusion term is quite weak relative to the convection
term. Consider the example of pollutant flowing into a river given
in [4, Introduction]. The random motion of the molecules of water
and pollutant will cause the pollutant to diffuse through the river.
Obviously the effects of this process will be dwarfed by the convec-
tive current in a fast flowing river. To reflect its relative weakness
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a small parameter ¢ multiplies the diffusion term. This is a singu-
larly perturbed convection-diffusion problem. (A historical survey of
singularly perturbed problems is given in [5]).

This thesis is concerned with finding sharp a priori bounds on
derivatives of solutions to singularly perturbed convection-diffusion
problems. Such bounds are of great importance to numerical ana-
lysts for the construction of numerical methods and for error analysis.

The thesis commences with the analysis of some one-dimensional
problems. Both convection-diffusion and reaction-diffusion problems
are dealt with. The methods used are short, relatively simple and
result in sharp bounds.

The focus then moves to convection-diffusion problems posed in
two-dimensional domains. A two-dimensional domain is more re-
alistic in a physical sense and therefore of greater interest, but it
does introduce several complications not present in one-dimensional
problems. One such issue in rectangular domains is the effect of
compatibility of the data of the problem at the corners of the do-
main. A convection-diffusion problem posed on the unit square, with
Dirichlet boundary conditions, is considered under the assumption
of compatibility at the corners. Then two further problems are anal-
ysed (one with Neumann outflow boundary data, one with Neumann
characteristic boundary data) without any assumption of data com-
patibility at the corners. Thus corner singularities are possible and
the interaction of these singularities with the singularly perturbed
nature of the differential operator is a challenge to analyse. The
techniques used here are a continuation of those used in [1] and [2].
Sharp pointwise bounds are derived in all cases.
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Cylindrically Symmetric Models of Gravitational Collapse

Louise V. NOLAN
louise.nolan3@mail.dcu.ie

This is an abstract of the PhD thesis Cylindrically Symmetric Models
of Gravitational Collapse written by Louise V. Nolan under the su-
pervision of Dr. Brien Nolan at the School of Mathematical Sciences,
Dublin City University and submitted in September 2007.

In this thesis we examine two main problems. Firstly, we attempt
to match the most general cylindrically symmetric vacuum space-
time with a Robertson-Walker interior. The matching conditions
show that the interior must be dust filled, the boundary must be
comoving and the vacuum region must be polarized. We use a re-
sult of Thorne’s to simplify the line element. We can then prove
that the matching is impossible. This demonstrates the impossibil-
ity of generalising the Oppenheimer—Snyder model of gravitational
collapse to the cylindrically symmetric case. The second problem is
an analysis of cylindrically symmetric spacetimes with self-similarity
modelling gravitational collapse. The field equations and regularity
conditions are examined firstly for a vacuum spacetime and then for
a dust filled spacetime. The vacuum case leads to an explicit solu-
tion but no solutions that are of relevance to gravitational collapse.
In the dust case, the solution of the field equations reduces to the
solution of a non-linear third-order ordinary differential equation. A
dynamical systems approach is then adopted, and an autonomous
three-dimensional system is obtained. A unique solution is found to
emanate from the regular axis {r = 0, ¢ < 0}, where ¢ and r are
time and radial coordinates which emerge naturally from the analy-
sis. This solution persists up to {t = 0, r > 0}, which we define as
3. The solution coming from Yy has one parameter (a bifurcation
has occurred) and propagates up to the future null cone, F, through
the scaling origin p,, where p, = {(r,t) = (0,0)}. We describe the
physical invariants of the system and discuss the nature of such a
spacetime in terms of its global structure.
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Levels and Sublevels of Composition Algebras

JAMES O’SHEA
james.osheaQucd.ie

This is an abstract of the PhD thesis Levels and Sublevels of Com-
position Algebras written by James O’Shea under the supervision of
Dr. Thomas Unger at the School of Mathematical Sciences, Univer-
sity College Dublin and submitted in June 2007.

Although quadratic forms can be traced back to the era of the
Babylonians, the development of a theory regarding their algebraic
properties has been a relatively recent phenomenon. Ernst Witt
laid the foundations for this theory in a seminal work dated 1937.
That it subsequently flourished however, is primarily due to Albrecht
Pfister’s elegant classification of the level of fields, some three decades
later.

The level is an important invariant in the theory, measuring the
least number of squares in a given algebraic structure which sum
to —1. Interest first arose in this concept in 1927, with its appearance
in the Artin—Schreier Theorem, a key stepping-stone result to Artin’s
solution of Hilbert’s Seventeenth Problem that same year.

Quaternion algebras represent the simplest algebraic structure for
which a complete classification of the level remains outstanding. It
was David Lewis who first considered this topic, in the mid-eighties,
showing the existence of quaternion algebras of level 2¢ and 2% + 1
for all integers k > 0.

This thesis is similarly concerned with addressing this problem.
In addition, since the level has inequivalent generalisations in a non-
commutative setting, we additionally regard the classification of the
sublevel. Furthermore, given the striking similarities between sums
of squares in quaternion and octonion algebras, it makes sense to
gather these structures together under the umbrella of composition
algebras, and treat the classification of their levels and sublevels in
tandem.

We tackle these problems in a variety of manners, from the explo-
ration of the relationship between bounds on the level and sublevel
of composition algebras and the behaviour of associated quadratic
forms, through to the explicit construction of algebras of prescribed,
and hitherto unknown, level and sublevel values, via function fields
of quadratic forms. Moreover, we additionally devote attention to
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the classes of composition algebras which have transcendental gen-
erators, as well as to those defined over certain fields.
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A Model for Wave Formation in Bubbly Flows
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This is an abstract of the PhD thesis A Model for Wave Formation in
Bubbly Flows written by Marguerite Robinson under the supervision
of Professor Stephen O’Brien at the Department of Mathematics and
Statistics, University of Limerick, and submitted in September 2007.

When a gas-liquid mixture flows through a vertical pipe the two
phases can arrange themselves into different patterns known as flow
regimes. At low gas flow rates small gas bubbles are dispersed in
the liquid (bubbly flow) and at higher flow rates large slugs of gas
separate liquid regions (slug flow). Modelling bubbly flows is com-
plicated by the presence of complex characteristics and the resultant
ill-posedness of the two-fluid equation system, which is thought to
herald the bubble-to-slug regime transition (Pauchon and Banerjee,
1986). Laboratory experiments of gas-liquid flows have identified a
relationship between this transition and instability of the uniform
bubbly flow, leading to wave formation (Kytomaa and Brennen,
1991). However, it is not clear from experiments if the instability
leads to wave formation or a regime transition.

In this thesis we examined the onset and propagation of waves
in a bubbly flow, in the context of a properly constituted hyper-
bolic two-fluid model. We focused specifically on the downward
travelling waves seen in a glass of Guinness shortly after pouring
and derived a condition for a well-posed system. We showed that
our simplified model is, in a mathematical sense, a generalization
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of the St. Venant equations used in hydraulic engineering to model
downstream periodic travelling waves (known as roll-waves) in open
channels (Dressler, 1949). We showed that waves in bubbly flows are
multi-phase analogues of the single-phase roll-wave phenomenon and
result from the manifestation of a similar instability of the uniform
flow.

Our model predicts that the uniform bubbly flow will always be-
come unstable before the onset of complex characteristics, and wave
generation in the bubbly flow can be seen as a precursor to a transi-
tion to the slug flow regime. Observations of high speed digital video
clips of the Guinness settling process indicate waves of bubble-free
liquid, which appear as a series of dark lines travelling down the
inside of the glass. These pure liquid regions are a manifestation
of a regime transition and support our finding that wave formation,
resulting from the instability, precedes the transition.
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Ordinary Differential Equation Models of Opiate-Use:
The Treatment-Relapse Cycle and HIV Infection

EMMA WHITE
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This is an abstract of the PhD thesis Ordinary Differential Equa-
tion (ODE) Models of Opiate-Use: The Treatment-Relapse Cycle
and HIV Infection written by Emma White under the supervision
of Dr. Catherine Comiskey at the Department of Mathematics, Na-
tional University of Ireland, Maynooth and submitted in October
2007.

Problem opiate-use is globally acknowledged to be a large-scale
problem with serious negative effects for individuals and society [1],
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[2], [3], [4]. Latest figures estimate the problem opiate-using popu-
lation in Europe at 1.7 million people [1] and in Ireland at 14,000
people [5], [6]. This research presents a first-order non-linear ODE
system that models problem opiate-use. It is based on the drug-using
career concept, which includes a treatment-relapse cycle and removal
from the opiate-using population. An important assumption is that
contact with problem opiate-users not in treatment results in relapse
to opiate-use. The basic reproduction ratio, Ry, a measure of the
number of secondary cases arising from a single infection introduced
into a susceptible population, is derived. Sensitivity analysis is then
used to identify the most important parameter on which it depends.
Values of Ry less than, equal to and greater than its threshold value
of one are used to perform detailed local stability analysis for the
system. Parameters for the Irish population are then estimated.
A numerical simulation is carried out to verify the validity of the
model by establishing its fit with available epidemiological data. A
key result derived from the model is that prevention of opiate-use is
more effective in reducing prevalence than treatment. Since problem
opiate-users are known to be at high risk of HIV infection [1], the
model is extended to include HIV positive opiate-users and the risk
that HIV negative opiate-users may acquire HIV. Ry is calculated
and the extended model is applied, using European data, to two
populations of opiate-injecting drug-users. The impact of opiate-
use treatment effectiveness rates on HIV incidence is examined, as is
the impact of increased HIV testing independent of opiate treatment
services. It is concluded that high relapse rates from treatment for
opiate-use do not increase HIV incidence (and thus prevalence) and
that increasing HIV testing rates for opiate-users outside problem
opiate-use treatment reduces HIV incidence, irrespective of initial
HIV prevalence.
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Elliptic Curves — an Introduction

BERND KREUSSLER

The following four articles constitute expanded versions of talks
given during a mini-workshop which took place at MARY IMMACU-
LATE COLLEGE, Limerick, on the 29" and 30*" of November 2006.
The titles of these talks were the following:

(1) Solving Cubic Equations in Two Variables.
(2) Group Law on the Cubic Curve.
(3) Theta Functions.

(4) Rank two Vector Bundles on Elliptic Curves.

Elliptic curves are very interesting because their study involves sev-
eral fields of mathematics. The study of elliptic curves has a long
history and still there are many unsolved problems. The goal of the
mini-workshop was to provide an introduction for the non-specialist
to several aspects of elliptic curves.

Elliptic curves reside at the crossroads of arithmetic, geometry
and analysis. This was reflected in the talks as follows: talk (1)
dealt with the arithmetic of elliptic curves whereas in talk (2) elliptic
curves were studied from the point of view of complex algebraic
geometry. The complex analytic side of elliptic curves was touched
within talk (3). After these basics were laid down, talk (4) gave an
introduction to the study of vector bundles on an elliptic curve. This
highlighted the fact that it is not only interesting to study elliptic
curves on their own but also to investigate other geometric objects
of interest constructed on them.

It is clear from the number of pages used that the four articles can
provide only a small bit of the available huge amount of knowledge
and techniques related to elliptic curves. None of the many applica-
tions in physics, engineering and modern communication technology
are discussed. To give the reader a first idea of the subject, a brief
description of included and excluded material is given below.

I would like to thank Pat O’Sullivan for acting as a critical reader
of the first drafts of all the four articles.
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Solving Cubic Equations in Two Variables (Bernd Kreussler)

The first article starts with the elementary question of finding all
Pythagorean triples of integers and goes on to apply similar ideas
in order to find integer solutions of equations of degree three in two
variables. The material is illustrated through many explicit exam-
ples. This part is probably suited for interested second-level students
(in fact there was one among the audience for the first talk). The
last section gives a brief overview of the most basic results about the
Mordell-Weil group of a cubic curve.

However, there are many things which are not even mentioned in
this article but which are no less important or fascinating than the
material included. In particular, zeta-functions and L-functions are
not included. As a consequence, the Birch and Swinnerton-Dyer con-
jecture is not formulated even though this is one of the Millennium
Prize Problems. The important method of infinite descent as well as
the Selmer and Tate—Shafarevich groups did not find their way into
the article. The very interesting connection of elliptic curves with
the solution of Fermat’s Last Theorem (through the Frey curve) is
another omission. The growing practical relevance of elliptic curves
in modern cryptography is another issue missing. This list is cer-
tainly not complete. A few books which may help the interested
reader to satisfy his or her thirst for knowledge are [6, 7, 13, 14, 15].

Group Law on the Cubic Curve (Madeeha Khalid)

The aim of the second article is to give an introduction to some basic
concepts from complex algebraic geometry which allow a geometric
understanding of the group structure introduced in the first talk. A
brief introduction is given to complex manifolds, vector bundles on
them and the Picard group (the group of all line bundles). Moreover
the relationship between line bundles and divisors on a curve is ex-
plained, which allows a better understanding of the group structure
introduced in the previous article.

The Weierstraf§ p-function and elliptic integrals are used to ex-
plain how complex analysis enters the picture. As a result, each
cubic curve can also be seen as a complex torus, which comes with
its own group structure. The gem of this article is a sketch of a
proof that this analytically defined group structure coincides with
the one introduced algebraically. This is based on Abel’s Theorem.
The analytic details are provided in the third article.



ELvLipTiC CURVES — AN INTRODUCTION 41

Again, many more things could have been included here. For
example, higher dimensional Abelian Varieties and the Abel-Jacobi
map which naturally emerge in the study of curves of higher genus are
not mentioned. The idea of a scheme over an arbitrary commutative
ring with unity are definitely beyond the scope of this article. To
introduce the ideas of a moduli space and of a universal object would
be a natural next step after the introduction of the Poincaré bundle.
A higher dimensional analogue of an elliptic curve would be a so-
called K3-surface. Their study has much in common with the theory
of elliptic curves but they couldn’t be touched either. There are
many excellent textbooks available, among which are [3, 5, 16].

Theta Functions (Marina Franz)

This article gives a brief introduction to some basics in the mod-
ern theory of elliptic functions. The starting point are theta func-
tions, which are nothing but global sections of line bundles on a
one-dimensional complex torus. Their main properties are investi-
gated from a purely analytic point of view. Moreover, these theta
functions are related to the Weierstrafl gp-function, which can be
considered to be the most basic elliptic function. A proof that this
function satisfies a certain differential equation is given. This equa-
tion shows that a complex torus of dimension one can be embedded
in the projective plane as a cubic curve. A proof of Abel’s Theorem,
which plays a major role in the previous article is also provided.

The same remark applies to this article as to the other two:
there is much more material available than could be included. For
example, an explicit description of the relationship between theta
functions and holomorphic line bundles on elliptic curves is missing.
Moreover, the fascinating theory of elliptic functions is only touched
on. In particular, nothing is said about elliptic integrals. These
arise, for example when the length of an ellipse is to be calculated.
Historically, the study of elliptic integrals motivated the introduction
of elliptic functions by Abel and Jacobi. Weierstrafl built the theory
of elliptic functions on the gp-function, but beforehand Jacobi’s ellip-
tic functions sn(z),cn(z),dn(z) were the main players. Their role in
mathematical applications in engineering are definitely beyond the
scope of this short article. Theta functions are available on higher-
dimensional tori as well, but this is not covered here. Such material
and much more can be found in [12, 1, 10, 9].
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Rank two Vector Bundles on Elliptic Curves (Ciara Daly)

In contrast to the three others, this fourth article is not primarily
concerned with the group structure on an elliptic curve. But it is a
direct continuation of these. Vector bundles of rank one and their
sections were studied in the previous two articles. The moduli space
interpretation of the Picard group is already mentioned in the second
article. This article presents the main results about vector bundles
of rank two on an elliptic curve. These go back to a seminal paper of
Atiyah from 1959. This example is used to introduce to the theory
of moduli, which is at the centre of modern algebraic geometry. The
related notion of a stable vector bundle is also introduced.

Of course, there is much more that could be said in this context.
Atiyah studied vector bundles of any rank, not only of rank two, but
this did not find its way into this article. Also, the problems involved
with the notion of stability of vector bundles on higher dimensional
manifolds are not discussed. The theory of moduli of varieties as
opposed to vector bundles is another huge area of algebraic geometry
which is omitted. The relations of algebraic geometry to differential
geometry and to theoretical physics through the theory of moduli
spaces are not mentioned. Another quite recent development was
the introduction of the space of stability conditions by Bridgeland.
To define this invariant it would be necessary to introduce coherent
sheaves and derived categories, so that this development could also
not be covered here. The interested reader will find relevant starting
points in [4, 8, 11, 17, 2].
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Solving Cubic Equations in Two Variables

BERND KREUSSLER

ABSTRACT. After recalling a geometric construction of all
Pythagorean triples of integers, the same idea is applied to
find rational solutions of cubic equations in two variables.
This leads to the definition of the Mordell-Weil group. The fi-
nal section collects some of the basic properties of this group.

1. PYTHAGORAS

The aim of this introductory section is to recall the well-known
geometric construction of all Pythagorean triples of integers. Three
integers a, b, ¢ € Z form a Pythagorean triple, if

a® + b =2,

Almost everybody knows the Pythagorean triple (3,4,5) and many
know (5,12, 13). However, not everybody has come across (8,15,17)
or (20,21,29).

Clearly, if n € Z and (a, b, c) is such a triple, (na,nb,nc) will also
be one. In this way, starting with the well known triple (3,4, 5) we
obtain (6,8,10), (-3, —4, —5), (12,16, 20) etc.

Note that a prime number which divides two of the three inte-
gers in a Pythagorean triple automatically divides the third in the
triple. Therefore, it is enough to find all Pythagorean triples in
which any two of the three integers are co-prime. We shall call such
a Pythagorean triple reduced. Because the only Pythagorean triple
with ¢ =0 is (a,b,¢) = (0,0,0), we shall assume in the sequel ¢ # 0.
This allows us to introduce the new variables

b

a
r=—- and y=-.
¢ ¢



46 BERND KREUSSLER

Using these coordinates, the search for reduced Pythagorean triples
translates into the problem to find all rational solutions of the equa-
tion

2?4y =1
In other words, we would like to find all points on the unit circle
whose coordinates are rational.

The key observation is that a line which connects two points with
rational coordinates always has a rational slope. Therefore, we shall
look at all lines in the plane which pass through the point (0, —1)
and which have rational slope r € Q.

y=3z—-1

$2+y2:1 (

e
SIS
SN—

(07 _1)

Such a line is given by the equation y = rx — 1. Therefore, the z-
coordinates of the two intersection points of this line with the unit
circle satisfy the equation 2 + (rz — 1) = 1, which is equivalent to
@ ((r* + 1)z — 2r) = 0. The solution « = 0 corresponds to the point
(0, —1). The second intersection point has coordinates
_2r -1
T= 5 and y= o

2r ri—1

The map which sends r € Q to the point (T2+1, T

circle gives a parametrisation of the set of all rational points on this
curve. This completely solves our problem.

If we wish to derive a complete description of all Pythagorean
triples of integers, we start by writing the slope 7 as r = 7 with co-

prime integers u,v. Using symmetry, we may assume r > 1. More

) on the unit
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precisely, switching from r to —r corresponds to a sign change of
x, whereas a sign change of y is achieved by switching from r to
%. Thus, we assume v > v > 0 and u,v co-prime. Under these
assumptions, r = + produces the point with coordinates

2r 2uv r2—1 u? —v?

= and = = .

r24+1 w402 VSRl T w2

Now it is not hard to see that each reduced Pythagorean triples in
which a is odd can be written as

u? —v? w4 02
(a,b,c) = (uv, 55 >

with v > v > 0, both odd and co-prime. Up to interchanging a and
b this gives us all reduced Pythagorean triples, because a and b are

co-prime, hence at least one of these to integers is odd. For small
values of u,v we obtain the following table

Tr =

u vl a b ¢ uw v| a b ¢
3 1|13 4 5 7 5|35 12 37
5 1| 5 12 13 9 1 9 40 41
5 3|15 8 17 9 3|27 36 45
7T 1| 7 24 25 9 5|45 28 53
7 3121 20 29 9 7163 16 65

2. A CUBIC EXAMPLE

The aim of this section is to find integer solutions of cubic equa-
tions by using the geometric idea used in the previous section. We
shall explain this method through the following example

b’c = 4a® — dac® + 7.

As before, we assume ¢ # 0 and introduce new coordinates z = %
and y = % in which the above equation becomes

y? =42 — 4z + 1. (1)
This can be rewritten as
(y—Dy+1) =4z + Dz(z—1).
In this form it is obvious that we have the following six solutions
(—1,£1), (0,£1), (1,£1).

Question: Are these all the solutions of equation (1)?
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It is not hard to produce a sketch of this curve in the real plane.
This can be done through the following step-by-step approach. First,
we draw the graph of the cubic polynomial 423 — 42 + 1. The inter-
section points with the z-axis can be found with Cardano’s formula.
This polynomial has three real roots because its discriminant is posi-
tive. To get the second picture, we remove all points from the graph
which have negative y-coordinate. The next picture is produced
by applying the square root function. Finally, the cubic curve is ob-
tained by adding in the mirror image along the z-axis, because (z,y)
is on this curve if and only if (z, —y) is so.

AV )
th

The six marked points in the picture are the points we found before.
If we seek to find more rational points on this curve, we may try to
use lines with rational slope which pass through one of the known
points. This leads to a quadratic equation the solutions of which
correspond to two further intersection points of this line with the
curve given by equation (1).
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For example, the line with slope 1 which passes through the point
(0,1) has the equation y = z+1. The z-coordinates of its intersection
with our curve are the solutions of the equation (z+1)? = 423 —4z+1
or equivalently 423 — 22 — 6z = 0. The known solution corresponds
to the factor x of this polynomial. The two new intersection points
correspond to the solutions of the quadratic equation 422> —z—6 = 0,
these are the irrational numbers leS—m.

This example shows that we should allow for one new point only.
In other words, we should work with a line connecting two of the
known points.

Example 1. Let us see how this works with P = (0,1) and @ =
(—=1,—1). The line which connects these two points is given by the
equation y = 2z + 1. Substituting this into equation (1) gives 4z® —
4z2 — 8¢ = 0. The two points we started with give us two of the
roots of this polynomial, namely z; = 0 and 25 = —1. Now, it is not
hard to see that 42 — 4z? — 8z = 4z(z + 1)(z — 2). Hence z3 = 2
is the third solution which corresponds to the point (2,5) on our
curve. We can even produce another new point, because the given
equation does not change when we replace y by —y. This gives the
point S = (2, -5).

Example 2. We may now continue by using the line through P =
(0,1) and S = (2,—5). Its equation is y = —3x + 1. Therefore,
we look at 4z® — (=3z + 1) — 4z + 1 which has to be equal to
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4z(x — 2)(x — x3). Comparing the coefficients of z? of these two
polynomials leads to the equation —9 = —4(2 + x3). This gives
T3 = i. The new points we obtain are (i, j:i).

In general, if we are using a line with slope r € Q which passes
through two points on our curve whose z-coordinates are z; and
x3, we obtain the z-coordinate of the third point by comparing the

2
coefficients of 22 as above. The result will be 23 = T-—r1—22 €Q
We may also use other points from the six found originally.

Example 3. The line connecting S = (2, —5) with R = (1,1) has
the equation y = —6x + 7. This gives a new point with coordinate
r3=9—-2—-1=6and y3 = —6x3 + 7 = —29. So we have two new
points (6, —29) and (6,29) which are not visible in the picture.

Note that we obtained (6,29) as follows. First we connected P =
(0,1) and @ = (—1,—1) by a line, whose third point of intersection
with the cubic curve had (2, —5) as its mirror image relative to the
x-axis. Then we connected (2,—5) and R = (1,1) by a line and
obtained (6, 29) as the mirror image of the third point of intersection.
It is interesting to see what happens if we carry out these steps in
another order. Let us first connect Q = (—1,—1) and R = (1,1) by
a line, reflect the third point on this line on the z-axis and connect
this point in the second step with P = (0,1).

Example 4. The line which connects @ = (—1,—1) and R = (1,1)
has the equation y = . This line has (%, 1) as its third point of
intersection with the curve given by equation (1). Therefore, we shall
connect its mirror image (i, —i) with P = (0,1). The corresponding
line has the equation y = —5z + 1. The new point produced this
way is (6, —29), the same as we obtained in Example 3.

This coincidence is not an accident. It is in fact a special case
of a theorem from projective geometry which states that a cubic
curve (in projective space) which passes through eight of the nine
intersection points of two other cubics, must also contain the ninth
of these intersection points.

A closer look at examples 3 and 4 suggest that we are dealing here
with a kind of associativity. This can indeed be made precise by the
following definition.

Definition 5. Let P, @ be points on the cubic curve given by equa-
tion (1). We define P + @ to be the mirror image (relative to the
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x-axis) of the third point of intersection of the line which connects
P and () and the cubic curve.

P+Q

In this language, we have shown above (P+Q)+ R =P+ (Q+R)
where P = (0,1), @ = (—1,—1) and R = (1,1). This definition also
extends to give P + P, which is obtained by using the tangent line
to our curve at P.

Example 6. Implicit differentiation reveals that the tangent line to
our curve at P = (0,1) has slope equal to —2. Therefore, this line is
given by the equation y = —2z + 1. In the same way as before, we
substitute y = —2x + 1 into equation (1) and use the fact that © = 0
will be a double root of the cubic equation so obtained. Then, we
get that the xz-coordinate of the new point of intersection is equal to
x = 1. This produces the known points (1,+£1).

This example shows that we actually need to know only one ra-
tional point on our cubic in order to get started. As before, we can
then produce many other points. Using the notation suggested by
Definition 5, we obtain here:

P =(0,1), 2P =(1,1), 3P =(-1,-1),

11
4P = (2,-5), 5P = <Z’Z)’ 6P = (6,29).
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We shall see in the next section that this is in fact the structure
of an Abelian group in which for each point T, —T is the mirror
image of T with respect to the z-axis. The line which connects an
arbitrary point 7" on our cubic with its mirror image —7 is a vertical
line. Because T + (—T') = 0, we expect all these lines to go through
the neutral element of this group. Therefore, we shall look for the
neutral element “at infinity”. This can be made more precise with
the aid of the projective plane P2, introduced in the following section.

3. THE COMPLETE PICTURE

In order to see all points on our cubic curve we have to return
to the original equation b*c = 4a® — 4ac® + ¢*. The key observa-
tion is here that (a,b,c) is a solution of this equation if and only
if (Aa, Ab, A¢) is a solution for all numbers A. This means that the
solution set is a union of lines which pass through the origin. When
we switched to coordinates (z,y) in the previous two sections, we
agreed that it is sufficient to know one point on each of these lines.
But we missed those lines on which ¢ = 0 due to our division by c¢. If
we would like to keep these lines as well, we arrive at the idea of the
projective plane. Set theoretically, the projective plane is defined to
be the set of all lines in three-space which pass through the origin.
This leads to the following useful description.

Before we proceed we need to fix our notion of “number”. So far,
we have dealt with rational numbers and integers. But in general
it is much easier and more convenient to work with an algebraically
closed field like the field C of complex numbers. Many things which
will be said below are true for any field K. Therefore, we shall
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formulate the next definition for any field K. The reader who is not
familiar with the concept of a field may substitute Q or C for K.

Definition 7. The projective plane P?(K) over the field K is the set
of all equivalence classes (zo : 21 : 22) of non-zero vectors (zo, 21, 22) €
K2. Two such vectors (z9,21,22) and (wg,w;,ws) are equivalent if
and only if there exits a non-zero A € K such that (29, 21,22) =
Awo, wy, ws). This implies

(z0: 21 :22) = (A\20 : Az1 : Aze) forall X #DO.

The notation (zo : 21 : 2z2) for the equivalence class of the vector
(20,21, 22) is chosen in order to suggest that we are dealing with the
ratios between the three numbers zy, z; and z, only. A similar con-
struction, of course, can be carried out in any dimension to produce
P?*(K) for all n > 1. The one-dimensional case is particularly easy.
If K = C it leads to the Riemannian sphere. Notations used for the
Riemannian sphere are S> = CU oo = C and P!(C), the notation
we are going to use here. Its points are equivalence classes (zp : 21)
of non-zero vectors (zg,21) € C2. All points in P!(C) with zy = 0
are equivalent to oo = (0 : 1). Any point with zo # 0 is equiva-
lent to (1 : z) where z = Z-. This gives a bijection between C and
P!(C) \ {oo}. A neighbourhood of co would be the set of all those
points of P!(C) which have z; # 0. This is again in bijection with
C by using w = j—‘l’ The relationship between these two patches of
P*(C) is given by w = L. This actually makes P*(C) into a complex
manifold of dimension one, the simplest compact Riemann surface.

The local structure of P?(K) can be studied in a similar way.
To this end, we define the three basic open sets which cover P?(IK)
completely

Uo :={(20 : 21 : 22) | 20 # 0} C P*(K)
U1 = {(Z() A 22) | Z1 7é 0} - ]PZ(K)
Us :={(20 : 21 : 22) | 22 # 0} C P*(K).

Each of these sets is in bijection with K?. For example, the map
Up — K2 given by (20 : 21 : 22) (Z—l 2—2) has as its inverse the

Z0 ’ Z0
map K? — Uy which sends (£1,&) to (1: & : &).
Similarly, on Uy we can work with affine coordinates 7; = 22,

7 = 0,2 and on U, we have (;, = z—’;, k = 0,1. The gluing maps
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between these three K? are given by

_1_a _m_ 1
fl_770_C0 éh2_770 Co
_1_G _&e 1
PEETG PTE TG
_ Ll _m _&_ 1
<0_52_772 C1—£2—772

If K = C this defines the structure of a two dimensional complex
manifold on P?(C).

Let us apply this new language to the cubic equation b’c = 4a® —
dac® + ¢ studied in the previous section. As we have seen above,
if we identify (a,b,c) with (zo,21,22) € @, the set of all solutions
of this cubic equation is a well defined subset E(Q) C P?(Q). Our
assumption ¢ # 0 means that we restricted our attention to the set
Us. The complement of U, is the set of all those points which have
z2 = 0. These are the points of the form (zg : z; : 0), hence the
complement of Us in P?(K) is in bijection with P!(KK). Therefore, we
call

L2 = {(Zo A 0) | (Z() H Zl) S ]Pl(K)} C ]PZ(K)

the line at infinity. In a similar way we may define lines at infinity
Ly and Ly which are the complements of Uy and U; respectively.

In order to see what we missed when restricting to U, we simply
set ¢ = 0 in our cubic equation. This leaves us with the equation
0 = 4a®. Therefore, the only point missed is the point O = (0 : 1 :
0) € Ly C P?2(Q). In order to see how E(Q) looks like around this
point, we restrict our attention to the set U;. Using the coordinates
(1o, 12) introduced above, E(Q) is described by the equation

m2 = 4ng — 4dnoms + ;.

The line at infinity Lo intersects U; at the rg-axis, given by the
equation 7; = 0. This line is a tangent line to the cubic curve with
a triple contact at the point O = (0,0). The point O is an inflection
point of our curve.

The main result of the previous section was that we introduced
an “addition” of points in E(Q) by the rule that P+ Q + R = O
if and only if the three points P, @, R are collinear. Therefore, we
need to understand lines in the projective plane. These are given by
linear equations. In general, a line in P?(K) is the set of all solutions
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of an equation of the form
loZo + l121 + lQZQ =0

with ly, l1,l> € K but not all three equal to zero. Because Alg, Al1, Al
define the same line in P?(KK) if A # 0, the set of all lines in P?(KK)
is another P?(K), called the dual projective plane and sometimes
denoted P?(K)V.

Each line in P?(K) is isomorphic to P!(K). The three lines at
infinity introduced before are also lines in this sense, because L; was
given by the equation z; = 0. In particular, the line L, corresponds
to the point (0: 0 : 1) € P?(K)V. Any other line, with coefficients
(0:0:1) # (lp : Iy : Ix) € P2(K)V intersects Us in an ordinary line.
The equation of this intersection is

loJ} + lly = —12

where we used v = %,y = % instead of (o = 22,1 = Z- as coor-

z2

dinates on Us. If I3 # 0, this can be rewritten as y = rx + s with

r = —;—(1’ and s = —;—f. If, however, [; = 0 the equation becomes
lox = —l5 and this defines a vertical line which intersects the z-axis
at —2.

1

On the other hand, the point O = (0 : 1 : 0) is on the line given by
lozo+11z1 + 1222 = 0 if and only if [; = 0. Hence, the vertical lines in
U, correspond precisely to those lines in P?(K) which pass through
O and are different from L,. Therefore, the point at infinity O is
the correct choice for the neutral element of the group structure on
E(Q) and reflection at the x-axis corresponds to taking the additive
inverse of a point.

With some background in projective geometry or by other means
it can be shown that the addition of points on E(Q) introduced in
the previous section equips E(Q) with the structure of an Abelian

group. More about projective geometry and a geometric proof can
be found in the article by M. Khalid [11].

Theorem 8. E(Q) is an Abelian group with neutral element O, its
only point at infinity. The group structure is determined by saying
that P+Q+ R = O if and only if P,Q and R are on a line in P*(Q).
This implies that — P is obtained from P by changing the sign of the
y-coordinate.
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Remark 9. This result is true for any field K and any cubic equation
of the form

212 = 25 + prozs + %5 (2)
with p, ¢ € K satisfying A = —16(4p>+27¢%) # 0. If the characteris-
tic of K is not equal to two or three (i.e.if 1+1#0and 1+1+1#0
in K), every regular cubic with a point over K can be given by such
an equation. When working in characteristic zero (e.g. K = Q or
K = C), we can change coordinates so that (2) becomes

22y = 425 — g22025 — g7 (3)
The discriminant of such an equation is A = g5 — 27¢2. A cubic
equation of the form (3) is called a Weierstraf§ equation, named after
Karl WeierstraB (1815-1897). The coefficient 4 at z3 is used because

it appears in the differential equation of the Weierstraf} p-function.
(See the article by M. Franz [5].)

The most basic structure result about the group E(Q) was shown
in 1922 by Mordell [17].

Theorem 10 (Mordell). If E is given by (2) with p,q € Q and
4p® + 27¢% # 0 then the Abelian group E(Q) is finitely generated.

Remark 11. Theorem 10 has been generalised by A. Weil to Abelian
varieties of arbitrary dimension over any number field [23]. Therefore
Mordell’s Theorem is also known as the Mordell-Weil Theorem and
the group E(Q) is sometimes called the Mordell-Weil group.

The curve studied in section 2 has E(Q) = Z with generator
P = (0,1). The discriminant of this curve is A = 37.

Remark 12. The assumption 4p® 4+ 27¢? # 0 in Mordell’s Theorem
is crucial. If 4p® + 27¢*> = 0 the cubic polynomial 23 + px + ¢ has
a multiple root and this gives rise to a singular point on the cubic
curve given by (2). This changes the situation completely, because
singular cubics are rational. More explicitly, suppose —4p? = 27¢>
and p,q € Q\ {0}. A straightforward calculation shows that, under
these assumptions,

3 3¢\°
$3+p$+q:<x——q) <x+—q) .
p 2p

This implies that (—3—2,0) is a singular point of the cubic which

means that each line in P?(Q) that passes through this point will
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have at most one other intersection point with the cubic curve (2).
Just as in the case of the circle in section 1 this produces a bijection
between Q (the set of slopes) and all rational points on a singular
cubic apart from the singular point. This shows that the non-singular
rational points on a singular cubic form a group which is not finitely
generated.

Example 13. Look at the singular cubic 2720 = 425 — 32922 +
23, which has discriminant A = 3% — 27(—1)? = 0. On Us, using
coordinates z,y as before, its equation is

y? =423 — 3z + 1.

From 423 — 3z + 1 = (z + 1)(2z — 1)? we see that the singular point
has coordinates (%,0). Any line with rational slope r through this
point will have equation y = r (z — 1), hence the new intersection
point will be found by solving (%)2 (22 —1)? = (z + 1)(2z — 1)2.
Therefore, the coordinates of this point are given by

r°—4 r3 —6r

and y= YR

The main difference between this and the non-singular case is that we
cannot find such a closed formula for all rational solutions in the non-
singular case. This is explained by the involvement of transcendental
functions such as theta functions and the Weierstraf p-function (see
the article [5]).
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4. FURTHER RESULTS

In this section we collect some general results known about the
Mordell-Weil group E(Q). We also discuss several normal forms of
plane cubic curves.

Let us look at a cubic curve given by an equation of the form

y2=2%+pr+q with  4p® 4+ 27¢* £ 0. (4)
Such an equation is also called a Weierstrafl equation or Weierstrafl
canonical form. However, as we shall see below, it is not canonical.
To determine this we need to decide whether it is possible that two
curves given by a Weierstrafl equation with different (p,q) can be
transformed into each other by a linear transformation of coordi-
nates. Consider the following.

Given two curves y?> = z3 + pz + ¢ and §? = Z° + pz + ¢ with
p,q,p,q € Q the only possible linear transformations of coordinates
with rational coefficients which transform one of these equations into
the other are of the form 7 = A2z, = Ay with A € Q\ {0}. Such a
transform is successful if and only if we have p = A*p and ¢ = \%.
This can be used, in particular, to obtain integer coefficients p, q € Z.
Therefore, the following result is useful in broader generality than it
first may seem.

Theorem 14 (Siegel, [20, 16, 18]). The equation y*> = z3 + px + q
with p,q € Z has only finitely many solutions (x,y) € Z2, provided
that 4p® + 27¢* # 0.

A point P € E(Q) is called a torsion point if there exists a positive
integer n € Z such that nP = O in the additive group E(Q). In
other words, the torsion points of E(Q) are precisely the points of
finite order in the group E(Q). They form the torsion subgroup
E(Q)tor C E(Q). For example, if the curve is given by a Weierstrafl
equation, the two-torsion points in E(Q), i.e. the points P € E(Q)
with 2P = O, are precisely the intersection points of the curve E with
the z-axis (and the point O). The example studied in section 2 did
not have any two-torsion points apart from O, as the cubic equation
433 — 4z + 1 = 0 does not have a rational root. The following result
sheds some light on the torsion subgroup more generally.

Theorem 15 (Lutz—Nagell, [13, 19]). All torsion points of y* =
23 +pr+q with p,q € Z have integer coordinates (z,y) € Z?, provided
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4p® 4+ 27¢% # 0. Moreover, if (z,y) € E(Q)s0r then either y = 0 or
y? divides 4p3 + 27¢>.

Together with Siegel’s Theorem this implies that E(Q)o, is fi-
nite. This, however, is already a consequence of Mordell’s Theorem,
because every finitely generated Abelian group G is isomorphic to

L"XL[aZ X L]asZ X ...x Lfas1Z x L ]asZ

~~
Gor

with positive integers a;. The number r > 0 is called the rank of this
group. The possibilities for the rank of F(Q) are not yet known, but
it is conjectured that there exist cubic curves for which the rank of
E(Q) is as large as you want. The largest known rank at the moment
seems to be 28, attained by an example found by N. Elkies in 2006.

On the other hand, the torsion subgroup of E(Q) is much better
understood. The main result is the following.

Theorem 16 (Mazur, [14, 15]). If E(Q) is given by the equation
y? = 23 + px + q with p,q € Q and 4p® + 27¢> # 0, then its torsion
subgroup E(Q)ior is isomorphic to one of the fifteen groups in the
following list:

Z/nZ, 1<n<10, or n=12
L2Zx Z]2nZ, 1<n<A4.

All these groups in fact occur as torsion subgroups.

Remark 17. This result is in sharp contrast to the situation over an
algebraically closed field. If K is an algebraically closed field whose
characteristic does not divide the positive integer m, then the m-
torsion subgroup of E(K), which consists of all the elements of F(K)
killed by m, is isomorphic to Z /mZ x Z/mZ. In the case K = C this
will be explained in the article of M. Khalid [11].

Example 18. Because 9 = 8 + 1, it is not so hard to discover that
P = (2,3) is an element of E(Q), the solution set of the equation
y? = 23 + 1. The tangent line at P to this cubic curve has equation
y = 2z—1. If we substitute this into y?> = 23+1 we obtain (22—1)% =
23 +1 or equivalently 0 = 23 —42? + 4z = x(z—2)2. This means that
this tangent line intersects the cubic at the new point (0, —1), hence
2P = (0,1). To find 3P, we use the line which connects P = (2, 3)
and 2P = (0,1). It has the equation y = z+1 and intersects the cubic
at 3P = (—1,0). This point is on the z-axis, so it is a two-torsion
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point. This implies 6P = O and we obtain 4P = —2P = (0, —1) and
5P = —P = (2,-3). In fact, E(Q) consists of the six points kP,
k=0,1,2,3,4,5 only, i.e. E(Q) = Z/6Z. In [21] and [7] examples
of cubic equations which realise all the other E(Q)¢or can be found.

The Tate canonical form, see (7) below, is very useful in the study
of cubics whose Mordell-Weil group has torsion. More precisely,
every cubic curve which has at least one point P € E(Q)yor of order
at least four (i.e. P # O, 2P # O and 3P # O) can be brought into
Tate canonical form. For example, if b =1 and ¢ = d in (7), it can
be shown that the point (0:0: 1) is a point of order four.

A useful method which allows us to gain information about E(Q)
is reduction modulo a prime number p. This means that one studies
solutions of a given cubic equation with coordinates in the finite field
F, = Z/pZ. These solutions form the group E(F,). An interesting
result in this context says that for each prime p > 2 which does not
divide the discriminant A, the map which reduces the coordinates of
a torsion point P € E(Q) modulo p embeds E(Q)ior as a subgroup
into E(F,). This can be used to determine the group E(Q)or. More
on the issue of calculating the torsion subgroup of E(Q) can be found
for example in [22], [10] and [6].

Example 19. Let us show that E(Q)ir = {O} for the cubic y? =
42% — 42 + 1 studied in the previous section. The idea is to calculate
E(F3) and E(F5) and show that these groups are of co-prime order.
This is sufficient because 3 and 5 do not divide the discriminant
A = 37 of this cubic. If we reduce the equation y? = 423 — 42 + 1
modulo 3 we obtain y? = 2® —z+ 1. Because z° —z = z(z—1)(z+1)
is equal to zero for all € Fs, we see that (0,+1),(1,=£1),(2,£1)
are the only solutions of this equation with coefficients in the finite
field Fs. Therefore, E(F3) = {0, (0, £1), (1,£1),(2,+£1)} is of order
7. Reducing the equation y? = 423 — 42 + 1 modulo 5 gives y? =
—x3 4+ x + 1. Its solutions over F5 are (0,+1),(+1,%1) and (2,0).
This means that E(Fs) is a group of order 8. Because E(Q)ior is
isomorphic to a sub-group of E(F3) and of E(F;), it must be trivial.

More generally, solutions in all finite fields of fixed characteristic
p can be studied. If the number of solutions for such finite fields
are put together in a kind of generating function, the so-called zeta-
function is obtained. Lack of space forces us to skip the fascinat-
ing theory of zeta-functions of elliptic curves, the Weil conjectures
and their proof by Deligne and, last but not least, the Birch and
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Swinnerton-Dyer conjecture which is one of the millennium prize
problems, a solution of which is worth one million US-Dollars (see
http://www.claymath.org/millennium/). A starting point for the
interested reader could be [12], [7] or [21]. We confine ourselves to
look at Weierstral equations and other canonical forms over more
general fields K for the rest of this article.

There are several ways to proceed. One possibility would be to
introduce the abstract notion of a smooth projective curve of arith-
metic genus 1, defined over the field K. If such a curve has a point
with coordinates in K, it is possible to show that the curve is iso-
morphic to a plane cubic curve which has an inflection point at
O = (0:1:0). In particular, if K is algebraically closed, such a
point always exists. However, even in the case K = QQ an equation
like 323 + 423 + 523 = 0 does not have a single point in P?(K). Of
course, we shall not proceed along these lines. The interested reader
is referred to standard textbooks on algebraic geometry, such as [§].

We shall assume that we have a cubic equation f(zo,21,22) =0
which defines a plane cubic curve with at least one point in P?(K).
Let us first try to see whether any such curve can be described by
a Weierstrafl equation, whereby we allow linear transformations of
coordinates only. The key to making progress is to understand in-
flection points. It is not hard to show that a point P € E(K) is an
inflection point if and only if it is on the zero set of the Hessian of
the cubic polynomial f. By definition, the Hessian of f is the deter-
minant of the 3 x 3—matrix formed by the second partial derivatives
of f. This is again a cubic polynomial and Bézout’s Theorem implies
that there are at most 9 inflection points (with coordinates in the
algebraic closure of K). As we have seen earlier, the only point at
infinity O of a curve, which is given by a Weierstrafl equation, is an
inflection point. Therefore, a necessary condition for a cubic to be
transformable to a Weierstrafl equation is that at least one of the
inflection points is defined over K. Let us assume such a point exists
on our curve. By a linear transformation of coordinates with coeffi-
cients in K we can arrange that this inflection point has coordinates
(0:1:0) and the tangent line to the curve at this point is the line
at infinity with equation zo = 0. Under these assumptions and using
coordinates z,y on Uy C P?(KK), it is clear that the cubic equation is
of the form

y2 + a2y + azy = z° + a2m2 + a4 + ag.
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In order to simplify the left hand side to y?> we have to complete
the square, which means that y + ‘“gﬁ is going to be the new
y-coordinate. This obviously requires that we are able to divide by
2 which is possible in full generality only if the characteristic of K
is not equal to 2. On the other hand, in order to absorb the term
asz? on the right hand side we complete the cube. This is possible
in general only if the characteristic of K is not equal to 3. As a
result we obtain that any non-singular cubic with an inflection point
in P?(K) can be given by a Weierstrafl equation if the characteristic
of K is not equal to 2 or 3. Moreover, if the characteristic of K is
not equal to 2, we can easily switch between (2) and (3), both are
known as the Weierstral canonical form in the literature.

It seems that the Weierstrafl canonical form is the most widely
known one. There are other canonical forms for cubic equations,
each of which has its own advantages. Usually, it is only possible to
achieve such a canonical form under some additional assumptions.

These are the Legendre canonical form (Adrien Marie Legendre,
1752-1833)

2229 = 20(20 — 22)(20 — A22), (5)
the Hesse canonical form (Ludwig Otto Hesse, 1811-1874)
Zo + 23 +25 +tepz122=0 (6)

and the Tate canonical form (John Tate, 1925-)

2329 + b202129 + 2125 = 25 + dzd 2. (7)
If the cubic is given by (5) or (7), the only point at infinity will
again be the inflection point O = (0: 1:0). Therefore, we may also
consider

y? =x(x —1)(z =\
as the Legendre canonical form and
y* + bxy + cy = 2 + da®

as the Tate canonical form.

The Tate canonical form can be achieved for a cubic curve which
has at least one point of finite order n > 3. So, it is not a general
normal form for all cubics but it is very useful in order to find the
torsion subgroup of E(K).

The Legendre canonical form exhibits our curve as a double cover
of the projective line P!, This branched double cover is given by the
map which forgets the y-coordinate (or z; in the projective setting).
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The map so defined can be extended to a map which is also defined
at the point O at infinity. It has four branch points, namely O and
the three points given by the roots of the right hand side, these
are (0:0:1),(1:0:1)and (A:0:1). These four points are
precisely the 2-torsion points of E(K), i.e. those points P which
satisfy P + P = O. This shows that only those cubic curves which
have four 2-torsion points with coordinates in the field K can be
transformed into a Legendre canonical form. In particular, if K = C
or any other algebraically closed field of characteristic not equal to
two, this is always possible.

On the other hand, an equation in Hesse normal form does not
have triple contact with the line at infinity. If the field K contains
three cubic roots of unity (e.g. K = C), it has three points at infinity,
namely the solutions of 23 + z§ = 0. These are inflection points of
the cubic. If K = Q, for example, we see only one of them; this
is the point (1 : —1 : 0). This point is available over any field K
and can be taken as the origin for the group structure. Then, the
set of three-torsion points is precisely the set of inflection points of
this cubic. In particular, if K contains three cubic roots of unity,
the cubic contains nine three-torsion points which lie on the three
coordinate lines z; = 0.

The configuration of these nine points was studied by O. Hesse
[9] who found that the nine inflection points lie on 12 lines, each
of which contains three of these points. Each of the nine points is
contained in four of the 12 lines. This set of nine points and 12
lines is now called the Hesse configuration. A recent survey on the
Hesse configuration and an application to the study of examples of
K3-surfaces can be found in [1].

Finally, let us mention that it is not hard to give an explicit for-
mula for the group structure on E(Q) if the curve is given in Weier-
sta canonical form y? = 23 + px + ¢q. For example, if P = (z1,y1)
and @ = (x2,y2) # —P, the point P + @ = (x3,ys) has coordinates

2

Y2 — Y1

3 = | ———— — T — T2
T2 — T1

_ <y2 _yl) Y12 — Y21
Ys=—-\——)x3 - —-
T2 —T1 T2 —T1

This can be obtained using precisely the same calculations as in our
examples in section 2. Remarkably, this formula does not depend
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on p,q, which is due to the non-presence of z? in the Weierstrafl
canonical form. However, p, ¢ explicitly appear in the formula which
describes the coordinates of 2P. For each normal form such a formula
can be obtained.

A formula which is impressive because of its beauty and simplicity
is obtained when we start with an equation of the following form

z® +y° = d® +a’2Py’

If P=(z,y) and P' = («',y') are two solutions of this equation, the
group structure on the solution set is given by

pyp =L (mtye gy~
S a \1l+azyz'y’ 1—zxyz'y' )’

The point O = (0, a) is easily seen to be the neutral element of this
group. More on this formula can be found in the recent article [3].

Because the given equation is of degree four, it is not clear how this
example fits into the theory explained so far. That the solution set of
this equation indeed forms a Mordell-Weil group can be explained
using projective geometry. The basic idea is to show that, apart
from a small number of points, the curve defined by this equation of
degree four is isomorphic to a plane cubic curve.

The given curve of degree four has two singular points at infinity,
namely (1:0:0) and (0:1:0). If a® # a the curve has no other
singular point. We are going to show explicitly that a non-singular
version of this curve is the plane cubic given by the equation

‘ 1—a? 1+a?
yzZZL‘(Z’-f-H—a?)(l'-Fl_a?). (8)

The outline of the construction is the following. We construct a
non-singular version of the degree 4 curve which is embedded in
projective three-space in such a way that a certain projection from a
centre outside this non-singular curve maps it to the original degree
4 curve. We then find another projection whose centre is on this
non-singular curve in three-space and which maps it isomorphically
onto the plane cubic given by equation (8).

More specifically, using coordinates (w : z : y : z) in P?, we define
the curve E in P3 by the two simultaneous quadratic equations

zy —wz =0

y? —d’w? + 2% — a®2% = 0.
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The projection with centre (1 : 0 : 0 : 0) is the map which sends
apoint (w: x :y: z) € P> to the point (z : y : z) € P2 This
projection is not defined at the point (1:0:0:0). All other points
on the line in P? through (1 : 0 : 0 : 0) and (0 : = : y : z) are
sent to the same point (z : y : z) € P2. Because the line through
(1:0:0:0)and (0:a :y: z) meets the curve E precisely when
22(2% +y?) = a®2* +a’2%y?, the image of this projection is the plane
curve of degree four given by this equation. Moreover, such a line
has more than one intersection point with E if and only if it passes
trough (0:1:0:0) or (0:0:1:0). Therefore, away from the two
singular points we obtain an isomorphism between E and the image
curve in P2, B

The point (0 : 0 : —a : 1) is on the curve E. The projection
with centre (0 : 0 : —a : 1) is a map from P*\ {(0: 0 : —a : 1)}
to P2, It extends to a map which is defined on all of E and defines
an isomorphism between E and its image curve in P?, which can be
given by the cubic equation (8). The point on the curve E C P3
which corresponds to the neutral element O = (0,a), is the point
(0:0:a:1). The second projection sends this point to our usual
neutral element (0 : 1:0) € P? at infinity. We leave the details of
the calculations to the interested reader.
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Group Law on the Cubic Curve

MADEEHA KHALID

ABSTRACT. It is known that the set of rational points on a
cubic curve E forms a group. The same procedure defines a
group law on all points of E with complex coordinates. With
the aid of the Weierstrass p-function one can show that F
is isomorphic to a one dimensional complex torus, namely
E = C/A where A is a rank 2 lattice in C. The additive
group structure of C descends to the quotient C/A and so we
get another group structure on E. In fact these two group
structures are the same. A nice proof of this fact follows from
a classical result by Niels Henrik Abel (1802-1829), known as
“Abel’s theorem”. In this article we introduce the notions of
divisors, line bundles, and the Picard group, and then sketch
the isomorphism between the two group structures.

1. MANIFOLDS

Throughout this article we work over C, the field of complex num-
bers. We denote P"(C) by P™.

An n dimensional complex manifold M is a topological space
which locally looks like C*. This means that there exists an open
cover U, and co-ordinate maps ¢, : Uy — C” such that ¢a¢§1 :
¢3(Us NUg) — C" is holomorphic for all o, 3. Similarly a func-
tion f on an open set U C M is holomorphic if for all a, f o ¢!
is holomorphic on ¢o(Us NU) C C*. A map f : M — N be-
tween two complex manifolds is holomorphic if it is given in terms
of local holomorphic co-ordinates on N by holomorphic functions.
Open subsets, products of complex manifolds and suitable quotients
of complex manifolds are also complex manifolds.

The simplest example of a one dimensional complex manifold is
just C itself. Then there is P! (isomorphic to the Riemann sphere)

This work was supported by the IRCSET Embark Initiative Postdoctoral
Fellowship Scheme.
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which we have seen already in [9] Section 3. By P! and P? we mean
the same objects as described in [9] Section 3, except that we replace
K by C. Let A = {njw; +news | n; € Z} be a rank two lattice in C.
Then A is an additive sub-group of C generated by two complex
numbers wy,ws which are linearly independent over the real num-
bers. Addition by elements of A defines a fixed point free discrete
group action of A on C and hence the quotient C/A is a complex
manifold. Since R/Z is diffeomorphic to S via the exponential map
r — exp(2mir), C/A is diffeomorphic to S* x S' and is therefore
called the one dimensional complex torus. Although all tori are dif-
feomorphic to each other, they may not be isomorphic as complex
manifolds (see [3]).

I,

The complex torus is a nice example of a one dimensional manifold
which is easy to describe but which also has a very rich geometric
and arithmetic structure. See for example theta-functions in the
article by M. Franz [5], J. Silverman [11] on the arithmetic aspects
of elliptic curves or the survey article by J. B. Bost [2] on construction
of hyperelliptic Riemann surfaces.

A one dimensional complex manifold is called a Riemann sur-
face. Any complex manifold is orientable so Riemann surfaces are
orientable real surfaces. Compact Riemann surfaces are classified by
their genus ¢ which is a topological invariant and is equal to the
number of holes in the surface. A more precise definition is that
the first homology group of a Riemann surface of genus g is a free
abelian group of rank 2g, i.e. H(S) = Z%9.

So P! has g = 0, the complex torus C/A which is diffeomorphic
to S x S! has g = 1.
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Each compact Riemann surface can be embedded holomorphically
into some P". In fact we can choose n to be 3. This is like an analogue
of the Whitney embedding theorem which states that any compact n
dimensional real manifold M can be embedded in R>**!. A compact
Riemann surface S together with an embedding ¢ : S — P™ is known
as an algebraic curve. In this article however we will often refer to
a compact Riemann surface as a curve without always necessarily
specifying the embedding in P".

Examples of two dimensional manifolds include C2, P2, and the
two dimensional complex torus given by C?/A, where A is now a
rank 4 lattice in C2. These lead to some simple examples in higher
dimensions such as C", P", and C* /A where A is a rank 2n lattice
in C".

Given a manifold M of dimension n, a subset V' C M given locally
(i.e. on open subsets) as the zero set of a single holomorphic function
f is called a hypersurface in M. For example P! embeds in P? as
the zero set of the homogeneous linear function z; = 0. In local
coordinates on Uj it is given by {(&1,&2) | & = 0}. Let azo+bz1 +c2o
be another linear equation. Then there is a matrix T in PGL(3)
such that T'(z1) = azp + bz1 + cza. Then {z; = 0} gets mapped
isomorphically to {azo +bz1 +cza = 0}. This shows that the zero set
of any linear homogeneous equation in P? is isomorphic to P'. Next
we consider the zero sets of homogeneous equations of degree 2. If
the equation is irreducible then this is is isomorphic to a conic which
is again isomorphic to P! ([9] Section 1).

In general we denote the zero set in P2 of a homogeneous polyno-
mial of degree d by C, (also known as a plane curve) but when d = 3
we denote it by E (also known as a “cubic curve”) for consistency
with the notation in [9].

Suppose the plane curve C = {(zp : 21 : 22) | f(20,21,22) =0}, is
given by a (homogeneous) polynomial

i, g,k
f(Zo;Zl;Zz) = E Ajjk 20 217 2y
i+j+k=d

of degree d. Then, on open subsets of P2, the curve C is the zero
set of a single holomorphic function. Recall that P2 = Uy U U; U Us
where U; = {z; # 0}. Affine coordinates on Uy are = 2. Then

20

CNUp = {(&,6&) | Fo(&1,&) = 0}, where Fy(&y, &) = LE0an22) —

20
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> aijkfljégk. So C' N Uy is the zero locus of the holomorphic func-
tion Fy(€1,&2). The calculations for the other charts Uy and U, are
similar.

We say that p € C N Uj is a smooth point, if at least one of the
partial derivatives aFoé?l’&), 8F°é§;’52) is not equal to zero at p. We
say C'is smooth if every point in C' is a smooth point. If C'is smooth
then in fact it is a submanifold of P2. Another example of a smooth
curve is the curve given locally by &™ 4+ &™ = 1. In homogeneous
coordinates it is the zero locus of 2;™ + 2™ = 2™ and is known as
the Fermat curve.

There is a nice formula that computes the genus of a smooth plane
curve C of degree d namely g = Mfléﬂ. So if C' has degree d
where d > 3 then g > 1 and hence C is not isomorphic to P*. The
genus of the Fermat curve is m—%ﬁ so for n = 1 and 2 it is
isomorphic to P! while for n = 3 it has genus one and is a complex
torus.

The curve C' in P? given by the equation 25212 — 25° + 20222 = 0
is not smooth as all the partial derivatives vanish at (0:0:1). We
say (0:0: 1) is a singular point of C'.

These notions of smooth points and singular points can also be ex-
tended to higher dimensional manifolds. In fact just as the implicit
and inverse function hold in the differentiable case, so do their ana-
lytic versions. For example if V' is a hypersurface given locally as the
zero set of a single holomorphic function f and the jacobian matrix
of f has rank 1 everywhere then V is a manifold of dimension n — 1.

2

2. CuBIC CURVES AND THE GROUP LAw

It is mentioned in [9] that any smooth cubic E in P? can be written as
the zero set of the Weierstrafl equation after an appropriate change
of variables.

E={(z0:2:22)| 21229 = 4203 — pzoza? — qz23}.

Locally on U, this corresponds to {(z,y) | y? = 42> — px — q}.
In addition, the set of rational points on E forms a group, see [9]
Theorem 8. In our case, i.e. when E is defined over C, we show
that this defines a group structure on all points of £ with complex
coordinates. As before, let O denote the point (0 : 1 : 0). Let P
and @) be any two points on E and consider the line in P? containing
P and ). Then, by the same prescription as in [9] Definition 5,
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we see that it meets F in a third point R. Now consider the line
containing O and R. It meets E in a third point say R. In the local
coordinates (x,y), R is the reflection of R in the x-axis as mentioned
in [9] Definition 5. We define P + Q := R.

(P

%/

P+Q:=R

This is exactly the same as in [9] Theorem 8, except now we allow
P and @ to have complex co-ordinates. In this way we get a group
law on all of points of E with complex coordinates.

The choice of O as the zero element of the group E is not unique.
In fact any point on E can be a zero ([10] Chapter 1, Section 2),
however for E in the Weierstrafl form this choice of the zero element
simplifies the group law. We state the analogue of [9] Theorem 8
over C.

Theorem 1. Let E be a cubic curve in P? given by the Weierstraf§
equation

E={(z0:21:22) € P? | 21229 = 420° — gazoza® — g3223},

where go, g3 are constants. Then there exists a unique group law on
E such that O := (0 :1:0) is the zero element. The group structure
1s determined by requiring

P+Q+R=0 ifandonlyif P,Q, and R are on a line.

3. ComMmPLEX TORUS

In this section we relate E to the one dimensional complex torus
given as the quotient C/A of C by a rank 2 lattice A in C. Since
C/A is diffeomorphic to S* x S! it is like a hollow doughnut and so
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has genus 1. Recall that by the “genus formula” for smooth plane
curves E also has genus 1. The following theorem shows that despite
its different appearance E is isomorphic to C/A.

Theorem 2. Let A be a rank two lattice in C. Then the one di-
mensional complez torus C/A can be embedded in P? as a cubic in
Weierstraf$ form.

We sketch the main ideas of the proof and introduce the notion
of elliptic integrals. For more details see [7] and [3]. Associated to
A there is a meromorphic function on C/A called the Weierstrafl
p-function (Karl Weierstraf}, 1802), defined as follows.

When viewed as a meromorphic function on C, p(z) is doubly
periodic with respect to A and has poles of order 2 at all the lattice
points. It satisfies the following differential equation.

p(2)”° = 4p(2)° — gap(2) — g5. (1)

The constants g2, g3 are related to A and are given by

1 1
=00 > — gg=140 > —
weA\{0} weA\{0}

A complete proof of Equation (1) and the derivations of g2, g3 is
given in [5] Theorem 10.

The map C/A — P? which identifies C/A with a cubic curve, is
given as follows:

] = {(p(z) (p(2) 1)

[2] # [0]
(0:1:0) i =

[2] = [0]-
Since p(z) satisfies the differential equation (1) we see that in the
local co-ordinates (x,y) on Us, the image of C/A via 7 is given by

i )

y? =42® — g — g3

which is the Weierstrafl cubic equation. To justify the definition of
7([0]), we observe that p(z) has a pole of order 2 and p'(z) has a
pole of order 3 at [0]. So

9(2)

o2) =12 ana ()= 22

237
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for some holomorphic functions f and g such that f(0) # 0, and
g(0) # 0. Then, for values of z € C close to 0 € C, we have

([2]) = (p(2) : ¢'(2) : 1) = (2f(2) : g(2) : 2°)

and at z = 0 we obtain (zf(z) : g(2) : 2°) = (0 : 1 : 0), which is
7([0]) = O, the zero element of the group structure on the cubic
curve E. This shows that we get a holomorphic map 7 : C/A — E,
where E is a cubic curve in Weierstrafl form. One way of showing
that it is an isomorphism is via an inverse mapping and this brings
us to the topic of elliptic integrals.

An elliptic integral is an integral of the form

/R(x, y)dz
o

where R(z,y) is a rational function, and y? is a polynomial in z of
degree 3 or 4 without multiple roots.

They are called elliptic integrals because they first arose in the
context of determining the arc lengths of an ellipse and of other sec-
ond order curves. Early work on such integrals goes back to Wallis,
Bernoulli, MacLaurin, Riccati and D’Alembert. However for a long
time the problem of inverting such integrals was unsolved. It was
found that they cannot be expressed in terms of the known transcen-
dental functions and also that only three types of new transcendents
suffice to express all such integrals.

Building on work of Fagnano (Giulio Carlo Fagnano dei Toschi,
1682-1766), Euler discovered in 1756 an addition formula for such
integrals. In modern language Euler’s formula is an addition formula
for elliptic functions such as the Weierstrafl p-function. Much later,
in the second half of the 19-th century, Weierstrafl showed that in fact
elliptic functions can be characterised by their property of possessing
an algebraic addition theorem.

The mystery surrounding the mathematical nature of elliptic in-
tegrals was only unveiled by the works of Abel and Jacobi, simul-
taneously published in September 1827. The main new idea was to
study the inverse of the function given by an elliptic integral. Nowa-
days, such functions are called elliptic functions. Abel also noted
that while the elliptic integral itself is a highly complicated function
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of the point (z,y), sums of such integrals (known as Abelian sums)

Z ?R(z,y)dm

satisfy simpler relations. We state and use a special case of Abel’s
theorems later (Section 7, Theorem 22).

Liouville identified in 1844 that the property to be doubly periodic
is the crucial one upon which their analytic study should be based.
Jacobi’s theta functions and the Weierstafl p-function form now the
fundaments of a modern theory of elliptic functions. Their definition
and basic properties can be found in the article by M. Franz [5].

Even though elliptic integrals are historically older than elliptic
functions, we usually come across elliptic functions first. The reason
being the work of Cauchy in the theory of complex analysis which
has made the latter an easier object of study today than the integrals
themselves. The elliptic integrals appear then as inverses of elliptic
functions.

If y? = 423 — gox — g3, an elliptic integral (of the first kind) which
is of particular importance, is

This is to be understood as a contour integral along a path (x(t),y(t))
in C? which connects the point O with the point P. It is assumed the
this path is completely contained in the curve given by the equation
y? = 4z® — gox — g3 which we know is the curve E in terms of
local coordinates (z,y). Since the genus of E is 1, the curve E is
not simply connected and the integral depends on the choice of the
path. However, this dependence is only modulo the periods of df.
This means that the value of the elliptic integral changes only by an
additive constant of the form nw; + mwsy with m,n € Z. Here the
complex numbers w; and w, are given by

dz dz
wi=[]— and w =[] —,
Yy Yy

71 2
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where 1,7, are two closed paths representing a pair of generators
of the fundamental group of E. The numbers w;,ws are called peri-
ods because the inverse function of this integral (which is the Weier-
straf} p-function) is doubly periodic with periods wq,ws. The periods
w1,ws are linearly independent over R because the paths 7;,~- are
generators of the fundamental group.
So A = {nwy + mwy | n,m € Z} is a lattice in C and in this way
we reconstruct the lattice A we started with. Moreover, if we set
P
Y P)= d_m
)
o

where O is the point at infinity and P € E any point, we obtain a
well-defined map 7! : E — C/A which is the inverse of the map
7 defined earlier. This gives an isomorphism of E with C/A. The
differential %’” is actually the familiar differential dz on the torus
C/A. That is because z = p(z),y = ¢'(2) so we get T*df = dz, the
integral of which is well defined modulo A.

In order for this procedure to work, all we need is that the cubic
curve y? = 42° — gox — g3 be smooth, i.e. g3 — 27g2 # 0. Since
any smooth cubic curve in P? is isomorphic to a cubic in Weierstraf
form, it follows that every smooth cubic in P? is isomorphic to a
complex torus. For more details see [7] Chapter 2.

4. DIVISORS

In the previous section we saw that a plane cubic curve F is isomor-
phic to a complex torus C/A. Now C/A inherits a group structure
from C and hence induces a group structure on F via the isomor-
phism. In Section 2 we defined a group operation on E using geom-
etry. How do these two compare?

The answer is: they coincide! In the subsequent sections we de-
scribe a proof which weaves together some pretty ideas from algebraic
geometry. To do so we have to first introduce an important notion
in algebraic geometry which is that of a divisor. In the case of a
curve it has a simple description.

Definition 3. Let C be a smooth curve in P2. A divisor on C is a
formal finite linear combination D = a; - P| + - - - + a4y, - Py, of points
P; € C with integer coefficients a;.
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Divisors can be added or subtracted and hence form a group de-
noted Div(C).

Definition 4. The degree of a divisor D = a1 - Py + -+ @y, - Py 18
defined to be deg D = "™ | a; and this gives a group homomorphism
deg : Div(C) — Z.

Remark 5. The notion of a divisor extends also to higher dimen-
sional manifolds. In that case a divisor is a linear combination of
subsets given locally by zero sets of irreducible holomorphic func-
tions.

The group Div(C) is very large, even in the one-dimensional case.
Therefore we introduce the sub-group of principal divisors. The ben-
efit is that the factor group of all divisors modulo principal divisors
is finitely generated. This factor group will prove to be useful in Sec-
tion 6 as well. In order to explain the definition of principal divisors,
we need the notion of the order of a function at a point P.

Let f be a holomorphic function on an open set U C C. Let
P € U and let x be the local co-ordinate on U such that P is given
by  — A for some A € C. The order of f at P, denoted ordp(f), is
the largest integer a € Z such that locally

f(x) = (z =N - h(z)
where h is a holomorphic function with h(\) # 0. Since f is holomor-
phic a is non negative. Note that for g, h any holomorphic functions

ordp(gh) = ordp(g) + ordp(h).

We would like to include the cases when ordp(f) is negative. To
do so we have to include what are known as meromorphic functions.
A function f on C is called a meromorphic function if it can be writ-
ten locally as a ratio 4, where g # 0 and h are holomorphic functions
which do not have a common zero. Then, by using a Laurent series
expansion for f at P, we see that ordp(f) = ordp(g) — ordp(h). So
ordp(f) is negative if ordp(g) < ordp(h).

Collecting zeros and poles of a global meromorphic function f
gives us a natural way to associated a divisor to it.

Definition 6. Let f be a meromorphic function on C. Then the
divisor of f, called a principal divisor and denoted (f), is given by

(f) = ZOI"de'P.

pPeC
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Example 7. Consider P!, the Riemann sphere with homogeneous
co-ordinates (zp : z1). Then any ratio f = %, where g and h are
homogeneous polynomials of the same degree d, is a global mero-
morphic function. So for instance if f = % then (f) =

2'P0—P1—P2 where PO = (0 : ].),Pl = (]. : 0),P2 = (]. : —].)
Note that deg(f) = 0.

Now we do the same thing for curves in P?. A meromorphic
function f on P? restricts to a meromorphic function on the curve
C if the denominator in the local expression for f does not vanish
identically on the curve. Its associated divisor (f) restricts to a
divisor on C'. As an example lets take the function f = Wﬂ
and the line Ly = {z2 = 0}. Then a local computation shows that

(=10 +1:—i)—2-(1:0).
Given any curve C' C P? and any divisor D on C, a natural question

to ask is whether D = (f) for some meromorphic function f on C?
The following example is a partial answer to this question.

Example 8. Consider the line Ly = {(z0 : 21 : 22)|22 = 0} in P2,
(see [9] Section 3) and O the point (0 : 1:0). Then D =2-0 is
a divisor on Lo. If D = (f) for some meromorphic function on Lo,
then f has a zero of order 2 at O and is holomorphic and nonzero
everywhere else. Since Ly is isomorphic to P! there are no non-
constant holomorphic functions on P, D # (f) for any f.

In the case of P! the answer to the above question is very simple.
A divisor D = (f) if and only if deg D = 0. For a cubic curve E the
answer is not so simple. For instance there exist divisors of degree 0
which are not associated to any meromorphic function. In fact there
are as many such divisors as there are points on E. We discuss this
in more detail in Section 6. See also the article by C. Daly [4].

5. LINE BUNDLES

Divisors are closely tied together to another geometric notion which
is that of a line bundle. A line bundle is a rank 1 holomorphic
vector bundle (Definition 10). In this section we discuss the relations
between line bundles and divisors.

Let us for the moment refer back to Example 8. The homoge-
neous coordinates zg, z; of P? are also natural homogeneous coordi-
nates on Ly, since Ly = {(z0 : 21 : 0) € P?}. Our aim is to associate
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to a homogeneous polynomial in the ring Clzg, z1] its “divisor of ze-
roes”. For example consider the homogeneous quadratic polynomial
2&. Since it is a homogeneous polynomial it is invariant under scalar
multiplication and so D := {22 = 0} is a well defined subset of Ls.

This zero set has a local description. Recall from [9] Section 3 that
L, is covered by two open charts Vo = {z9 # 0} and Vi = {z; # 0}.
The affine coordinate on Vj is z = z—(l) and the affine coordinate on
Vi is w = 2. On Vp N Vi we have the identification map z = <

Conside?D NVi={(z0:21) €EV1 |22 =0} If (20 : 21) € ﬁm Vi
then certainly (Azo : Az1) € D N Vi, so we divide by z; to get that
Dnvi={(£:1)] % = 0}. In terms of the coordinate on V; this
is just {w € V4 | w? = 0}.

Similarly D NVy = {(20 : 21) € Vo | 28 = 0}2. In terms of the

coordinate on Vj this corresponds to {(1: z) | % = 1 = 0} which
0

20

is just the empty set. So, locally D corresponds to the following
subsets

DnVy = {ze€VW|1=0},
DNV = {weV;|w* =0}

Set fo := 1, f1 := w?, then {(Vb, fo), V1, f1)} are local defining
functions for D. Notice that on Vo N Vy, we have w? = ;—2 # 0 and

folz) = filz) - 2°.
Similarly f(w) = fo(w)-w? on VNV, so the local defining functions
are related by a nowhere vanishing factor.

Now DN Vy = () and D N V; is the origin w = 0 counted with
multiplicity 2. The point w = 0 in V; corresponds to (0 : 1: 0) on
L. Since this occurs with multiplicity 2, D is the divisor 2-O where
O =(0:1:0), as before.

The interesting thing is that from these local defining functions
of D we construct a new manifold L called a line bundle. The non-
vanishing factor that relates these local defining functions of D is
known as a transition function. We give one more example before
stating the definitions.

Example 9. Set
L=VyxCuV; xC/ ~

where V5 x C and V3 x C are open charts of L. The equivalence
relation ~ gives the “patching” condition on the overlap (VoNV;) xC
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and is defined as follows. For w =1 € Vp NV} and (w,\) € V1 x C,
(z,p) € Vo x C we define

(w,\) ~ (z,p) <= p=2"\

Note that we define the “patching” condition using 22, the nowhere
vanishing function on Vp N Vi relating the two local descriptions of
D above.

This new manifold L is an example of a line bundle (Definition 10
below) and is often denoted O(D). The collection {(fo, Vo), (f1,V1)}
of local defining functions for D = 2-O defines a section (see subsec-
tion 5.2) of O(D) and the function z? relating these local functions
on the overlap Vo NV} is a transition function of O(D).

We now give the general definition of a line bundle.

Definition 10. Let M be a complex manifold. A line bundle L = M
is a holomorphic vector bundle of rank 1. That is

(1) Lis a complex manifold such that for any z € M, 7~ (z) =
L, is equipped with the structure of a one dimensional com-
plex vector space.

(2) The projection mapping = : L — M is holomorphic.

(3) There is an open cover {U,} of M and biholomorphic maps,
bo : T H(U,) — U, x C, compatible with the projections
onto Uy, such that the restriction to the fibre ¢, : L, —
{z} x C is linear for all © € U,. The pair (¢4,U,) is called
a trivialisation of L over U,.

L, Ly, CL

Uo.CM

IS
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Since L is a complex manifold, for any pair of trivialisations ¢q, ¢g
the map gog : Uo NUg — C* given by

b0 (65" (@,0)) = (@, 95(2) - v)

is holomorphic. The maps g,g are called transition functions of L
with respect to the trivialisations (¢o,Us),(¢3,Ug). They deter-
mine the line bundle L and satisfy the following conditions

(1) gap(z) - gsa(z) =1 for all x € Uy N Up;
(2) gap(z) - gay(x) - gryal(x) = 1for all x € Uy NUg NU,.
Condition (2) is known as the cocycle condition.

Conversely, given an open cover {U, } of M and holomorphic maps
gap : UaNUg — C*, satisfying the conditions above, we can construct
a line bundle L with transition functions g,3. Define an equivalence
relation ~ on the union over all a of U, x C as follows. For z €
UaNUgz, (z,A) € Ug x C and (z,p) € Ug x C set (x,A) ~ (z,p) if
and only if 1 = gag(z) - A. Then

L=|)U.xC/~

is a line bundle with transition functions g,g.

For ease of notation from now on we set Ly = 7~ (U).

Given L as above, for any collection of nowhere vanishing holo-
morphic functions f, on U, we can define alternative trivialisa-
tions ¢, of L over U, by multiplying the second component of
() € Uy x C with f,(z). In a more sloppy way we write

d):x = faPa- (3)

The transition functions relative to (¢!, U,) are

Jap = f—ag 3
= B
af f,@

Any other trivialisation of L can be obtained in this way, so we see
that the collections {g;;} and {gas} define the same line bundle if
and only if there exist nowhere vanishing holomorphic functions f,
on U, satisfying (3) above.

Example 11. The simplest example of a line bundle on a manifold
is M x C also known as the trivial bundle Oyy.

Example 12. The line bundle that we constructed in Example 9
is known as Op1(2). All line bundles constructed in this way from
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a divisor defined by a homogeneous quadratic polynomial on P! are
isomorphic because for any two such polynomials there is an isomor-
phism of P! which maps one to the other.

Remark 13. In fact given any n € Z™ all line bundles obtained
from divisors corresponding to a homogeneous polynomial of degree
n on P! are isomorphic and denoted by Op1(n).

Example 14. Recall that P! = (C? \ {0})/~ where (29,21) ~
(Az0,Az1) for all A\ € C*. This means, each line [ C C? through
the origin corresponds to a point [I] € P*. Let

L={((20:21),v) € P! xC* |v € C-(20,2)}
={(llv) eP' xC |vel}

and denote projection onto the first factor by 7 : L — P'. Then, in
terms of local co-ordinates on Uy and U; as before, we obtain

LUO = {(Za (Baﬁz)) | B € (C}
Ly, = {(w, (pw,n)) | n € C}
with trivialisations

¢02LU0—>U0X(C ¢12LU1—>U1X(C
(2,(8,82)) = (2, 8) (w, (nw, ) = (w,n)
The reader can check that the transition function gg; is:
1

go1(2) = o+ = >

This vector bundle is also known as the universal bundle on P! de-
noted Op1(—1) and is an important example.

A nice property of line bundles is that they can be “pulled back”.
Suppose f : M — N is a holomorphic map of complex manifolds,
and 7 : L — N is a line bundle on N. Then we define the pull back
bundle f*L by setting (f*L), = Ly(,). More precisely,

fTL={(m,v) | f(m) =n(v)} C M x L.

If ¢ : Ly = U x C is a trivialisation of L in a neighbourhood U of
f(x), then we obtain a trivialisation

f ¢ (f* L)) = f1(U)xC
which is the composition

(F* L) -1y C fHU) x Ly "2 fHU) x U xC 2 f7H(U) x C.
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This gives f* L its manifold structure over the open set f~1(U). The
transition functions for f*L are the pull backs f*(gag) := gag o f of
the transition functions g.g of L.

Remark 15. If D is a divisor on N with local defining functions
{(ha,Uq)}, we can pull it back to a divisor f*D on M with local
defining functions {(hq o f, f~1(Us))}. If L = O(D), then f*(L) =
O(f*D).

5.1. Group structure on the set of all line bundles. The ten-
sor product of C with itself, C ® C is C again. Similarly given two
line bundles L; and L, with transition functions g, and hop respec-
tively, we can define the tensor product L1 ® Lo and get a new line
bundle L. The fibres of L are just the tensor product of fibres of L;
and Ly. The transition functions t,g of L are therefore the product
of the transition functions of L; and Ly, i.e. for all x € U, N Upg

tap(2) = gap(€)hap(z).

This defines a binary operation on the set of line bundles. Tensoring
with the trivial bundle O gives the same bundle back, so it is the
neutral element of the group structure. Associated to each line bun-
dle L with transition functions g,g, there is another line bundle L*
whose transition functions are g;é. It is called the dual bundle of L.
Since L ® L* = O, the dual bundle is like the inverse of L. Hence
we get a group structure on the isomorphism classes of line bundles
on M. This group is called the Picard group of M denoted Pic(M).
In the next section we describe Pic(E) for E a smooth cubic curve
in P2.

5.2. Sections of a line bundle. A section s of a line bundle L is a
holomorphic map s : M — L such that wos = Id. Locally this means
we have an open cover U, and a collection of holomorphic functions
$q : Uy — C such that

Sa(%) = gap(x) - sp(x) Vo eUyNUs.

An example of a section is given in Example 9. It may be the case
that a line bundle does not have any holomorphic sections. Lo-
cal holomorphic sections always exist but they may not satisfy the
patching condition on overlaps.

For instance consider the line bundle Op1(—1) as in Example 14.
Suppose it has a local holomorphic section s; (w) on Uy where s;(w)
is a holomorphic function. Then on Uy NU; it transforms to so(z) =
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s1(1) - L which is a meromorphic function on Uy and certainly not
holomorphic. This shows that Opi(—1) does not have any global
holomorphic sections and therefore we extend our definition to al-
low meromorphic sections of L. A collection of local meromorphic
functions {sq : Uy — C} such that s, = gagsp will be called a mero-
morphic section of L. The section si(w) = 1,s0(z) = L is a global
meromorphic section of Op1(—1) with a simple pole at (1 : 0).

Finally we come to the correspondence between divisors and line
bundles.

5.3. Divisors and line bundles. Let D be a divisor on a curve
C and let {(fa,Uqa)} be local defining functions for D. Then the
functions go3 = {c—; are holomorphic and non zero on U, NUg. They
also satisfy the cocycle condition on U, N Ug N U, since

fato Jy

gaﬁgﬁwgwazﬁf 7 =1on UaﬂUgﬂUv.
v Ja

So the collection {gnp} defines a line bundle called the associated
line bundle of D, and denoted O(D) (see also Example 9.)

Conversely since any curve C' embeds in some projective space
P given a line bundle L over a curve C, there exists a meromorphic
section s of L (for a proof see [7] Chapter 1, Section 2, the proposition
directly before the Lefschetz theorem on (1,1) classes.) Consider a
local representation {s,,U,} of s. Then given any P € C we can
define the order of s at P as

ordp(s) = ordp(sq)
Where « is arbitrary with P € U,. This does not depend on the
choice of a, since z;g;g = gap(x) € C* for all z € U, N Uz and so
ordps, = ordpsg, if P € U, NUg. We take the divisor (s) of s to be

(s) = Z ordp(s) - P.

pPeC

If we were to take the line bundle associated to the divisor (s) we
would recover L our original line bundle. So we get a map

Div(C) — Pic(C) (4)
D — O(D) (5)

Remark 16. This correspondence still holds if we replace C' by an
algebraic complex manifold M.
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In fact (4) is a group homomorphism. A good exercise is to
check it is well defined. Suppose Dy, Dy are two divisors. We can
choose an open cover fine enough so that they are locally defined
by {fa},{ha}. Then Dy + D, has local defining functions {fohq}-
The corresponding line bundle O(D; + D») has transition functions

tag = J};Z; The line bundles O(D;) and O(D>) have transition
Ja h

functions gos = = and gap = 32 rvespectively. Tt is clear that
tag = 9apdas, 50 O(D1 + D2) = O(Dq) ® O(D3). In other words
addition of divisors in Div(C) maps to tensor product of line bun-
dles in Pic(C). If D = (f) for some global meromorphic function
then fo = f3 50 gag = 1 and hence O(D) is the trivial line bundle.
We say D, is linearly equivalent to Do, denoted D1 ~ Ds, if and
only if there exists a global meromorphic function f on C such that
Dy = D>+ (f)-

Lemma 17. Let C be a curve. Let Div(C) denote the group of
divisors and Pic(C) the group of line bundles on C. Then O(D) is
trivial if and only if D = (f) for some meromorphic function on C,

i.e. Div(C)/ ~ = Pic(C).

Proof. We have seen that (f) corresponds to the trivial line bundle
so we just need to show that if O(D) is a trivial line bundle then
D = (f). Let {(fa,Uq)} be local defining functions for D. Then
O(D) trivial implies there exist functions hy : Uy, = C* such that

fa ha
% = Yap = % =1L
Hence,
o fe_gwfs o
ha  gaghs  hg
is a global meromorphic function on C with divisor D. d

Let L be a line bundle on C' and s a meromorphic section of L. For
the reader familiar with some differential geometry we now mention
a nice relation between the first chern class of O(D) and D. Given
a divisor D on C let np denote its Poincare dual in H?(C,Z). Let L
be any line bundle. Then L admits a hermitian metric and there is
a unique connection on L compatible with the metric and complex
structure. Let © be the curvature form associated to this metric
connection.
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Theorem 18. Let L = O(D) be a line bundle. Let © be the cur-
vature form associated to a metric connection. Let np denote the
Poincaré dual of D in H},(C) and let ¢, (L) denote the first Chern
class of L. Then

1

2| = e mo),

For a proof see [7] Chapter 1, Section 1. This implies
i
— = =degD.
5= .0 = . [c) = aee

Remark 19. All the results of this section also hold when we replace
C by a complex manifold M.

6. POINCARE BUNDLE

Now we restrict attention to the case of a plane cubic curve F and
ask ourselves the following question. What does the set Pic’(FE) of
all degree zero line bundles on E look like?

Here by degree of a line bundle we mean the degree of its associ-
ated divisor (Definition 4). In the case of P! up to isomorphism there
is only one line bundle of degree zero and that is the trivial bundle.
However on E there are many non-trivial line bundles having degree
zero as we shall soon see. In fact they form a family parametrised
by E.

First let’s take a point P € E. This is a divisor of degree 1 on
E, and it defines a line bundle O(P). Now choose another point @)
distinct from P and take the divisor P — ). This has degree zero
and correspondingly defines a line bundle O(P — @). One could ask
is O(P — ) isomorphic to the trivial bundle?

If so then by Lemma 17 there would exist some global meromor-
phic function f on E such that P — ) = (f). This means that f
has exactly a pole of order 1 at () and a zero of order 1 at P and no
other poles or zeroes. But then we can define a bijective map

E — P!

z = (f(z):1)
Under this mapping () maps to the point at co = (1 : 0) on P!. Since
f is meromorphic with exactly one pole and holomorphic elsewhere

it is an isomorphism. But E has genus 1 while P! has genus 0 so
they cannot be isomorphic. Therefore P — @ ~ 0, i.e. P, @) are
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inequivalent divisors and define non isomorphic line bundles. The
following theorem says that in fact the family of degree O line bundles
on F is itself a manifold.

Theorem 20. Let E be a cubic curve in P2. Then there is a bijection
E = Pic®(E).

Proof. We just show that there is an injection from E to Pic’(E).
For a proof of surjectivity see [6] Chapter 6.

Fix a point in E (doesn’t matter which one) for instance O. Then
given any other point P € E we get a degree 0 line bundle O(P —0).
This defines a map E — Pic’(E). For P and @ distinct points the
line bundles O(P — O) and O(Q — O) are non isomorphic. Because
if they were isomorphic then by Lemma 17 the divisor P — O would
be linearly equivalent to ) — O which implies P — @ ~ (f) for some
meromorphic function f. But as we have already seen, in that case f
defines an isomorphism between E and P! which is a contradiction.
Hence our map is bijective. |

In fact there is a more general theorem.

Theorem 21. Let E be a cubic curve in P2. Then for all n € 7 we
have Pic"(E) 2 E.

The idea is that if we fix a point O on E then any line bundle L
of degree n, can be mapped to a line bundle of degree zero by taking
the tensor product L ® O(—nO) and vice versa.

There is a special line bundle on E x Pic’(E) = E x E called the
Poincaré bundle P. It has the property that P, .. = Op(P —0).
We construct this line bundle as follows. Let (z,y) be the local co-
ordinates on E x E. Consider the subset A = {(z,y)|z = y} called
the diagonal. It is a divisor since it is given by the zero locus of
a single equation. Its associated line bundle O(A) has the prop-
erty that O(A)|,, ., = Op(P). The idea is simple, by Remark 15
O(A)|EX{P} = O(A|EX{P})|EX{P}. Let p1,p2 denote projection of
E x Pic’(E) = E x E onto the first and second factor respectively.
Consider the line bundle P := O(A) @ p;O(—0). Then p;O(-0) is
just the line bundle associated to the divisor —({O} x E) in E x E.

0A)@p"0(=0) . .\,
N ©O(-(0xB), .
Ogr(P) ® Op(—0) = Og(P - 0)

Plexter

Il

|E><{P}

1
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The point P in the second factor of E x E represents the line bundle
O(P — O) when viewing E x E as E x Pic’(E) via the isomorphism

E — Pic’(E)
P - OP-0)

So we see that P|_ ., is isomorphic to the corresponding element

Op(P — 0) in Pic’(E). This is an example of a moduli space and
its universal bundle. The moduli space of degree zero line bundles
on E is isomorphic to E. The universal line bundle on E x Pic’(E) is
given by P characterised by the property that for any P € Pic’(E),
Ploxipy 18 aline bundle of degree zero belonging to the isomorphism
class of P € Pic’(E). For more details about moduli spaces of vector
bundles on elliptic curves see the article by C. Daly [4].

7. ABEL’S THEOREM; GROUP LAW REVISITED

In Section 3 we showed that a cubic curve E is isomorphic to a
complex torus C/A. We now have all the pieces to put together a
proof of the fact that the geometric group structure on E is the same
as the group structure on C/A.

The main result involved in proving this is the following classical
theorem known as Abel’s theorem [1] (1827).

Theorem 22. Let A be a rank two lattice in C, let ny,...,n, and
mi, ..., My be integers and let [a1],. .., [an] and [b1], ..., [by] denote
points in C/A.

Then there exists a meromorphic function f : C/A — C with
zeroes at [a;] of order n; and poles at [b;] of order m; if and only if

n m n m
Zn,- = ij and Zni[ai] = ij[bj] € C/A.
i=1 j=1 i=1 j=1
Moreover this function is unique up to a constant factor.

For a proof of Abel’s theorem involving a nice application of theta-
functions see [5] Theorem 7.

Theorem 23. Let E be a smooth cubic curve in P2, Then E = C/A
for some rank 2 lattice A in C. The geometric group structure on
E as defined in Theorem 1 is isomorphic to the group structure on

C/A.
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Proof. Consider three points Py, P, P; on E which lie on a line L.
This is equivalent to saying P; + P> + Ps = O. Let [z1], [22], [23] be
the unique points on the complex torus C/A which are mapped to
Py, Py, P3 under the isomorphism 7, i.e. 7([z;]) = P; (see Section 3
for the definition of 7.) If we can show that [21]+ [22] + [23] = 0 then
we are done.

Suppose L = {(z0 : 21 : 22) € P?2 | lpzo + l121 + lz2o = 0}.
Then since z5 is not identically zero on L the meromorphic function
F = W on P? restricts to a meromorphic function f on
E. The divisor of F in P? has a simple zero along the line L and
a simple pole along the line Ly = {(zp : 21 : z2) | 22 = 0}. So the
divisor of F restricted to E is (f) = > P; — > Q; where {F;} =
LNE and {Q;} = L»N E with multiplicities. Implicit differentiation
shows that O is an inflection point of £ and hence O is a triple
point of contact of the line L, and E. So Ly meets E at O with
multiplicity 3. Therefore (f) = P, + P>+ P; —30. Now f pulls back
to a meromorphic function 7* f on C/A with zeroes of order one each
at [z1], [22], [23] and a pole of order three at [0]. By Abel’s theorem
this is the case if and only if [z1] + [22] + [23] = 3[0] in C/A, i.e. if
the points [z1], [22], [23] sum to zero in C/A. O

This concludes our overview of the group structure on an elliptic
curve E in P2, For other interesting features of elliptic curves and
moduli spaces of vector bundles on elliptic curves see the article by
C. Daly [4].

In two dimensions the only compact complex manifold that admits
a group structure is a complex torus. However one can consider
families of elliptic curves called elliptic fibrations. The geometry
of these elliptic fibrations is very interesting and has been studied
in detail. In the complex analytic case they have been classified
by Kodaira (see [8]). Recently there has also been much interest
in higher dimensional elliptically fibred manifolds in the context of
mathematical physics.
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Theta Functions

MARINA FRANZ

ABSTRACT. On our analytic way to the group structure of
an elliptic function we meet so called theta functions. These
complex functions are entire and quasi-periodic with respect
to a lattice A. In the proof of Abel’s theorem we use their
properties to characterise all meromorphic functions f from
C/A to C. Finally we have a closer look at a very special and
interesting A-periodic meromorphic function, the Weierstrafl
g-function. This function delivers an analytic way to give a
group structure to an algebraic variety.

1. INTRODUCTION

First of all, we want to analyse periodic complex functions f : C — C
with respect to a lattice A. So let us fix once and for all a complex
number 7 € C, Im 7 > 0 and consider the lattice A :=Z @ 7Z C C.

T/ /I+T
0 1

FIGURE 1. The lattice A = Z & 77 and its funda-
mental parallelogram V = {z =1t; +t,7 € C:0 <
t1,ta < 1}.

Lemma 1. An entire doubly-periodic complex function is constant.

To prove this lemma we need Liouville’s Theorem, which we know
from complex analysis. It states that each entire and bounded com-
plex function f : C — C is constant.
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Proof. The values of a doubly-periodic function are completely deter-
mined by the values on the closure of the fundamental parallelogram
V ={2€C:z=t +tyr for some 0 < t1,t < 1} which is a com-
pact set. But a continuous function on a compact set is bounded.
Hence our function is entire and bounded. Therefore it is constant
by Liouville’s Theorem. (I

As we have seen, entire doubly-periodic functions are not very
interesting, so in the following we will consider entire quasi-periodic
functions and use them to prove Abel’s Theorem which says what
meromorphic doubly-periodic functions look like.

2. THETA FUNCTIONS AND ABEL’S THEOREM

Definition. The basic theta function is defined to be the function
0 : C — C given by

0(z) :==0(1)(2) := Z exp(min®7) exp(2minz)
nez
Note. The function 6 depends on 7. So for each 7 € C withIm 7 > 0
we get a (not necessarily different) basic theta function. Hence there
is a whole family of basic theta functions {6(7)}rec,im »>0. But here
we assume 7 to be fixed, so we have only one basic theta function.

Remark. As the series in the definition above is locally uniformly
unordered convergent (without proof) our basic theta function is an
entire function.

Lemma 2. The basic theta function is quasi-periodic.

Proof. Consider 6(z + \) for A € A, i.e. A =pr + ¢ for p, ¢ € Z.
For A =1, i.e. for p =0 and ¢ =1 we have

0(z+1) e Z exp(min?1) exp(2min(z + 1))
neZ
= Z exp(min?t + 2minz 4 2mwin)
nez
= Z exp(min®t) exp(2minz) exp(2mwin)

nez Y
=1 for all nez
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= Z exp(min?T) exp(2minz)
nez

o)

Hence the basic theta function is periodic with respect to the x-
direction.
For A =7, i.e., for p=1 and ¢ = 0 we have

0(z+71) = Z exp(min?1) exp(2min(z 4 7))
nez
= Z exp(min?t + 2minz + 2minT)
n€e”Z
if we complete the square and rearrange the summands then

= Z exp (7m'n27' + 2minT + mIT — TIT
nez
+2minz + 2mwiz — 2miz)

= exp(—miT — 2miz) Z exp(mi(n + 1)%7) exp(27mi(n + 1)z)

neZ
if we make a simple index shift m = n + 1 then

= exp(—miT — 2miz) Z exp(mim?7) exp(2mimz)

meZ

= exp(—miT — 2miz)0(2)

Hence the basic theta function is not periodic with respect to the
7-direction as in general exp(—miT — 2miz) # 1.
In the general case we obtain

0(z+\) = 0(z + pr +q)
S exp(rin®rexp2ring: + 77 +0)
nez

= Z exp(min?t + 2minz + 2mwinpt + 2mwing)
neL
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if we complete the square and rearrange the summands then

Z exp (m’n27’ + 2minpT + mip*T — wip?T
ne”Z
+2minz + 2wipz — 2mipz + 2wing)

= exp(—mip*t — 2mipz)

: Z [ exp(mi(n + p)°7) exp(2mi(n + p)2)
nez
exp(2ming) |
—_——

=1 for all nez
= exp(—mip*t — 2mipz)

. Z exp(mi(n + p)7) exp(2mi(n + p)z)
nez

if we make a simple index shift m = n + p then

= exp(—mip*T — 2mipz) Z exp(mim?7) exp(2mimz)
meZ

= exp(—mip®T — 2mipz)0(z)

Hence the basic theta function 6 is quasi-periodic with

0(z+A) =0(z+pr+q)
= exp(—mip*t — 2mipz)0(2)

foral \=pr+q€ A and z € C. (]

Definition. We define
e(\, 2) := exp(—mip?T — 2mipz)
and call this the automorphy factor.

Remark. We have e(A; + A3, 2) = e(A1, 2 + A2)e(Ag, 2) for all Aq,
Ao € AL
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Let A1, Ao € A, i.e. A\ =p17+ q1 and Ao = pa7 + ¢o for some pq,
D2, q1, G2 € Z, and thus A\; + Ao = (p1 + p2)7 + (¢1 + ¢2) € A. Then

e(A1 + A2, 2) = e((p1 +p2)7 + (1 + q2), 2)

de . .
tef exp(—mi(py —|—p2)27' —27i(p1 + p2)z))

= exp(—mipiT — 2mip1paT — WiPaT — 2mip 2 — 2Tipy2)

def exp(—m'p?r — 27Wip1poT — 2ip12)e(Az, 2)

= exp(—mipiT — 2mip1z — 2mip1poT —  2mipiqy )
———
exp(2mip1q2)=1
~e(Ag, 2)
= exp(—mipiT — 27mip1 (2 + A2))e(Az, 2)

def e(A1, 2+ Aa)e(Ag, 2)

Summary. The basic theta function 6 : C — C is entire and quasi-
periodic with automorphy factor e, i.e., we have

0(z+ \) = e(\, 2)0(2) = exp(—mip?T — 2mipz)6(z) (1)
forall \=pr+q¢g€ A and all z € C.

Now we want to enlarge our category of theta functions. So far
we have only one (basic) theta function corresponding to the point
0 € C (and each point ¢ € Z C C). Now, for our fixed 7, we will
define a new theta function for each point in C. Therefore let’s start
with our old theta function and translate z by a fixed £, i.e. consider
0(z + &) for & = ar + b for some fixed a, b € R:

O(z+¢&) =0(z+ar +b)
def Z exp(min?t) exp(2min(z 4 at + b))
nez
= Z exp(minT 4 2minz + 2minat + 2minb)

neZ

If we complete the square and rearrange the summands then we
obtain
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0(z+¢) = Z exp (m’nQT + 2minat + mia®T — mia*T
nez
+2min(z + b) + 2mia(z + b) — 2wia(z + b))

= exp(—mia®T — 2mia(z + b))
- exp(mi(n + a)’) exp(2mi(n + a)(z + b))
nez

Note that the sum Y, _, exp(mi(n + a)?7) exp(2mi(n + a)(z + b))
looks very similar to the sum in the definition of our basic theta
function above.

Definition. For £ = ar+b and a, b € R the modified theta function
is defined to be the function ¢ : C — C given by

Oc(2) == 0¢(7)(2) := Z exp(mi(n + a)?7) exp(2mi(n + a)(z + b))

and £ is called theta characteristic.
Note. From the calculation above we obtain a relation between the

basic theta function and the modified theta function with character-
istic &€ = at + b for some fixed a, b € R:

Oc(2) = Z exp(mi(n + a)?7) exp(2mi(n + a)(z + b)) (2)

= exp(mia®t + 2mia(z + b))0(z + &) (3)

for all z € C.

Remark. As the series in the definition is locally uniformly un-
ordered convergent (without proof) the modified theta functions are
entire functions.

Lemma 3. Modified theta functions are quasi-periodic functions.
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Proof. Let a, b € R such that & = ar + b is the characteristic of the
modified theta function ;. Consider 0¢(z + A) for A = pr +¢ € A.

Oe(z+ N) & exp(mia®t + 2mia(z + X +0))0(z + X +€)
(€]

@ exp(mia®t + 2mia(z + X\ +b))e(\, z + €)

(

exp(mia®t + 2mia(z + A+ b))e(\, z + €)0(z + )

(
-exp(—mia*T — 2mia(z + b))0¢(2)

= exp(2mial) exp(—mip*t — 27ip(z + €))0¢(2)

= exp(2mia\ — wip*T — 2mip(z + €))0¢(2)
Hence the modified theta function 6 is quasi-periodic with
Oc(z+ A) = Opro(z + 07+ q)
= exp(2mia\ — Tip?T — 2mip(z + €))0¢(2)

forall \=pr+q€ A and z € C. O

Definition. Let a, b € R be fixed and let £ = a7 + b. We define
ee(N, 2) i= exp(2mia) — wip®T — 2mip(z + £))
and call this the automorphy factor.

Remark. Let a, b € R be fixed and let £ = ar + b. We have
ee(M + A2, 2) = ec( A1, 2 + Aa)eg(Ao, 2) for all Aq, Ao € A

Let A1, Ao € A, i.e. A\ =p17+ q1 and Ao = po7 + g2 for some pq,
D2, @1, g2 € Z, and A1 + A2 = (p1 +p2)7’ + ((]1 + QQ) € A. Then

ec(M + A2, 2) = ee((p1 + p2)7 + (@1 + q2), 2)

= exp (2m’a()\1 + A2) — mi(py + p2)°7

—2mi(p1 + p2)(z +§))
= exp (27Tia)\1 + 2miads — m’p%T — 2WiP1paT — m’pgT
—2mip1(z + &) — 2mip2 (2 +¢€))
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def exp(2mial; — wipiT — 2mipipaT — 2mipy (2 + £))

ee(A2,2)
= exp (27ria/\1 — m’p%T — 2Wip1paT—  2WiP1q2
exp(27ip1g2)=1
—2mipy (= + €)) ee (Mo, 2)
= exp(2mia); — mipiT — 2mip1 (2 + A2 + €))ee(A2, 2)
def ee(AM,z + A2)eg(Ae, 2)

Summary. Let £ = ar + b with a, b € R fixed. The modified
theta function with characteristic £ is entire and quasi-periodic with
automorphy factor e¢, i.e. we have

Oc(z + A) = ec(A, 2)0¢(2) (4)
exp(2mia\ — Tip®T — 27ip(z + €))0¢(2) (5)

forall \=pr+q€ A and all z € C.

Now we want to determine all zeros of all theta functions. There-
fore we consider a special modified theta function, the theta function
with characteristic o := %T + % In this case the determination of

zeros is very simple because the zeros are easy to describe.

Lemma 4. 0, is an odd function, i.e. 0,(—2) = —60,(2) for all
z € C. In particular we have 6,(0) = 0.

Proof. We have

O(—=2) =01, 1(=2)
def HZG% lexp (m’ (n + ;) 7')
oo (o (o 2) (=4 )]
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if we make a simple index shift m = —n — 1 then
-> lexp (m (—m - ;)i)
o) 03]
-> lexp <m (m+ ;) )
S )
-> [exp (m (m-i— ;) T>

From complex analysis we know a simple way to count zeros and
poles of a meromorphic function f: C — C:

f/
2mi ), f
where v is a piecewise smooth path that runs around each zero and

each pole exactly one time. We will use this integral to determine
all zeros of the theta functions 8, with o = %T + %

(z) dz = total number of zeros - total number of poles

Lemma 5. We have 0,(z) = 0 precisely for all z € A and all zeros
are simple zeros.

Proof. Consider the fundamental parallelogram V := {z € C: z =
t17+t2 for some 0 < t1,t5 < 1}. Choose w € C such that the border
of V,, := w 4+ V contains no zeros of 8, and 0 € V,,.

Further consider the following paths along the border of V,,:

- Cit—rw+(1-t)+7

a:[0
B0,
v:[0
§:[0,1] = Cst = w+ (1 —#)7

]
| = Cit—w+1+tr
]
]
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w4+ T ol w+14+7

« 0

(o9

w o w+1

FIGURE 2

In the above figure w € C is chosen such that the border of the
parallelogram V,, = w + V contains no zeros of f and such that
0 € V. The paths «, 8, v and ¢ run along the border of V,,. Note
that

yt)=w+1—-t)+7=a(l—-t)+7

and
dt)=w+(1-t)r=p8(1-¢t)— 1.
/
We want to show that QLTFZ o Z (z2)dz=1.

Therefore we will show that

1 /9;() /'
omi ) 6, T 2 ), 0

and
L[ [
dz = —— dz.
ami )6, = Tami [ p, ) B
LYoy = ok [Ty
ori ) 0, T 2 Jy 6, 7
A

(T )00 (2 )+€a(7 2)05(2)
eq (T, 2)9

__ 1 [el /'
o 2mi J, eo(T, S 2mi ), 0

dz
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when we use e, (7, 2) = exp(2miiT —miT —27i(2+0)) then the above
expression becomes

1 exp’(—2mi(z + o)) oy — 1 /9:,(2) &
27 J, exp(—2mi(z + o)) 27i )y, 0o
1 1 0’
= [ “omide— — [ Z2(2)d
omi midz=55 | g2 dz

/
2m/9
1 / /
2771'1'/59 271'1/9
1

(ﬁ(l —t)—1)(=7) dt

= omi 9,,
1 o
=—— [ Z(z-1)dz
271 Jg 0o
_ 1 [er(=1,2)05(2) + es(—1,2)05(2) s
2w g es(—1,2)0,(z
1 ' (—1 1 !
= eo’( ’Z) dZ— — 90'<Z) dZ
2mi Jg eo(—1,2) 2mi J5 05 (2)
when we use
1
es(—1,2) = exp(727ri§)
then
B exp’(—mi) / ' (2)
N 27TZ 3 exp(—mi)  2mi (2)
/ (Z
- o\*)
2ri J5 0,(2)
Then we have
1 0., 1 0! 1 0!
dz = 4 7o (2) d
27i oy, O Bl =50 | gr@) det o ﬂag(z) :
1 0!, 1 0
— dz+ — [ Y2(2)a
2mi J, 9(,( 2) dz + 2mi J5 0o = (2) dz
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As 6, is holomorphic in V,,, i.e. it doesn’t have any poles, we know
that 6, has a single zero. And by Lemma 4 this zero is in 0. Now con-
sider Vi, + A = Vyx for some A € A. As 0,(2 + \) = e, (), 2)0,(2)
we obtain that 6, has the only zero 0+ A = X in Vw+)\ and this is a
simple zero. But C = UxcpV w4a. Hence 6, has zeros exactly in A
and all zeros are simple. O

Corollary 6. Let £ = at + b with a, b € R. We have ¢(z) = 0
precisely for all z € 0 — € + A and all its zeros are simple.

Proof. We know 6,(z) = 0 if and only if z € A and all the zeros are
simple. Hence

0c(2) = 0 L exp(miar + 2mia(z + b))0(z + €) = 0

@exp (mia®T + 2mia(z + b))
1N2 1 1 1 1
o i(y) T 2miz (s e 5T 54 3)
bOe(z+E—0)=0
Sz+E—0oeA
Szeoc—E+A

In particular we have 0(z) = 0 if and only if z € o + A. O

So far we have considered entire quasi-periodic functions. Now
we want to use our knowledge about them to see what meromorphic
doubly-periodic functions with given zeros a; and poles b; of given
order n; resp. m; and number n resp. m look like. Furthermore we
will decide whether such a function exists or not and whether it is
unique or not.

Abel’s Theorem 7. There is a meromorphic function on C/A with
zeros [a;] of order n; for 1 < i < n and poles [b;] of order m; for
1 <j <mif and only if 375_ ni = 300 my and 31, nila;] =
Z;n:1 m;[b;].

Moreover, such a function is unique up to a constant factor.

Proof. “=" Let f: C/A — C be a meromorphic function with zeros
[a;] of order n; and poles [b;] of order m;. Choose w € C such that
Vw={w+2z¢€ C:z=1t7+ts for some 0 < t1,t2 < 1} contains
a representative a; resp. b; for every zero resp. pole of f. Further
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consider the paths

]
| = Cit—w+1+1tr
|=Cit—w+(1-t)+7
|2 Cit—w+ (1-t)7
along the border of V,, and the paths
a;:[0,1] = Cit— a; + e
Bj :[0,1] = Cst v bj + s

around the zeros resp. poles of f where r; resp. s; is chosen small
enough that D; = {z € C: [z —a;| < r;} resp. D} = {z € C:
|z — b;| < s;} contains no other zeros or poles of f.

w4+ T ol w4147

w « w+1

FIGURE 3

Here, w € C is chosen such that the parallelogram V,, = w4+ V|
contains a representative a; resp. b; for every zero resp. pole of f.
The paths «, 3, v and 0 run along the border of V,,, the paths o,
around the zero a;, of f and the path 8;, around the pole b;, of f.

First we show that Y /", na; — > 72, m;b; € A as follows:

n m n 1 f, m 1 f,
Zmaimejbj:Z%/ 27(2) derZ% z?(z) dz
i=1 j=1 i=1 i j=1 Bj

1 I
=5 - z7(z) dz € A
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To establish the first equality note that we can write
f(2) = ci(z = ai)" hi(2)
for a constant ¢; and with h;(a;) = 1 around a; and hence
f'(2) = cini(z — ai)" " hi(z)
with h;(a;) = 1. We obtain

mhi)

z—aihi

L
/

(2) =2
with %(ai) = 1. Hence we have

1 !/
5 N zf7(z) dz = n;a;

by Cauchy’s integral formula for discs. The same holds for the poles
of f.
The second equality is clear since V,, contains a representative for
every zero and pole of f in C/A.
!/

To see, that QLTK'Z 27(7;) dz is an element of A, note that
Vi
1 1! 1 ! I ’
3wt | 77 a5 [ A0 @
1 /
=557 | =0+ L0 -0+ )1 i
1 1 f/
= 5, (l—t)T(a(l—t)) dt
1 1 f/
~omi ), 7'7(04(1 —t)) dt

_ f
=3 QZT(Z) dz—T%/QT(z) dz
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and
/ 1 !
% JJi( )dz—% 0 5(t)f?(5<t))5/(t) dt
= 1 ' 1-—t¢ I 1—1¢ 1 dt
=2 /| B —1t) - )f((ﬁ( —t)—1))(-7)
2m/ ﬁl—t B(1— t))r dt
P o
+2m O f(5(1 ) dt
B 1 f/ 1 f!
hence
1 I 1 f/ 1 f/
371 o, ST " 3 f“d”% f()dz
! f’

! !
/ f / f 2)dze A
2772 271'2

sinceﬁfﬁfT(z)dz L af( z)dz € Z.

’ 2w

Secondly we show that

n

Zni—ij:% f?(z)dz
j=1

A

=0

Again the first equality is clear, since V,, contains a representative
for every zero and pole of f in C/A.
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The second equality follows from:
1 ! 1 1 /

2mi ), f 271 f
f/

T 2w

m/ Lo
gm/f

(v()'(t) dt

( (1—t)+7)(—1)dt

and
o [ F @ =5k [ L a
27”/ 0 -1 = 1) (=) dt
_% J;/(B(l—t))T dt
=3 BJ}( ) dz
hence

B 1 f/ f/
3t o, F O dz*ﬁ/*@ zm/

27m/f/ 2m/f/

“«<” Now let [a;], [b;] € C/A and n;, m; € N for 1 < i < n and

1 < j < m be such that 33;° n; = 3770 my and 3311 nifa;] =
Z;n 1 m;[b;]. We will construct a meromorphlc function f: C/A —
C with zeros [a;] of order n; and poles [b;] of order m;. We choose

representatives a;, b; € C for [a;] resp. [bj] such that Y | nja; =

>j=1m;b; and define the function

H? 100 (2 —ay)™
H] 105(2 —bj)mi

g:C—=>C;z—
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where 60, is the theta function with characteristic %T + % Obviously
g is a meromorphic function with zeros in a;+ A of order n; and poles
in b+ A of order m;. We have to show that g is doubly-periodic with
respect to A. Therefore we have to show that g(z + \) = g(z) for all
A € A. Tt suffices to show that g(z 4+ 1) = g(2) and g(z + 1) = g(2).

H?:l 05(z +1—a;)" _ H?:l 05(z — a;)™

( [Ii210s(z+1=0;)"  [I[;L, 05(2 —b;)™
and
1, 05(z+7—a)™
9(z+7) = Fm -
Hj:l 05 (z 471 —bj)™
_ Il (eo (T2 — ai)bo (2 — i)™
HT:l(ea(Ta z—b;)05(2 —bj))™
T eolrz —a) TT 6oz — ao)"
[T/2 eo(r 2 = bj)™i TT2, 00 (2 — by)™s
_ ITeo(r 2 —a)™
= H;n_l eg'(T7 2 bj)mj g(Z)
but

[T, exp(—2mi

- H;-nzl exp(—27i(z + o)™
[T, exp(2mia;)™
H?:l eXp(Qﬂ'ibj)mj
exp(—2mi(z + g)) iz
- exp(—2mi(z + 0))23‘"’:1 mj
exp(2mi Y i, nia;)

" exp(2mi Sy myb;)

=1

So g(z+ 1) = g(z) as well. Hence g is doubly periodic w.r.t. A and
the function f : C/A — C with f([z]) = g(z) is well-defined and a
solution.
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Now suppose we are given two meromorphic functions f, g :
C/A — C with zeros [a;] of order n; and poles [b;] of order m;.
Then % has no zeros or poles. Hence it is constant. O

3. WEIERSTRASS p-FUNCTION

Now we want to capitalize on our work above. Therefore we consider
a very special periodic function, the Weierstraf3 p-function.

Definition. The Weierstrafi @ — function is defined to be the
function p : C — C given by

) 1 n 1 1
z)=— —_—— =
v 22 (z=X)2 A2
Proposition 8. (Without proof) ¢ is a A-periodic meromorphic

function with poles of order 2 exactly in A.

The following lemma gives a connection between the Weierstrafl
p-function and our well known theta function with characteristic
1,1
g = 3 + 5’7’ .

Lemma 9. There is a constant ¢ € C such that

plz) = - (Z";)/<z>+c

Note. The quotient Z—:’ isn’t doubly-periodic, but the derivative
Ny
(g—:) is doubly-periodic.
O

To see this consider 5 (z 4+ A) for some A = pr + ¢ € A.
05 © (eo(\2)0(2))" _ ep (A 2)00(2) + ea(, 2)0, ()
Z(z4+A) = =
0 es (N, 2)0,(2) es (A, 2)0,(2)

def exp’ (mi\ — wip?T — 2mip(z 4 0))0,(2) + €5 (A, )0, (2)

N e (A, 2)05(2)

—2mipes (A, 2)05(2) + €0 (A, 2)0 (2)
e (A, 2)05(2)

/ /

= —2mip+ Z—Z(z) # Z—Z(z)

as in general p # 0. From the equation %(z + ) = —2mip + Z—:’(z)

Y
above it follows directly that (S—Z) is doubly-periodic.
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Proof. We know that 6, is holomorphic and has its zeros precisely

in the lattice points A € A. That means that the expansion of g—” in
a Laurent series around 0 looks like

0’ 1
6—”(2) = a,lz +ag 4 a1z + a2z® + azz® + terms of higher order
ag

for some constants a; € C. We can choose a neighborhood U of 0
such that 0 is the only zero of 6, in U. As 0 is a single zero we know

that
9/ /
a_1 = Resg (é) = /a i(z) dz=1

where « : [0,1] — C;t + re?™ for some suitable r. We conclude
9/
0,

and calculate

(2) =—+ap+arz+ as2? + agz® + terms of higher order
z

0\ 1
<90) (z) = 2 + ay + 2az2 + 3azz? + terms of higher order

Ny
If we add p and (g—:) then we obtain

@(Z)Jr(Z:‘;)/(Z): > ((z_l/\)Q—)\lQ>+a1+2agz+3a3z2+...

0#£NEA

Ny
From this sum we see directly that o+ (Z—”) doesn’t have any poles

Ny
in U. Hence p + (%) is holomorphic in a neighborhood of 0 and

thus holomorphic everywhere. As it is in addition doubly-periodic
/ !/
(since g is as well as (Z—") doubly-periodic) we know from our very

first lemma that it must be constant. O

The Weierstra3 p-function satisfies a number of equations and
differential equation. This feature makes the Weierstrafl p-function
to be of interest. The most important differential equation that is
satisfied by the Weierstrafl p-function is the following:

Theorem 10. The Weierstrafl p -function satisfies the differential
equation

2

0 (2)? = e3p(2)® + cap(2)? + c19(2) + co
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where the constants

1 1
03:4762:0,612—602 Fandcoz—léloz 36
0#AEA 0#AEA

depend on the lattice A.
Proof. Consider p(z) — % = D_04NeA (ﬁ - %) This function
is holomorphic in a neighborhood of 0. We can expand the sum-

1 1.
mands m — 3z

z ZQ 23 2'4
= (22435 445 455 4. .
()\+ e the ot )

22 2'3 4

z z
:2F+3F +4F+5F+...
This sum is absolutely convergent for all z € C with |z| < |A[; in
particular in a neighbourhood of 0.
To simplify the big sum from above we define s, := ZO#EA )\n—lﬁ

for n € N. Note that s, = 0 for all odd n € N. We obtain
1
p(2) = = + 2812+ 35922 + 4532% + 5sg2t 4 ...
z
1
= + 35922 + syt + Tse20 . ..

which is true in a neigborhood of 0. With the constants

1 1
cs=4,c0=0,c1=—-60 ) 17 and ¢p = —140 > G

0£AEA 0£XEA
we obtain
1
p(z) = 27 %22 - %24 + terms of higher order
hence
2
p'(z)=—= — A, 934 terms of higher order

z 10 7
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4 21 4
o' (2)* = ot %2—2 + % + terms of higher order
and
1 3¢ 1 3
p(2)% = i 2%)1,?2 - QLSO + terms of higher order
Now consider
f(2) = ¢ (2)" = e3p(2)” — ec1p(2) — o
The series of f has only positive powers of z. Hence f is holomorphic
around 0. Hence it is holomorphic everywhere. And as it is doubly-
periodic, it is constant. But the constant part of the series is %co +
4-23—800—00:0. Hence f = 0. [l
We will mention one more equation that is satisfied by the Weier-

strafl p-function:

Remark. Remember that our lattice A is generated by 1 and 7.

Hence the set of zeros of g’ is given by (% + A)U(% + A) U (HTT + A).

Set e1 1= (3), e2:= 9 (%), e3 := p (14*) € C. Then we have
(9')? = 4p — e1)(p — e2)(p — e3)

and

e1 t+ex+e3=0

€13 + €13 + €2e3 = ch
1
€1€2€3 = 7160

where ¢y and ¢; are the constants from above.

Finally we will see how to use the Weierstrafl p-function to give
a group structure to an elliptic curve.

Remark. If we consider the elliptic curve
C:={(z,y) € C? such that y? = ¢33 + cox® + 1z + co}
for the constants

1 1
cs=4,c0=0,c1=—-60 ) 17 and ¢p = 140 > G
0#£AEA 0#£XEA

from the theorem above then we have a bijection
C/AN\A{0} — C given by z — (p(2), ¢'(2))

In particular we can give the variety C' the group structure of C/A.
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This can be extended to an embedding of C/A into the projective
plane. For more details see the article of M. Khalid [2].
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Rank two Vector Bundles on Elliptic Curves

CIARA DALY

ABSTRACT. The aim of this paper is to give an overview of
rank two vector bundles on an elliptic curve. It also aims to
provide an outline of stability of vector bundles to serve as
a motivation for the study of moduli spaces of vector bun-
dles over elliptic curves. The first section outlines basic def-
initions and theorems. We will then study vector bundles
on P. From here, we go on to classify indecomposable rank
two vector bundles over an elliptic curve. The final section
introduces the notion of stability of vector bundles.

1. INTRODUCTION

Nowadays, vector bundles play an important role in many areas of
mathematics such as algebraic geometry, algebraic topology and dif-
ferential geometry, in the theory of partial differential equations.

The theory of vector bundles and the mathematical formalism
developed over the years, for the study of vector bundle related con-
cepts leads to the clarification or solution of many mathematical
problems. Some of the vector bundle related concepts are general-
isations of well-known classical notions. For instance, the notion of
a section of a vector bundle over a space X is a generalization of a
vector valued function on X.

One of the important problems is the problem of classification
of bundles. The problem of classification of vector bundles over an
elliptic curve (i.e. a nonsingular projective curve of arithmetic genus
one) has been completely solved by Atiyah in [1].

2. PRELIMINARIES

For the purpose of this paper, X will denote a complex manifold,
unless otherwise specified. We will be working over C, the field of
complex numbers, throughout this paper.
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Definition 2.1. A complex vector bundle of rank n is a holomorphic
map p : E — X of complex manifolds which satisfy the following
conditions:
(1) For any point 2 € X, the preimage F, := p~!(z) (called a
fibre) has a structure of an n-dimensional C-vector space.
(2) The mapping p is locally trivial, i.e. for any point z € X,
there exists an open neighbourhood U; containing = and a
biholomorphic map ¢; : p~1(U;) — U; x C™ such that the
diagram

U) 4>U x C"

comimutes.

Moreover, p; takes the vector space E, isomorphically onto {z} x
C™ for each x € U;; ¢; is called a trivialisation of E over U. Note
that for any pair of trivialisations ¢; and ¢;, the map

9ij * U; N ‘/} — GL(n, C)
given by
9i5(x) = i 0 (pjl(ayxcn) "
is holomorphic; the maps g;; are called transition functions for £

relative to the trivialisations ¢;, ;. The transition functions of E
necessarily satisfy the identities

gij () - gji(x) =1 for all x € U; NU;
9ij (z) - gju(x) - gri(x) =1 for all z € U; N U; N Uy.

Conversely, given an open cover {U;} of X and transition func-
tions g;; : U; N U; — GL(n,C), for all ¢,j, then we can define
a vector bundle, E with transition functions g;; using the gluing
construction as follows: We glue U; x C™ together by taking the
union over all i of U; x C" to get E := | |(U; x C")/ ~, where
(x,v) ~ (z,gi;(x)(v)), for all z € U; NU;,v € C™.

A vector bundle of rank 1 is called a line bundle (See [7] Section 5
for more details).
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Example 2.2. The simplest example is known as the trivial vec-
tor bundle of rank n, i.e. pr; : X x C* — X, where pr; denotes
projection to the first factor.

The trivial line bundle on X, i.e. X x C — X will be denoted by
Ox, (or simply O if it is clear which X we are referring to).

Example 2.3. The set O(—1) C P" x C"*! that consists of all pairs
(¢,2) € P"xC"*! with z € / forms in a natural way a line bundle over
P™. To see this, consider the projection p : O(—1) — P™, where p is
the projection to the first factor. Let P" = [J;_, U; be the standard
open covering. A canonical trivialisation of O(—1) over U; is given
by ¢u, 1 pH(U;) 2 U; x C, (¢, 2) — (£ z;). The transition functions
g5 () : (C—)(Careglvenbywl—> -w, where £ = (29 : -+ : zp,).

Definition 2.4. Let p: E — X and p’ : B/ — X be two complex
vector bundles on X. A holomorphic map f : E — E’ is called a
morphism of vector bundles if the diagram

E4>E’

N

commutes and for each point x € X the map flg, : E, — E. is a
homomorphism of vector spaces.

Let E and E’ be vector bundles over X with rank r and r’, re-
spectively and let {U;} be an open cover of X such that E and E’ are
trivial over U; for each 7. A morphism f : E — E’ can be described
locally by holomorphic functions, f;, as follows. For each i, using
trivialisations of E' and E’, f induces maps

UixC = U; xC",  (z,0) = (z, f;(x)v)

where f; : U; — Mat, x,-(C). These holomorphic functions necessar-
ily satisfy

fi(x) - gij(x) = gi;(x) - fj(z) for all x € U; N U;

where g;; and g;; are transition functions of £/ and E', respectively.
Note that a set of functions {f;} defines an isomorphism of vector
bundles if an only if f;(z) are invertible matrices for all ¢ and z.
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Remark 2.5. It is important to note that this definition of a mor-
phism of vector bundles does not make the category of vector bundles
into an abelian category. For instance, if f : F — E’ is a morphism
of vector bundles and the rank of f is non-constant then dim(ker(f..))
jumps and so ker f cannot form a vector bundle. The same would be
true for coker f. On the contrary if dim(ker(f;)) is constant on =,
then both ker f and coker f are vector bundles. This can be shown
locally by a rank argument. It is necessary to use strict morphisms
if an abelian category is required.

Definition 2.6. Let F be a vector bundle on X and let {U;} be an
open cover of X. If the transition functions of E are g;;, then the
dual bundle, E*, of E is given by transition functions

hij(z) :="tg;;(x)~" Ve U;NU;,

Definition 2.7. A sequence of morphisms of vector spaces

0 At Bp_2,¢ 0
is called a short exact sequence if ker g = im f, and if f is injective
and g is surjective.
Definition 2.8. A sequence of morphisms of vector bundles over X
0—FE —F—FE—0
is an exact sequence of vector bundles if
0—E, —E,—E/—0

is an exact sequence of vector spaces for all x € X. The vector
bundle E’ is called a subbundle of E, and E” is called a quotient
bundle of F.

We also say that an exact sequence of vector bundles

0—F —E-—E'"—0

is an extension of E” by E’. In this case F is called an extension of
E" by E.

Definition 2.9. Let U be an open set in X. A holomorphic map
s: U — FE is called a holomorphic section of E over U if pos = idy.
Sections over X are called global sections of E. Global sections can
be added and multiplied with a scalar, so the space of global sections
is in fact a vector space. It will be denoted by H°(X, E).
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Remark 2.10. Let f : E' — FE be a morphism of vector bundles. This
induces a linear map of spaces of sections H°(f) : H(E') — H°(E)
by H(f)(s') = f o .

2.1. Cohomology: Given a short exact sequence of vector bundles
over X

0 o Ry R Ny N
we can take global sections to get an exact sequence

0 —— BOX,E) 2D pgox, gy 9 gox pry ()
in which the last map H%(g) : H°(X,E) — H°(X,E") is not in
general surjective. For a counter example to H°(g) being surjective
see [4] Chapter 8.

Since we get the exact sequence (1) above, we say that the global
section functor is left exact. This global section sequence extends to
a long cohomology exact sequence. For any vector bundle £ on X,
the natural cohomology groups H*(X, E) (also denoted H'(E) if it
is clear which X we are referring to), for all ¢ > 0, can be defined
satisfying the following property. Given a short exact sequence

0—F —E-—E'—0

of vector bundles, there is an induced long exact sequence of coho-
mology groups

0— H'X,E') - H'(X,E) » HY(X,E") - H'(X,E') — -

I will not define these cohomology groups in this paper, except to
note that they exist and are very useful in computations. The di-
mension of H*(X, E) will be denoted h'(X, E). In the case of a curve
X the cohomology groups H'(X, E), vanish for all i > 1, where 1 is
the dimension of X, i.e. only the cohomology groups H°(X, F) and
H'(X, E) are nonzero. (In fact H'(X, E) vanish for all i > dim X
for a more general X than just a curve though we do not need this
fact in this paper. See [4] Chapter 8 for more details).

2.2. Ext groups: If E and E’ are vector bundles over X, we denote
by Homx (E, E’) (or Hom(E, E’) if it is clear which X we are refer-
ring to) the vector space of vector bundle morphisms. For a fixed
E, Hom(E,-) is a left exact covariant functor from the category of
vector bundles to the category of vector spaces, i.e. given a short
exact sequence of vector bundles

0—F —F—F'—0
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we get another exact sequence in which the last map is not surjective
in general

0 —— Hom(E,F') —— Hom(E, F) —— Hom(E, F")
(2)
And so in a similar fashion to the way we defined cohomology
groups H'(E), we can define what are called the Ext groups, which
allow us to extend our short exact sequence (2) to a long exact
sequence as follows:

0 —— Hom(E,F’) —— Hom(E,F) —— Hom(E, F")
— Ext’(E,F') —— Ext'(E,F) ——

We say that Ext’(E, ) are the right derived functors of Hom(E, -). So
in particular we have Ext’(E,-) = Hom(E,-). We have the following
proposition to see the relationship between the cohomology groups
H'® and the Ext groups (for a full proof of this proposition see [5]
Proposition 6.3).

Proposition 2.11. For any vector bundle E on a complex manifold
X we have:

Ext'(Ox, E) = H(E) for alli > 0.

Similarly we have:

Ext'(E,Ox) = HY(E*) for all i > 0.

Proof. Here we will just give a proof of the first statement, where
1 =0. Let f € Hom(O, E), a fibre-wise holomorphic morphism such
that the following diagram commutes

X xC !
X

Let s : X — FE be a holomorphic section of F, i.e. pos = id,. Define
two linear maps

E .

o : Hom(O, E) — H°(E)
and
B: H°(E) — Hom(O, E)

as follows: Define o(f)(z) := f(x,1) and S(s)(z, A) := A - s(x).
We see that S(a(f)) = f as follows:
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Bla(f)(xz,A) = X (a(f)(x)) = X f(z,1) = f(x, ), where the
last equality uses the fact that f is linear on fibres.

Similarly we obtain a(5(s))(z) = B(s)(x, 1) = s(x), so a(B(s)) =
s. Hence a and 3 are inverses of one another and we get

Hom(O, E) = H(E).
O

Remark 2.12. Given a vector bundle E, and given that H°(E) # 0,
then from Proposition 2.11 we know that Hom(O, E) # 0. So we
have f : O — E. We can say that O C F, though here ‘C’ does
not denote a subbundle, but rather a ‘subsheaf’. Vector bundles
can also be described as sheaves (in particular locally free sheaves)
though we have not built up this language in this paper. It suffices
to know that if O C E as a subsheaf then we can extend this to get
a line subbundle M C E on X, a smooth curve (See [9] Chapter 10
for more details). This will be useful in proofs later on.

The notion of a degree of a line bundle on a curve was introduced
in [7] (Section 5). We can extend this definition to vector bundles of
arbitrary rank. To do so we must first define the determinant line
bundle.

Definition 2.13. Given a vector bundle E of rank r, it’s deter-
minant line bundle is defined to be the r-th exterior power of F,
denoted:

det £ := A"E.

where the fibres of X for any x € X are canonically isomorphic to
N Ey.

For those of you who are unfamiliar with exterior power, we can
reformulate the definition as follows: Given an open cover {U;} of
X and a vector bundle E over X with transition functions g;;, the
determinant line bundle of E is given by transition functions h;;
where

hij(x) :=det g;;(z) € GL(1,C), forall x € U;NU;

This now allows us to define the degree of a vector bundle as
follows.

Definition 2.14. The degree deg E € Z of a vector bundle is the
degree of its determinant line bundle det E.
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Remark 2.15. Recall from [7] that the degree of a line bundle is the
degree of it’s associated divisor and every line bundle can be written
as O(D), with D a divisor on X.

If F lies in an exact sequence of vector bundles on X as follows:
0—-FE -E—E" -0
then there is an isomorphism
det B’ @ det B = det E.

Since det £’ and det E” are line bundles we get deg E = deg ' +
deg E” (as in general deg(L ® L') = deg L + deg L', where L and L'
line bundles). In other words, degree is additive on exact sequences.
As a special case, if a vector bundle F = Ly & Ly is the direct sum
of two line bundles L1 and Lo, then we have

0Ly —>FE—Ly—0
with deg F¥ = deg L1 + deg Lo.

Remark 2.16. Let E be a vector bundle of rank r over a complex
manifold X. If we tensor F with a line bundle L, then deg(EF® L) =
deg E +rdeg L. In particular for E of rank 2 we have deg(E® L) =
deg E + 2deg L. To see this let’s look at an example:

Let E = L1 & Ly for line bundles L; and Ls. Tensor this with
another line bundle L to get

EQRL=(L1®L)®L=(L1®L)® (L ® L)
Now
deg(E® L) = deg(L1®L)+deg(La® L)
= deglL; +degL +degLy+deglL
deg Ly +deg Ly + 2deg L
deg '+ 2deg L.

In this way, when considering vector bundles of rank 2, it is enough
to consider vector bundles of degree —1 or 0 (or indeed, any even
and odd degree), then by tensoring with a line bundle of appropriate
degree we get all other degrees. We call this the “tensor product
trick”.

Definition 2.17. An exact sequence of vector bundles

0-F —-E—-E'—0
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splits if and only if there exists a homomorphism f : E” — E for

which the composition E” AN E —— E” is an isomorphism.
In this case, the map f is called a splitting of the sequence.

Now consider, on any curve, a short exact sequence of vector
bundles
E: 0 M—sE ", 0.

By applying Hom(L, —) to this sequence we get the following mor-
phism:

Hom(L, L) —>— Ext!(L, M)

Definition 2.18. The image under the coboundary map ¢ of idy, €
Hom(L, L), which we will denote by

§(idp) € Ext' (L, M) = HY(L* @ M),
is called the eztension class of E.
By exactness of
Hom(L,E) —’— Hom(L,L) —>— Ext!(L, M),

if §(idy) = 0, then there exists a homomorphism f : L — E for
which the idy, = o f : L — L, i.e. the sequence E splits. Moreover,
if E splits, there exists f : L — FE such that id;, = 8o f. Because
the composition, p o d is zero, we have d(id;,) = 0. Hence we have
the following proposition:

Proposition 2.19. The sequence E, i.e.
0—-M-—-FE—L—Q0.

splits if and only if Ext'(L, M) = 0. In particular, if Ext'(L, M) =
HY(L* ® M) =0, then every exact sequence E splits.

Remark 2.20. For each a € Ext'(E”, E') there exists an extension
0—+FE —-E,—E"=0 (3)

with a vector bundle, F,, in such a way that « is the extension class
of (3). Moreoever, E, = Eg if and only if there exists A € C* such
that a = A\S. (See [10] Section 3.4 for more details)
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2.3. Riemann—Roch Formula for Curves. We have a very useful
tool, called the Riemann—Roch formula, which tells us a lot about the
cohomology groups of a vector bundle E, H°(E) and H!(E), once
we know the rank and degree of E. The Riemann—Roch formula is
as follows: If E is a vector bundle of rank r on a curve of genus g,
then:
hY(E) — hY(E) = deg E — r(g — 1).

In addition to the Riemann-Roch formula, one of the other major
tools we have in dealing with cohomology is Serre duality. The fol-
lowing proposition outlines Serre duality, though will not be proved
as the proof is too involved for this paper.

Proposition 2.21. (Serre duality) Let X be a smooth projective
curve. Let E be a vector bundle on X. Let Kx be a canonical line
bundle on X. Then there are canonical isomorphisms

HY(X,E)= HY(X,Kx ® E*)*.
and

HY(X,FE) =~ H°(X,Kx ® E*)*.
In particular it follows that H*(X, E) and H*(X, Kx ® E*) have the
same dimension.

While I have not defined Ky, the canonical line bundle, for the
purpose of this paper it will suffice to know what Kx is in the case
of a curve. This is outlined below:

X=P': Kx=0p(-2), deg(Kx)=-2
X =elliptic curve : Kx =0Ox, deg(Kx)=0
X =curve of genus g > 2:  deg(Kx) =29 — 2.
Refer to [5] Section II1.7 for more details on Serre duality.

Lemma 2.22. Let L be a line bundle on a curve, C, of genus g.
Then we have the following:

(a) H(L) =0 if deg L < 0.

(b) HY(L) = 0 if deg L > 2g — 2.

(¢c) L= O ifdegL =0 and s € H(L),s # 0.

The proof of (a) and (c) of the lemma above uses the correspon-
dence between line bundles and divisors (see again [7]) and the fact
that the divisor defined by a nonzero holomorphic section of a line
bundle is always positive. The proof of (b) follows from Serre duality
and part (a).
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Lemma 2.23. If F is a vector bundle on a curve C of genus g, then
the degree of its subbundles F' C E is bounded above.
Proof. ([9], Corollary 10.9) Since the global sections functor is left
exact, we get
H°(F) c H'(E)
This implies that h°(F) < h(E). Now by Riemann-Roch we know
RO(F) — h*(F) = deg(F) + 1k(F) - (1 — g).
From this we get
deg(F) + 1k(F) - (1 - g) + h'(F) < h°(B)
and by rearranging we have
deg(F) < h%(E) — tk(F) - (1 — g) — h*(F)

Now if g = 1, we see that deg(F) < h%(E) — h'(F) and since
h'(F) > 0, we get deg(F) < h%(E).

If g = 0, then deg(F) < h°(E)—rk(F)—h'(F) and since rk(F) > 0
and h'(F) > 0, we see that deg(F) < h°(E )

It g > 2, deg(F) < h(E)+1k(F)-(g—1)— h! (F) < hO(E)+1k(E)-
(g—1)— hl(F) (since tk(F) < rk(E)). Again, since h'(F) > 0, we
get deg(F) < h°(E) +1k(E) - (g —1). Hence we see that in any case
the degree of F' C E' is bounded above. O

3. VECTOR BUNDLES ON P!

Before we move on to vector bundles on an elliptic curve (i.e. a curve
of genus one), it makes sense to look at vector bundles on a curve of
genus zero (P'). Let us now restate Lemma 2.22 in the case of P!,
where genus g = 0, to see how the cohomology of line bundles on P!
is particularly simple.
Lemma 3.1. Let L be a line bundle on P*. Then we have the
following:

(a) H(L) =0 if deg L < —1.

(b) H*(L) = 0 if deg L > —1.

By Riemann-Roch we also have,

RO(L) — h*(L) = deg L + 1.

Remark 3.2. We have seen from [7] that for L a line bundle, L* is
the inverse of the line bundle L in the Picard group. We have also
seen that deg : Pic X — Z is a homomorphism (where Pic X denotes
the set of line bundles over X') and so we get deg L* = — deg L.
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Lemma 3.3. The homomorphism deg : PicP' — Z is an isomor-
phism.

Proof. See [4] Lemma 6.2.11. O
We have a classification for all vector bundles on P! as follows:

Lemma 3.4. Fvery rank 2 vector bundle on P! is isomorphic to a
direct sum of two line bundles

Proof. ([9], Lemma 10.30) Let E be a rank 2 vector bundle on P*.
Tensoring with a line bundle if necessary, it is enough to assume
that degE = 0 or —1. First, by the Riemann-Roch formula we
note that H(E) # 0, and so from Remark 2.12 above we get a line
bundle M C E, and M = O(D) for some positive divisor D > 0. In
particular, deg M > 0, and denoting the quotient by L := E/M, we
have an exact sequence

O—-M-—FE—L—O0.

Now deg E = deg L +deg M, hence deg(L*®@ M) = deg M —deg L =
—deg E' + 2deg M > —degFE > 0. From Lemma 3.1 (b), we get
HY(L* ® M) = 0. By Proposition 2.19, therefore, the sequence
splits. O

Grothendieck’s Theorem 3.5. Every vector bundle on P! is iso-
morphic to a direct sum of line bundles.
Proof.  (]9] Theorem 10.31) Let E be a vector bundle of rank r
on P!. Proof is by induction on the rank r > 2 of E, starting with
the previous lemma. Serre’s Theorem ([5] I1.5.17) tells us that there
exists a line subbundle in E. Now let M C E be the line subbundle
whose degree, m = deg M, is maximal among line subbundles of F
(Lemma 2.23). Let F := E/M be a vector bundle of rank r — 1.
Claim: Every line subbundle L C F has deg L < m.
Now we have a short exact sequence as follows:

O—-M-—->F—F—0

By considering the preimage L C E of L under the quotient mor-
phism F — F we get a diagram as follows:

0 M E F 0
0 M L L 0
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Clearly L is a rank 2 vector bundle, and we see degi =m +deg L.
By Lemma 3.4, we know L = L[, @ Ly for some line bundles L;
and Ly. Now deg(L) = deg(L1) + deg(Ls) so one of Ly or Ly must
have deg at least deg(L)/2. Let N denote that line subbundle, of
degree at least deg [N// 2. Because N is a subbundle of F, as well as
our choice of M we get m > deg N > (degL)/2 = % and the
claim follows easily from this.

By the inductive hypothesis, we know the quotient bundle F is
isomorphic to a direct sum F = L1 & --- & L,_1 of line bundles and
the claim gives us deg L; < m. Since H*(L} ® M) = 0 for each i. It
follows that the exact sequence

r—1
OHM%E%@IQHO

=1

splits. O

Definition 3.6. A vector bundle, FE, is called decomposable if it is
isomorphic to the direct sum E; @ E» of two nonzero vector bundles;
otherwise, E is called indecomposable.

By definition of decomposability, every vector bundle is the direct
sum of indecomposable ones. Therefore, it suffices to know the inde-
composable vector bundles on a curve in order to know them all. We
have seen that all vector bundles on rational curves are the direct
sum of line bundles. As well as the notion of an indecomposable
vector bundle, we also have the notion of a simple vector bundle.

Definition 3.7. A vector bundle F is simple if its only endomor-
phisms are scalars, End E' = C. Every line bundle is simple.

A simple vector bundle is necessarily indecomposable. To see
this let us start with a decomposable vector bundle £ & F. Consider
f:E®F — EQF, where f = idg ®0p where idg is the identity map
on E and Of is the zero map on F. Clearly then End(E @ F) # C,
i.e., F is not simple.

Note that the converse is not true, i.e. an indecomposable vector
bundle is not necessarily simple (This can be seen by a counterex-
ample, Example 4.4 below).
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4. CLASSIFICATION OF ALL INDECOMPOSABLE RANK TWO
VECTOR BUNDLES ON AN ErripTiC CURVE C

We are now ready to look at the case of a nonsingular curve of arith-
metic genus one (i.e. an elliptic curve). Atiyah’s paper of 1957 ([1])
provided us with an answer to this case. We have already seen in
Lemma 3.3 that there is exactly one line bundle on P! for every de-
gree. In particular Pic’(P') = {O}, where Pic’(P') denotes the set
of line bundles of degree 0 on P!. However it turns out ([7] Theo-
rem 20) on an elliptic curve, C, that Pic’(C) is in bijection to C' and
so on elliptic curves there are more vector bundles in the sense that
nontrivial extensions appear. For the purpose of this paper we will
be concentrating on rank 2 vector bundles on an elliptic curve. In
this section we will give a classification of all indecomposable rank 2
vector bundles on the elliptic curve C.

First let me return to the Riemann—Roch formula for a vector
bundle E, this time looking at a curve of genus 1, i.e.

hY(E) — h'(E) = deg E
Note that every line bundle, L, on C' satisfies:
h°(L) — h'(L) = deg L
The next lemma follows from the above equation and Lemma 2.22:

Lemma 4.1. Let L be a line bundle on an elliptic curve. Then we
have the following:

(a) H(L) =0 if deg L < 0.

(b) HY(L) = 0 if deg L > 0.

(c) Ifdeg L =0 and L % O, then H°(L) = H'(L) = 0.

Lemma 4.2. If E is an indecomposable vector bundle of rank 2
on a smooth projective curve, X, then every line subbundle L C E
satisfies

2degL < degE +2g—2

Proof. Let M be the quotient line bundle E/L. This gives us the
following short exact sequence:

O—-L—F—>M-—0

which corresponds to an element in Ext'(M,L) = H'(M* ® L).
Now since F is indecomposable, this sequence cannot split and hence
H(M*® L) # 0 by Proposition 2.19. By Serre duality, this implies
that 0 # HY(M*® L)*®@ Kx)* = H(M ® L* ® Kx)*. This in turn
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implies that deg(M ® L* ® Kx) = deg M —deg L +2g — 2 > 0 from
Lemma 2.22 (a). Now from the short exact sequence above we know
that deg E' = deg M + deg L, i.e. deg M = deg F — deg L. Hence we
get

degE —degL —degL+2g—22>0

From this, we get the inequality in the lemma. O

Let £(r,d) denote the set of isomorphism classes of indecompos-
able vector bundles of rank r and degree d over X, an elliptic curve.

Theorem 4.3. (a) There exists a vector bundle E, € E(r,0), unique
up to isomorphism, with H°(E,) # 0. Moreover, we have an exact
sequence:

0-0Ox ~FE,—FE._1—0
(b) Let E € E(r,0), then E =2 E, @ L, where L is a line bundle of
degree zero, unique up to isomorphism.

Proof. See [1] Theorem 5. O

Example 4.4. The bundles E,. of Theorem 4.3 are sometimes called
the Atiyah bundles. For r > 2, they are examples of indecomposable
vector bundles which are not simple. Let us prove now that Fs is
not simple.

We know Fj sits in an exact sequence as follows:

0 Oy -1~ B, Ox 0

Applying Hom(—, E3) to this sequence, we get

0 — Hom(O, E3) — Hom(E>, E3) LN Hom(O, E)

Now Hom(O, Ey) = H°(E,) from Proposition 2.11. From our as-
sumption on Fa, we know HY(Ey) # 0, i.e. h°(E;) > 1. Now let
idg, denote id € Hom(Es, E2). We know, under the morphism g,
that idg, — f € Hom(O, E) # 0, i.e. B(idg,) = f # 0. This
implies 8 # 0. So we get the following short exact sequence:

0 — Hom(O, E3) — Hom(Es, E) — im(8) — 0
Since 8 # 0, we know that dim(im(8)) > 1. Now since dim is addi-
tive on exact sequences, dim(Hom(Fs, Es)) = dim(Hom(O, Es)) +

dim(im(5)) > 2. Hence by the definition of a simple vector bundle
(Definition 3.7), we know that Es is not simple.
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Let us now classify all indecomposable rank 2 vector bundles on
an elliptic curve. We first consider the case of even degree.

Proposition 4.5. On a curve, C, of genus 1 every indecomposable
rank 2 vector bundle, E, of even degree is an extension of the form

O—M-—F—M-—70

for some line bundle M on E

Proof. (][9] Proposition 10.48) Using the tensor product trick, it is
enough to consider the case where deg E = 2k. If M; € Pic*(C),
i.e. M is a line bundle of degree k, then E ® M; is of degree 0.
In other words, E ® M; € £(r,0). By Theorem 4.3, we know that
there exists My € PicO(C’) such that £ ® M| & Es ® M, where Es
is the so-called Atiyah bundle from Theorem 4.3. Then Ej sits in a
non-split exact sequence as follows

0—0c — Ey = Oc — 0.

If M := Ma®M;, we obtain £ = E,® M and tensoring this sequence
by M, gives a short exact sequence

O—-M-—FE—M-—D0.

The following proposition contains the odd degree case.

Proposition 4.6. On a curve, C, of genus 1, given a line bundle
L of odd degree, there exists, up to isomorphism, a unique indecom-
posable rank 2 vector bundle E with det E = L.

We refer to [9] Proposition 10.47 for the proof.

Theorem 4.7. For each integer n, there is a one-to-one correspon-
dence between the set of isomorphism classes of indecomposable vec-
tor bundles of rank 2 and degree n on the elliptic curve C, and the
set of points on C.

Sketch of correspondence We will denote by Pic™(C), the set of
degree n line bundles on C. Recall from [7], Theorem 20, that there is
an isomorphism of manifolds C' = Pic’(C) and in fact ([7], Theorem
21) there is an isomorphism C 2= Pic"(C) for all n € Z.

Now let E be an indecomposable rank 2 vector bundle of degree
n on C. If n is odd, from Proposition 4.6, we know that there is
a unique indecomposable rank 2 vector bundle E of degree n, with
det E = L. Hence use Pic"(C) = C' to obtain the result.
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If n is even from Theorem 4.3 we know there exists, L, a line
bundle of degree zero, unique up to isomorphism such that £ ® L is
isomorphic to the unique nontrivial extenstion of O by O¢. Since
Pic’(C) = C again we obtain the result.

5. STABILITY

The notion of stability comes from the theory of moduli spaces. The
variety, Pic’(C) with the Poincaré bundle, of degree 0 line bundles
on an elliptic curve (See [7] Section 6) is an example of a mod-
uli space. Loosely described a moduli space is an algebraic variety
which parametrises the set of equivalence classes of some objects.
For example we could consider the moduli space of rank two vector
bundles on an elliptic curve, C. It turns out that the set of isomor-
phism classes of vector bundles of rank 2 and degree d on an elliptic
curve is unbounded (briefly, this means that we can find families of
arbitrarily high dimension which gives us vector bundles of rank 2
and degree d. See [6] Chapter 1), which poses a problem when con-
structing the corresponding moduli space. To overcome this problem
we restrict our study of vector bundles. One form of restriction is to
study ‘stable’ vector bundles. Using stable bundles, one to construct
the moduli space of (stable) vector bundles of rank 2 and degree d
on C.

We will begin by giving a more explicit definition of a subbundle
and quotient vector bundle.

Definition 5.1. Let F and E be vector bundles of rank r and n
respectively, with » < n and F C F is a submanifold. Then, F
is called a subbundle of E if there exists an open covering {U;} and
transition functions g;; : U;NU; — GL(r, C) for F and h;; : U;NU; —
GL(n,C) for E such that

hij(x) = ( gijo(x) fij?z) ) .

The quotient bundle G = E/F is described by transition functions
Jij-

Now we are ready to define the stability of a vector bundle.
Definition 5.2. A vector bundle, E on a curve, is stable (resp.
semi-stable) if every nonzero vector subbundle F' C E satisfies

deg F' < deg B
rk F' rk B

(resp. <).



130 CIARA DALY

(Or equivalently, we can also say that a vector bundle E is stable

. i deg G deg B
(resp. semi-stable) if <32~ s

quotient G of E).

(resp. >) for every non-zero

From this definition we can see that a vector bundle E of rk 2 is
stable (resp. semi-stable) if every line subbundle F' C E satisfies

1
deg ' < 3 degE (resp. <).
We call the rational number (ﬁgg the slope of E. The picture below
illustrates the reason for this name.

deg

rank
The definition of stability above is often referred to as slope-stability.

Lemma 5.3. Let E be a vector bundle of rank 2. If deg E is odd,
then stability and semi-stability are equivalent.

Proof. Clearly if E is stable, then E is semi-stable. For the other
direction, we assume FE is semi-stable with degree n. Now let F' C E
be a nonzero subbundle of £/, so deg F' < 7. Since deg F is an integer,

deg F' # 5 as n is odd. Hence deg F' < 3, i.e. E is stable. O
Lemma 5.4. If Fy1 and Es are semi-stable , and driggll > drigEb;Q,

then Hom(E;, E2) =0

Proof. Let f : E; — E5 be amorphism, and let F' C E5 be it’s image.

Since Eo is semi-stable, if F' # 0, then drig; < drigEE;. But F; is
semi-stable and F is a quotient of E7, and therefore dr‘igilfll < drig; ,

a contradiction unless F' = 0. O

5.1. Jordan—Holder Filtrations. Consider a rational number pu
and let C'(u) denote the category of semi-stable vector bundles of
slope p. This turns out to be an abelian category (See [8] Chapter 5
for more details). This allows us to define Jordan-Holder filtrations
for each semi-stable bundle: these filtrations are important in order
to understand the points of the moduli space of stable vector bundles
of rank 2 and degree d (or indeed any fixed rank and degree).



RANK TWO VECTOR BUNDLES ON ELLIPTIC CURVES 131

Definition 5.5. Let F be a semi-stable vector bundle of slope u. A
Jordan—Holder filtration of E is a filtration of vector subbundles

OCEiCE,C---CE,=F

in C'(u) such that the quotient gr; = E;/E;_1 is a stable bundle in
C(p). The integer k is called the length of the filtration and the
direct sum P, gr; is called the associated grading.

Let us now see how to get such a filtration. Consider first if £
is stable, i.e. VE; C E, u(E;) < u(E). In this case, the filtration is
clear. Namely

0OCEi=F

Now we consider when FE is strictly semi-stable, then there exists
subbundles in C(y) and one of these, Ej must be stable. If not then
we can construct an infinite descending sequence of subbundles in
C(p) in which the rank strictly decreases but this is impossible as
the rank of nonzero subbundles of E is bounded below by 1. So
E/E; is also in C(p) and we can continue the construction until we
obtain our filtration as above.

5.2. Harder-Narasimhan Filtrations.

Lemma 5.6. (a) Let d,d',r,r' € Z with r,r’ > 0.

(i) If & > ff—:, then ¢ > fif: > f—:.

(ii) ]fg:fi—yd,: orf—::‘rji—f: then%:f—:.
(b) Let 0 - E' — E — E” — 0 be a short exact sequence of nonzero
vector bundles on X.

(i) If X € R such that u(E') < X and pu(E") < X, then u(E) < A.

(i) If W(E') = p(E) or pu(E) = u(E") then p(E') = u(E").

(¢c) If0 = Ey C Ey C E5 C --- C E, = E is a filtration by
subbundles of E such that w(E;/E;—1) < X foralli=1,... ,n:
(i) then p(E;) < A for alli=1,...,n. In particular, p(E) < A.
(i) If, for at least one i, we have w(E;/E;_1) < A, then u(E) < A.

Proof. (a) The proof of this is a simple calculation.
(b) Because of the fact that rk(E) = rk(E’)+rk(E") and deg(F) =
deg(E’) + deg(E"), this follows immediately from (a).
(c) This follows from (b) using exact sequences
0—-F,_1—>F — Ei/Ei—l —0

foralli=2,...n. O
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Each vector bundle admits a canonical increasing filtration whose
successive quotients are semi-stable. This allows us to classify bun-
dles which are not semi-stable in terms of semi-stable bundles.

Proposition 5.7. Let E be a vector bundle on a curve X. Then E
has an increasing filtration by vector subbundles

O=FEyCFEiCEy,C---CE,=F

where the quotient gr, = E;/E;_1 satisfies the following conditions:

(1) the quotient gr; is semi-stable;

(2) p(gr;) > plgripq) fori=1,--- k—1.
Proof. ([8] Proposition 5.4.2) If E is already semi-stable then the
result is trivial. Assume, therefore that F is not semi-stable. We
will prove this by induction on the rank of E. If tk(E) = 1, then
the result is trivial as all line bundles are automatically stable. Now
assume rk(E) > 2. We know, from Lemma 2.23, that the degree
of all subbundles of E is bounded above. On the other hand, sub-
bundles can only have ranks 1,2,...,rk(F) — 1, hence the slope of
the subbundles of F is bounded above. Among all the subbundles
of maximal slope, let F; be the one of maximal rank. Then Fj is
semi-stable because it has maximal slope. Let E' = F/F;, then we
have the following short exact sequence:

0—-FE —-E—-F =0

where rk(E') < rk(E).
By inductive assumption E’ has an increasing filtration satisfying
the conditions of the proposition, i.e.

0OCF,CFsC---CF,=F
with
p(F2) > p(Fs/Fo) > -+ > p(Fy/Fi_1)
and F;/F;_; is semi-stable for 2 < j < k. In particular, F; is semi-
stable.

Let E; C E be the preimage of F; C E' under E — E’. This way
we obtain commutative diagrams with exact rows:

0 Eq
Ey

Ej Fijta 0

0 j j 0.
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Hence E;11/E; = F;;1/F; are semi-stable.

Now we need to prove u(Fs) < p(Er), in order to show condi-
tion 2 holds. Since E; has maximal slope, u(FE2) < p(E7). More-
over, since F; has maximal rank among the subbundles with slope
w(Er), u(Es) < p(Ep). From the diagram above we know that

deg(F») = deg(E») — deg(E1) and rk(F,) = rk(E>) — rk(E1). So
we know p(Fy) = SEESEESY

rk(EzlﬁggZ;:tggg”(El). Then we have

rk(Ep)u(Es) — rh(Ey)p(Er) _ rk(Ep)p(Er) — rk(Ey)pu(E1)
rk(Es) — tk(E}) rk(Es) — rk(E)
ie. p(Fr) < w(Ey). Now since Ey/FE; = Fy, we have pu(E;) >
u(Es/Ey). We can the repeat the process until we obtain a quotient
E/Ej_; which is semi-stable. O

. We can also write this as u(Fz) =

Lemma 5.8. If
0=FEyCE,C---CFE,=F

is a filtration of E satisfying the conditions of Proposition 5.7 above
and E' C E is a nontrivial subbundle of E then pu(E') < u(E1) and
if W(E') = u(E4), then E' C Ey.

Proof. We define a filtration of E' by E! := E' N E; for all ¢ =
1,...,n. Because E] = E; N Ej ;| we obtain E; ,/E; C E;;1/E; for
i=1,...,n— 1. Now since F;;1/F; is semi-stable, we have either
B /E]) < pw(Eip1/E;) or B, = Ej. Because pu(Ejp1/E;) <
w(Ey) for ¢ = 1,2,...,n — 1, we obtain from Lemma 5.6 (c¢) that
w(E') < p(Ey). Now if i > 1 and Ej,; # Ej then p(Ej, /E;j) <
w(Eiy1/E;) < p(Eq). Hence by Lemma 5.6 (c) again, if u(E")
w(E1) we must have Ej | = Ej for i = 1,2,...,n — 1, i.e. E
E.

on

Proposition 5.9. This filtration of Proposition 5.7 is unique.
Proof. ([8], Proposition 5.4.2) Assume (E;)i=1,....n, and (F};)j=1,..m
are two filtrations of E satisfying the conditions of Proposition 5.7
above. Now using the notation of Lemma 5.8 if we let £/ := F;
we get p(Fy) < w(Fp). Similarly if we allow E' := Fj, we get
w(Eq) < p(Fy). Clearly then, u(Fy) = p(Eq).

Lemma 5.8 again implies £; C F; and F} C Eq, hence F; = Fj.
Using E/E; and F/F; we can proceed by induction as in the proof
of Proposition 5.7 to conclude that the filtration is unique. [l
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The filtration of Proposition 5.7 is called the Harder-Narasimhan
filtration of E.

6. CONCLUSION

In conclusion, it is fair to say that the theory of vector bundles is
vast and indeed very interesting. We have seen how vector bundles
on P! are not very complex, in the sense that they can be written as
a direct sum of line bundles. We have also seen a classification for
indecomposable rank 2 vector bundles on elliptic curves.

One could also go on to study higher rank vector bundles on
elliptic curves or on curves of a higher genus, or even on higher
dimensional complex manifolds. These are all very interesting in
their own right.

In Section 5, we studied slope stability for vector bundles on
curves. As was mentioned, stable bundles are required when con-
structing moduli spaces of vector bundles. For the reader interested
in stability, from here you could go on to study Bridgeland stability
conditions ([2] and [3]) and the space of all stability conditions on a
particular complex manifold (e.g., an elliptic curve).
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Ireland’s Participation in the 48th International
Mathematical Olympiad

JIM CRUICKSHANK

1. TEAM SELECTION AND PREPARATION

The 48th International Mathematical Olympiad (IMO) took place in
Vietnam from the 19-31 July, 2007. Ireland has been a participant
in the IMO since 1989 and, as usual, this year a team of six second
level students was selected to represent Ireland at this prestigious
mathematical event. These students were selected by means of their
performance in the Irish Mathematical Olympiad which took place
on May 12. In that competition, the top six students were (in order)

1. Stephen Dolan (Coldiste Cholmecille, Ballyshannon,

Co. Donegal).

Galin Ganchev (Castletroy College, Limerick).

Derek O’Brien (Wesley College, Dublin 16).

Jamie Judd (St. Gerard’s School, Thornhill Road, Bray).

Yuecong Wang (Mount Anville Secondary School, Dublin

14).

6. Kate McCutcheon (Mount Mercy College, Model Farm Road,
Cork).

As the best student in the Irish Mathematical Olympiad, Stephen
Dolan was awarded the Fergus Gaines trophy. These six students
would travel to Vietnam, accompanied by team leader Dr. James
Cruickshank (NUIG), deputy leader Dr. Gordon Lessells (UL) and
observer Dr. Mark Dukes (UCD).

The team convened, as has become customary, for a pre IMO
training camp in UL in the week before they travelled to Vietnam.
Special recognition must go to Gordon Lessells, who once again did
a superb job of organising this training camp.

U W
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2. JURY MEETINGS AND PROBLEM SELECTION

The IMO jury consists of all of the team leaders and is the primary
decision making body for all IMO related matters. The jury con-
vened on July 20, with the purpose of selecting the six contest prob-
lems from a shortlist of thirty. The Irish observer was also present
at the jury meetings, although observers are not permitted to vote
on any of the motions put before the jury.

It is normal for the jury meetings to take place at a venue that
is far removed from the actual contest venue. This year the jury
meetings took place in the spectacular setting of Halong Bay (a
three hour bus journey from Hanoi). Due to Vietnamese government
regulations, IMO participants were initially not permitted to leave
the hotel during the pre contest jury meetings, unless accompanied
by a military escort. This led to some frustration among the leaders
and observers and following several appeals to the organisers, these
restrictions were relaxed after a couple of days.

The selection process (long established by tradition) is usually a
long (and some might say torturous) discussion of the various short-
listed problems. As usual there were a large number of exceptionally
difficult problems, and not quite so many of the easy variety. Easy
is of course a relative term in this context, as even the easiest IMO
problem is far beyond the capabilities of a typical Irish second level
student.

After two days of jury meetings the following six problems were
chosen.

First Day
Problem 1. Real numbers ai,as,...,a, are given. For each i
(1 <i < n) define
d; =max{a; : 1 <j<i}—min{a;:1<j<n}
and let
d=max{d; : 1 <i<n}.
(a) Prove that, for any real numbers 27 < 29 < -+ < @,

d
max{|xi—ai|:1§i§n}2§. (1)
(b) Show that there are real numbers 27 < 29 < --- <z, such
that equality holds in (1).
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Problem 2. Consider five points A, B, C', D and E such that
ABCD is a parallelogram and BCED is a cyclic quadrilateral. Let
[ be a line passing through A. Suppose that [ intersects the interior
of the segment DC' at F' and intersects line BC' at G. Suppose also
that EF = EG = EC. Prove that [ is the bisector of angle DAB.

Problem 3. In a mathematical competition some competitors are
friends. Friendship is always mutual. Call a group of competitors a
clique if each two of them are friends. (In particular, any group of
fewer than two competitors is a clique.) The number of members of
a clique is called its size. Given that, in this competition, the largest
size of a clique is even, prove that the competitors can be arranged
in two rooms such that the largest size of a clique contained in one
room is the same as the largest size of a clique contained in the other
room.

Second Day

Problem 4. In triangle ABC' the bisector of angle BC' A inter-
sects the circumcircle again at R, the perpendicular bisector of BC
at P, and the perpendicular bisector of AC at (). The midpoint of
BC is K and the midpoint of AC is L. Prove that the triangles
RPK and RQL have the same area.

Problem 5. Let a and b be positive integers. Show that if 4ab—1
divides (4a® — 1)2, then a = b.

Problem 6. Let n be a positive integer. Consider
S={(z,y,2) : 2,y,2€{0,1,... ,n},z+y+ 2z >0}

as a set of (n+1)3 — 1 points in three dimensional space. Determine
the smallest possible number of planes, the union of which contains
S but does not contain (0,0, 0).

The contestants had 4.5 hours to complete each paper. It is worth
noting that many of the jury expressed concerns over the extreme
difficulty of Problem 6. One very respected jury member expressed
his belief that no contestants would be able to solve this problem.
However, it was eventually decided to include this problem, partly
on the grounds that it is an exceptionally beautiful problem. In the
event, five contestants attained perfect scores on this problem. Two
of the contestants found an ingenious and short solution, which had
eluded the combined efforts over several days of the 93 jury members
and the problem selection committee.
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3. CONTEST AND COORDINATION

The Irish contestants travelled to Vietnam on July 23 and attended
the official opening ceremony the following day. They were accom-
panied by the deputy leader, Dr. Gordon Lessells. The contest was
scheduled to take place in Hanoi on July 25 and 26. A total of 520
contestants from 93 countries took part, making this the largest IMO
yet.

At the IMO, marking is called coordination and is a very rigorous
procedure that takes place during the two days immediately follow-
ing the contest. Extremely detailed marking schemes are prepared
for each problem and students papers are marked independently by
their own delegation (leader, deputy and observer) and by the local
organisers. These two groups then meet and agree on an integer
mark between 0 and 7 for each attempted solution. Thus a perfect
score in the IMO is 42 (a rare and noteworthy achievement).

This year the Irish contestants performed exceptionally well. The
following table details the score achieved by each contestant on each
problem.

P1 P2 P3 P4 P5 P6 Total
Stephen Dolan 7 0 0 7 0 O 14
Galin Ganchev 0 2 0 7 1 0 10
Derek O’Brien 2 1 0 1 0 0 4
Jamie Judd 31 0 7 0 0 11
Yuecong Wang 0 1 0o 7 0 O 8
Katherine McCutcheon | 0 1 0 3 0 0 4

The bronze medal cutoff was 14 or higher. Accordingly, Stephen
Dolan was awarded a bronze medal. Any student who does not
achieve medal status, but who has recorded a perfect score on a prob-
lem is awarded an honourable mention. Thus, Galin Ganchev, Jamie
Judd and Yuecong Wang obtained honourable mentions. Stephen is
only the sixth Irish contestant to win a medal at the IMO. The
total score of 51 is a very creditable score for an Irish team, and
Ireland ranked 63rd among all participating nations. This is quite
good, given that we have such a small population. Full details
of all scores and awards can be found the official IMO website:
http://www.imo-official.org/

The closing ceremony of the 48th International Mathematical
Olympiad took place in Hanoi on July 30. The Spanish delegation
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gave a presentation on the 2008 IMO which is due to take place in
Madrid from July 10-22.
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