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Rank two Vector Bundles on Elliptic Curves

CIARA DALY

Abstract. The aim of this paper is to give an overview of

rank two vector bundles on an elliptic curve. It also aims to
provide an outline of stability of vector bundles to serve as

a motivation for the study of moduli spaces of vector bun-
dles over elliptic curves. The first section outlines basic def-

initions and theorems. We will then study vector bundles
on P1. From here, we go on to classify indecomposable rank
two vector bundles over an elliptic curve. The final section

introduces the notion of stability of vector bundles.

1. Introduction

Nowadays, vector bundles play an important role in many areas of
mathematics such as algebraic geometry, algebraic topology and dif-
ferential geometry, in the theory of partial differential equations.

The theory of vector bundles and the mathematical formalism
developed over the years, for the study of vector bundle related con-
cepts leads to the clarification or solution of many mathematical
problems. Some of the vector bundle related concepts are general-
isations of well-known classical notions. For instance, the notion of
a section of a vector bundle over a space X is a generalization of a
vector valued function on X.

One of the important problems is the problem of classification
of bundles. The problem of classification of vector bundles over an
elliptic curve (i.e. a nonsingular projective curve of arithmetic genus
one) has been completely solved by Atiyah in [1].

2. Preliminaries

For the purpose of this paper, X will denote a complex manifold,
unless otherwise specified. We will be working over C, the field of
complex numbers, throughout this paper.
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Definition 2.1. A complex vector bundle of rank n is a holomorphic
map p : E → X of complex manifolds which satisfy the following
conditions:

(1) For any point x ∈ X, the preimage Ex := p−1(x) (called a
fibre) has a structure of an n-dimensional C-vector space.

(2) The mapping p is locally trivial, i.e. for any point x ∈ X,
there exists an open neighbourhood Ui containing x and a
biholomorphic map ϕi : p−1(Ui) → Ui × Cn such that the
diagram

p−1(Ui)
ϕi //

p
##G

GG
GG

GG
GG

Ui × Cn

pr1
{{wwwwwwwww

Ui

commutes.
Moreover, ϕi takes the vector space Ex isomorphically onto {x}×

Cn for each x ∈ Ui; ϕi is called a trivialisation of E over U . Note
that for any pair of trivialisations ϕi and ϕj , the map

gij : Ui ∩ Vj → GL(n, C)

given by

gij(x) = ϕi ◦ (ϕj |{x}×Cn)−1

is holomorphic; the maps gij are called transition functions for E
relative to the trivialisations ϕi, ϕj . The transition functions of E
necessarily satisfy the identities

gij(x) · gji(x) = I for all x ∈ Ui ∩ Uj

gij(x) · gjk(x) · gki(x) = I for all x ∈ Ui ∩ Uj ∩ Uk.

Conversely, given an open cover {Ui} of X and transition func-
tions gij : Ui ∩ Uj → GL(n, C), for all i, j, then we can define
a vector bundle, E with transition functions gij using the gluing
construction as follows: We glue Ui × Cn together by taking the
union over all i of Ui × Cn to get E :=

⊔
(Ui × Cn)/ ∼, where

(x, v) ∼ (x, gij(x)(v)), for all x ∈ Ui ∩ Uj , v ∈ Cn.
A vector bundle of rank 1 is called a line bundle (See [7] Section 5

for more details).
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Example 2.2. The simplest example is known as the trivial vec-
tor bundle of rank n, i.e. pr1 : X × Cn → X, where pr1 denotes
projection to the first factor.

The trivial line bundle on X, i.e. X ×C → X will be denoted by
OX , (or simply O if it is clear which X we are referring to).

Example 2.3. The set O(−1) ⊂ Pn×Cn+1 that consists of all pairs
(`, z) ∈ Pn×Cn+1 with z ∈ ` forms in a natural way a line bundle over
Pn. To see this, consider the projection p : O(−1) → Pn, where p is
the projection to the first factor. Let Pn =

⋃n
i=0 Ui be the standard

open covering. A canonical trivialisation of O(−1) over Ui is given
by ϕUi : p−1(Ui) ∼= Ui × C, (`, z) 7→ (`, zi). The transition functions
gij(`) : C → C are given by w 7→ zi

zj
· w, where ` = (z0 : · · · : zn).

Definition 2.4. Let p : E → X and p′ : E′ → X be two complex
vector bundles on X. A holomorphic map f : E → E′ is called a
morphism of vector bundles if the diagram

E
f //

p
  @

@@
@@

@@
@ E′

p′
~~}}

}}
}}

}}

X

commutes and for each point x ∈ X the map f |Ex
: Ex → E′

x is a
homomorphism of vector spaces.

Let E and E′ be vector bundles over X with rank r and r′, re-
spectively and let {Ui} be an open cover of X such that E and E′ are
trivial over Ui for each i. A morphism f : E → E′ can be described
locally by holomorphic functions, fi, as follows. For each i, using
trivialisations of E and E′, f induces maps

Ui × Cr → Ui × Cr′
, (x, v) 7→ (x, fi(x)v)

where fi : Ui → Matr′×r(C). These holomorphic functions necessar-
ily satisfy

fi(x) · gij(x) = g′ij(x) · fj(x) for all x ∈ Ui ∩ Uj

where gij and g′ij are transition functions of E and E′, respectively.
Note that a set of functions {fi} defines an isomorphism of vector
bundles if an only if fi(x) are invertible matrices for all i and x.
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Remark 2.5. It is important to note that this definition of a mor-
phism of vector bundles does not make the category of vector bundles
into an abelian category. For instance, if f : E → E′ is a morphism
of vector bundles and the rank of f is non-constant then dim(ker(fx))
jumps and so ker f cannot form a vector bundle. The same would be
true for coker f . On the contrary if dim(ker(fx)) is constant on x,
then both ker f and coker f are vector bundles. This can be shown
locally by a rank argument. It is necessary to use strict morphisms
if an abelian category is required.

Definition 2.6. Let E be a vector bundle on X and let {Ui} be an
open cover of X. If the transition functions of E are gij , then the
dual bundle, E∗, of E is given by transition functions

hij(x) := tgij(x)−1 ∀x ∈ Ui ∩ Uj

Definition 2.7. A sequence of morphisms of vector spaces

0 −−−−→ A
f−−−−→ B

g−−−−→ C −−−−→ 0
is called a short exact sequence if ker g = im f , and if f is injective
and g is surjective.

Definition 2.8. A sequence of morphisms of vector bundles over X

0 −→ E′ −→ E −→ E′′ −→ 0

is an exact sequence of vector bundles if

0 −→ E′
x −→ Ex −→ E′′

x −→ 0

is an exact sequence of vector spaces for all x ∈ X. The vector
bundle E′ is called a subbundle of E, and E′′ is called a quotient
bundle of E.

We also say that an exact sequence of vector bundles

0 −→ E′ −→ E −→ E′′ −→ 0

is an extension of E′′ by E′. In this case E is called an extension of
E′′ by E′.

Definition 2.9. Let U be an open set in X. A holomorphic map
s : U → E is called a holomorphic section of E over U if p ◦ s = idU .
Sections over X are called global sections of E. Global sections can
be added and multiplied with a scalar, so the space of global sections
is in fact a vector space. It will be denoted by H0(X, E).
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Remark 2.10. Let f : E′ → E be a morphism of vector bundles. This
induces a linear map of spaces of sections H0(f) : H0(E′) → H0(E)
by H0(f)(s′) := f ◦ s′.

2.1. Cohomology: Given a short exact sequence of vector bundles
over X

0 −−−−→ E′ f−−−−→ E
g−−−−→ E′′ −→ 0

we can take global sections to get an exact sequence

0 −−−−→ H0(X, E′)
H0(f)−−−−→ H0(X, E)

H0(g)−−−−→ H0(X, E′′) (1)

in which the last map H0(g) : H0(X, E) → H0(X, E′′) is not in
general surjective. For a counter example to H0(g) being surjective
see [4] Chapter 8.

Since we get the exact sequence (1) above, we say that the global
section functor is left exact. This global section sequence extends to
a long cohomology exact sequence. For any vector bundle E on X,
the natural cohomology groups Hi(X, E) (also denoted Hi(E) if it
is clear which X we are referring to), for all i > 0, can be defined
satisfying the following property. Given a short exact sequence

0 −→ E′ −→ E −→ E′′ −→ 0

of vector bundles, there is an induced long exact sequence of coho-
mology groups

0 → H0(X, E′) → H0(X, E) → H0(X, E′′) → H1(X, E′) → · · ·
I will not define these cohomology groups in this paper, except to
note that they exist and are very useful in computations. The di-
mension of Hi(X, E) will be denoted hi(X, E). In the case of a curve
X the cohomology groups Hi(X, E), vanish for all i > 1, where 1 is
the dimension of X, i.e. only the cohomology groups H0(X, E) and
H1(X, E) are nonzero. (In fact Hi(X, E) vanish for all i > dim X
for a more general X than just a curve though we do not need this
fact in this paper. See [4] Chapter 8 for more details).

2.2. Ext groups: If E and E′ are vector bundles over X, we denote
by HomX(E,E′) (or Hom(E,E′) if it is clear which X we are refer-
ring to) the vector space of vector bundle morphisms. For a fixed
E, Hom(E, ·) is a left exact covariant functor from the category of
vector bundles to the category of vector spaces, i.e. given a short
exact sequence of vector bundles

0 −→ F ′ −→ F −→ F ′′ −→ 0
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we get another exact sequence in which the last map is not surjective
in general

0 −−−−→ Hom(E,F ′) −−−−→ Hom(E,F )
g−−−−→ Hom(E,F ′′)

(2)
And so in a similar fashion to the way we defined cohomology

groups Hi(E), we can define what are called the Ext groups, which
allow us to extend our short exact sequence (2) to a long exact
sequence as follows:

0 −−−−→ Hom(E,F ′) −−−−→ Hom(E,F ) −−−−→ Hom(E,F ′′)

−−−−→ Ext1(E,F ′) −−−−→ Ext1(E,F ) −−−−→ · · ·

We say that Exti(E, ·) are the right derived functors of Hom(E, ·). So
in particular we have Ext0(E, ·) = Hom(E, ·). We have the following
proposition to see the relationship between the cohomology groups
Hi and the Ext groups (for a full proof of this proposition see [5]
Proposition 6.3).

Proposition 2.11. For any vector bundle E on a complex manifold
X we have:

Exti(OX , E) ∼= Hi(E) for all i ≥ 0.
Similarly we have:
Exti(E,OX) ∼= Hi(E∗) for all i ≥ 0.

Proof. Here we will just give a proof of the first statement, where
i = 0. Let f ∈ Hom(O, E), a fibre-wise holomorphic morphism such
that the following diagram commutes

X × C
f //

pr1
##G

GG
GG

GG
GG

E

p
~~~~

~~
~~

~~

X

.

Let s : X → E be a holomorphic section of E, i.e. p◦s = idx. Define
two linear maps

α : Hom(O, E) → H0(E)

and
β : H0(E) → Hom(O, E)

as follows: Define α(f)(x) := f(x, 1) and β(s)(x, λ) := λ · s(x).
We see that β(α(f)) = f as follows:
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β(α(f))(x, λ) = λ · (α(f)(x)) = λ · f(x, 1) = f(x, λ), where the
last equality uses the fact that f is linear on fibres.

Similarly we obtain α(β(s))(x) = β(s)(x, 1) = s(x), so α(β(s)) =
s. Hence α and β are inverses of one another and we get

Hom(O, E) ∼= H0(E).

�

Remark 2.12. Given a vector bundle E, and given that H0(E) 6= 0,
then from Proposition 2.11 we know that Hom(O, E) 6= 0. So we
have f : O → E. We can say that O ⊂ E, though here ‘⊂’ does
not denote a subbundle, but rather a ‘subsheaf’. Vector bundles
can also be described as sheaves (in particular locally free sheaves)
though we have not built up this language in this paper. It suffices
to know that if O ⊂ E as a subsheaf then we can extend this to get
a line subbundle M ⊂ E on X, a smooth curve (See [9] Chapter 10
for more details). This will be useful in proofs later on.

The notion of a degree of a line bundle on a curve was introduced
in [7] (Section 5). We can extend this definition to vector bundles of
arbitrary rank. To do so we must first define the determinant line
bundle.

Definition 2.13. Given a vector bundle E of rank r, it’s deter-
minant line bundle is defined to be the r-th exterior power of E,
denoted:

det E := ∧rE.

where the fibres of X for any x ∈ X are canonically isomorphic to
∧rEx.

For those of you who are unfamiliar with exterior power, we can
reformulate the definition as follows: Given an open cover {Ui} of
X and a vector bundle E over X with transition functions gij , the
determinant line bundle of E is given by transition functions hij

where

hij(x) := det gij(x) ∈ GL(1, C), for all x ∈ Ui ∩ Uj

This now allows us to define the degree of a vector bundle as
follows.

Definition 2.14. The degree deg E ∈ Z of a vector bundle is the
degree of its determinant line bundle det E.
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Remark 2.15. Recall from [7] that the degree of a line bundle is the
degree of it’s associated divisor and every line bundle can be written
as O(D), with D a divisor on X.

If E lies in an exact sequence of vector bundles on X as follows:

0 → E′ → E → E′′ → 0

then there is an isomorphism

det E′ ⊗ detE′′ ∼= det E.

Since det E′ and detE′′ are line bundles we get deg E = deg E′ +
deg E′′ (as in general deg(L⊗ L′) = deg L + deg L′, where L and L′

line bundles). In other words, degree is additive on exact sequences.
As a special case, if a vector bundle E = L1 ⊕ L2 is the direct sum
of two line bundles L1 and L2, then we have

0 → L1 → E → L2 → 0

with deg E = deg L1 + deg L2.

Remark 2.16. Let E be a vector bundle of rank r over a complex
manifold X. If we tensor E with a line bundle L, then deg(E⊗L) =
deg E + r deg L. In particular for E of rank 2 we have deg(E⊗L) =
deg E + 2 deg L. To see this let’s look at an example:

Let E = L1 ⊕ L2 for line bundles L1 and L2. Tensor this with
another line bundle L to get

E ⊗ L = (L1 ⊕ L2)⊗ L = (L1 ⊗ L)⊕ (L2 ⊗ L)

Now

deg(E ⊗ L) = deg(L1 ⊗ L) + deg(L2 ⊗ L)
= deg L1 + deg L + deg L2 + deg L

= deg L1 + deg L2 + 2 deg L

= deg E + 2 deg L.

In this way, when considering vector bundles of rank 2, it is enough
to consider vector bundles of degree −1 or 0 (or indeed, any even
and odd degree), then by tensoring with a line bundle of appropriate
degree we get all other degrees. We call this the “tensor product
trick”.

Definition 2.17. An exact sequence of vector bundles

0 → E′ → E → E′′ → 0
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splits if and only if there exists a homomorphism f : E′′ → E for

which the composition E′′ f // E // E′′ is an isomorphism.
In this case, the map f is called a splitting of the sequence.

Now consider, on any curve, a short exact sequence of vector
bundles

E : 0 −−−−→ M
α−−−−→ E

β−−−−→ L −−−−→ 0.

By applying Hom(L,−) to this sequence we get the following mor-
phism:

Hom(L,L) δ−−−−→ Ext1(L,M)

Definition 2.18. The image under the coboundary map δ of idL ∈
Hom(L,L), which we will denote by

δ(idL) ∈ Ext1(L,M) ∼= H1(L∗ ⊗M),

is called the extension class of E.

By exactness of

Hom(L,E)
ρ−−−−→ Hom(L,L) δ−−−−→ Ext1(L,M),

if δ(idL) = 0, then there exists a homomorphism f : L → E for
which the idL = β ◦ f : L → L, i.e. the sequence E splits. Moreover,
if E splits, there exists f : L → E such that idL = β ◦ f . Because
the composition, ρ ◦ δ is zero, we have δ(idL) = 0. Hence we have
the following proposition:

Proposition 2.19. The sequence E, i.e.

0 → M → E → L → 0.

splits if and only if Ext1(L,M) = 0. In particular, if Ext1(L,M) ∼=
H1(L∗ ⊗M) = 0, then every exact sequence E splits.

Remark 2.20. For each α ∈ Ext1(E′′, E′) there exists an extension

0 → E′ → Eα → E′′ → 0 (3)

with a vector bundle, Eα, in such a way that α is the extension class
of (3). Moreoever, Eα

∼= Eβ if and only if there exists λ ∈ C∗ such
that α = λβ. (See [10] Section 3.4 for more details)



122 Ciara Daly

2.3. Riemann–Roch Formula for Curves. We have a very useful
tool, called the Riemann–Roch formula, which tells us a lot about the
cohomology groups of a vector bundle E, H0(E) and H1(E), once
we know the rank and degree of E. The Riemann–Roch formula is
as follows: If E is a vector bundle of rank r on a curve of genus g,
then:

h0(E)− h1(E) = deg E − r(g − 1).
In addition to the Riemann–Roch formula, one of the other major
tools we have in dealing with cohomology is Serre duality. The fol-
lowing proposition outlines Serre duality, though will not be proved
as the proof is too involved for this paper.

Proposition 2.21. (Serre duality) Let X be a smooth projective
curve. Let E be a vector bundle on X. Let KX be a canonical line
bundle on X. Then there are canonical isomorphisms

H0(X, E) ∼= H1(X, KX ⊗ E∗)∗.

and
H1(X, E) ∼= H0(X, KX ⊗ E∗)∗.

In particular it follows that H0(X, E) and H1(X, KX⊗E∗) have the
same dimension.

While I have not defined KX , the canonical line bundle, for the
purpose of this paper it will suffice to know what KX is in the case
of a curve. This is outlined below:

X = P1 : KX = OP1(−2), deg(KX) = −2

X = elliptic curve : KX = OX , deg(KX) = 0
X = curve of genus g ≥ 2 : deg(KX) = 2g − 2.

Refer to [5] Section III.7 for more details on Serre duality.

Lemma 2.22. Let L be a line bundle on a curve, C, of genus g.
Then we have the following:

(a) H0(L) = 0 if deg L < 0.
(b) H1(L) = 0 if deg L > 2g − 2.
(c) L ∼= O if deg L = 0 and s ∈ H0(L), s 6= 0.

The proof of (a) and (c) of the lemma above uses the correspon-
dence between line bundles and divisors (see again [7]) and the fact
that the divisor defined by a nonzero holomorphic section of a line
bundle is always positive. The proof of (b) follows from Serre duality
and part (a).
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Lemma 2.23. If E is a vector bundle on a curve C of genus g, then
the degree of its subbundles F ⊂ E is bounded above.
Proof. ([9], Corollary 10.9) Since the global sections functor is left
exact, we get

H0(F ) ⊂ H0(E)
This implies that h0(F ) ≤ h0(E). Now by Riemann–Roch we know

h0(F )− h1(F ) = deg(F ) + rk(F ) · (1− g).

From this we get

deg(F ) + rk(F ) · (1− g) + h1(F ) ≤ h0(E)

and by rearranging we have

deg(F ) ≤ h0(E)− rk(F ) · (1− g)− h1(F )

Now if g = 1, we see that deg(F ) ≤ h0(E) − h1(F ) and since
h1(F ) ≥ 0, we get deg(F ) ≤ h0(E).

If g = 0, then deg(F ) ≤ h0(E)−rk(F )−h1(F ) and since rk(F ) ≥ 0
and h1(F ) ≥ 0, we see that deg(F ) ≤ h0(E).

If g ≥ 2,deg(F ) ≤ h0(E)+rk(F )·(g−1)−h1(F ) ≤ h0(E)+rk(E)·
(g − 1) − h1(F ) (since rk(F ) ≤ rk(E)). Again, since h1(F ) ≥ 0, we
get deg(F ) ≤ h0(E) + rk(E) · (g− 1). Hence we see that in any case
the degree of F ⊂ E is bounded above. �

3. Vector Bundles on P1

Before we move on to vector bundles on an elliptic curve (i.e. a curve
of genus one), it makes sense to look at vector bundles on a curve of
genus zero (P1). Let us now restate Lemma 2.22 in the case of P1,
where genus g = 0, to see how the cohomology of line bundles on P1

is particularly simple.

Lemma 3.1. Let L be a line bundle on P1. Then we have the
following:

(a) H0(L) = 0 if deg L ≤ −1.
(b) H1(L) = 0 if deg L ≥ −1.

By Riemann–Roch we also have,

h0(L)− h1(L) = deg L + 1.

Remark 3.2. We have seen from [7] that for L a line bundle, L∗ is
the inverse of the line bundle L in the Picard group. We have also
seen that deg : Pic X → Z is a homomorphism (where Pic X denotes
the set of line bundles over X) and so we get deg L∗ = −deg L.
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Lemma 3.3. The homomorphism deg : Pic P1 → Z is an isomor-
phism.

Proof. See [4] Lemma 6.2.11. �

We have a classification for all vector bundles on P1 as follows:

Lemma 3.4. Every rank 2 vector bundle on P1 is isomorphic to a
direct sum of two line bundles
Proof. ([9], Lemma 10.30) Let E be a rank 2 vector bundle on P1.
Tensoring with a line bundle if necessary, it is enough to assume
that deg E = 0 or −1. First, by the Riemann-Roch formula we
note that H0(E) 6= 0, and so from Remark 2.12 above we get a line
bundle M ⊂ E, and M ∼= O(D) for some positive divisor D ≥ 0. In
particular, deg M ≥ 0, and denoting the quotient by L := E/M , we
have an exact sequence

0 → M → E → L → 0.

Now deg E = deg L+deg M , hence deg(L∗⊗M) = deg M −deg L =
−deg E + 2deg M ≥ −deg E ≥ 0. From Lemma 3.1 (b), we get
H1(L∗ ⊗ M) = 0. By Proposition 2.19, therefore, the sequence
splits. �

Grothendieck’s Theorem 3.5. Every vector bundle on P1 is iso-
morphic to a direct sum of line bundles.
Proof. ([9] Theorem 10.31) Let E be a vector bundle of rank r
on P1. Proof is by induction on the rank r ≥ 2 of E, starting with
the previous lemma. Serre’s Theorem ([5] II.5.17) tells us that there
exists a line subbundle in E. Now let M ⊂ E be the line subbundle
whose degree, m = deg M , is maximal among line subbundles of E
(Lemma 2.23). Let F := E/M be a vector bundle of rank r − 1.

Claim: Every line subbundle L ⊂ F has deg L ≤ m.
Now we have a short exact sequence as follows:

0 → M → E → F → 0

By considering the preimage L̃ ⊂ E of L under the quotient mor-
phism E → F we get a diagram as follows:

0 // M // E // F // 0

0 // M // L̃
?�

OO

// L
?�

OO

// 0
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Clearly L̃ is a rank 2 vector bundle, and we see deg L̃ = m + deg L.
By Lemma 3.4, we know L̃ ∼= L1 ⊕ L2 for some line bundles L1

and L2. Now deg(L̃) = deg(L1) + deg(L2) so one of L1 or L2 must
have deg at least deg(L̃)/2. Let N denote that line subbundle, of
degree at least deg L̃/2. Because N is a subbundle of E, as well as
our choice of M we get m ≥ deg N ≥ (deg L̃)/2 = m+deg L

2 and the
claim follows easily from this.

By the inductive hypothesis, we know the quotient bundle F is
isomorphic to a direct sum F = L1 ⊕ · · · ⊕ Lr−1 of line bundles and
the claim gives us deg Li ≤ m. Since H1(L∗

i ⊗M) = 0 for each i. It
follows that the exact sequence

0 → M → E →
r−1⊕
i=1

L1 → 0

splits. �

Definition 3.6. A vector bundle, E, is called decomposable if it is
isomorphic to the direct sum E1

⊕
E2 of two nonzero vector bundles;

otherwise, E is called indecomposable.

By definition of decomposability, every vector bundle is the direct
sum of indecomposable ones. Therefore, it suffices to know the inde-
composable vector bundles on a curve in order to know them all. We
have seen that all vector bundles on rational curves are the direct
sum of line bundles. As well as the notion of an indecomposable
vector bundle, we also have the notion of a simple vector bundle.

Definition 3.7. A vector bundle E is simple if its only endomor-
phisms are scalars, EndE = C. Every line bundle is simple.

A simple vector bundle is necessarily indecomposable. To see
this let us start with a decomposable vector bundle E⊕F . Consider
f : E⊕F → E⊕F , where f = idE ⊕0F where idE is the identity map
on E and 0F is the zero map on F . Clearly then End(E ⊕ F ) 6= C,
i.e., F is not simple.

Note that the converse is not true, i.e. an indecomposable vector
bundle is not necessarily simple (This can be seen by a counterex-
ample, Example 4.4 below).
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4. Classification of all Indecomposable Rank two
Vector Bundles on an Elliptic Curve C

We are now ready to look at the case of a nonsingular curve of arith-
metic genus one (i.e. an elliptic curve). Atiyah’s paper of 1957 ([1])
provided us with an answer to this case. We have already seen in
Lemma 3.3 that there is exactly one line bundle on P1 for every de-
gree. In particular Pic0(P1) = {O}, where Pic0(P1) denotes the set
of line bundles of degree 0 on P1. However it turns out ([7] Theo-
rem 20) on an elliptic curve, C, that Pic0(C) is in bijection to C and
so on elliptic curves there are more vector bundles in the sense that
nontrivial extensions appear. For the purpose of this paper we will
be concentrating on rank 2 vector bundles on an elliptic curve. In
this section we will give a classification of all indecomposable rank 2
vector bundles on the elliptic curve C.

First let me return to the Riemann–Roch formula for a vector
bundle E, this time looking at a curve of genus 1, i.e.

h0(E)− h1(E) = deg E

Note that every line bundle, L, on C satisfies:

h0(L)− h1(L) = deg L

The next lemma follows from the above equation and Lemma 2.22:

Lemma 4.1. Let L be a line bundle on an elliptic curve. Then we
have the following:

(a) H0(L) = 0 if deg L < 0.
(b) H1(L) = 0 if deg L > 0.
(c) If deg L = 0 and L 6∼= O, then H0(L) = H1(L) = 0.

Lemma 4.2. If E is an indecomposable vector bundle of rank 2
on a smooth projective curve, X, then every line subbundle L ⊂ E
satisfies

2 deg L ≤ deg E + 2g − 2

Proof. Let M be the quotient line bundle E/L. This gives us the
following short exact sequence:

0 → L → E → M → 0

which corresponds to an element in Ext1(M,L) ∼= H1(M∗ ⊗ L).
Now since E is indecomposable, this sequence cannot split and hence
H1(M∗ ⊗L) 6= 0 by Proposition 2.19. By Serre duality, this implies
that 0 6= H0((M∗⊗L)∗⊗KX)∗ = H0(M ⊗L∗⊗KX)∗. This in turn
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implies that deg(M ⊗L∗ ⊗KX) = deg M − deg L + 2g− 2 ≥ 0 from
Lemma 2.22 (a). Now from the short exact sequence above we know
that deg E = deg M + deg L, i.e. deg M = deg E − deg L. Hence we
get

deg E − deg L− deg L + 2g − 2 ≥ 0
From this, we get the inequality in the lemma. �

Let E(r, d) denote the set of isomorphism classes of indecompos-
able vector bundles of rank r and degree d over X, an elliptic curve.

Theorem 4.3. (a) There exists a vector bundle Er ∈ E(r, 0), unique
up to isomorphism, with H0(Er) 6= 0. Moreover, we have an exact
sequence:

0 → OX → Er → Er−1 → 0
(b) Let E ∈ E(r, 0), then E ∼= Er ⊗ L, where L is a line bundle of
degree zero, unique up to isomorphism.

Proof. See [1] Theorem 5. �

Example 4.4. The bundles Er of Theorem 4.3 are sometimes called
the Atiyah bundles. For r ≥ 2, they are examples of indecomposable
vector bundles which are not simple. Let us prove now that E2 is
not simple.

We know E2 sits in an exact sequence as follows:

0 // OX
f // E2

// OX
// 0

Applying Hom(−, E2) to this sequence, we get

0 // Hom(O, E2) // Hom(E2, E2)
β // Hom(O, E2)

Now Hom(O, E2) ∼= H0(E2) from Proposition 2.11. From our as-
sumption on E2, we know H0(E2) 6= 0, i.e. h0(E2) ≥ 1. Now let
idE2 denote id ∈ Hom(E2, E2). We know, under the morphism β,
that idE2 7→ f ∈ Hom(O, E2) 6= 0, i.e. β(idE2) = f 6= 0. This
implies β 6= 0. So we get the following short exact sequence:

0 → Hom(O, E2) → Hom(E2, E2) → im(β) → 0

Since β 6= 0, we know that dim(im(β)) ≥ 1. Now since dim is addi-
tive on exact sequences, dim(Hom(E2, E2)) = dim(Hom(O, E2)) +
dim(im(β)) ≥ 2. Hence by the definition of a simple vector bundle
(Definition 3.7), we know that E2 is not simple.
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Let us now classify all indecomposable rank 2 vector bundles on
an elliptic curve. We first consider the case of even degree.

Proposition 4.5. On a curve, C, of genus 1 every indecomposable
rank 2 vector bundle, E, of even degree is an extension of the form

0 −→ M −→ E −→ M −→ 0

for some line bundle M on E
Proof. ([9] Proposition 10.48) Using the tensor product trick, it is
enough to consider the case where deg E = 2k. If M1 ∈ Pick(C),
i.e. M1 is a line bundle of degree k, then E ⊗ M1 is of degree 0.
In other words, E ⊗ M1 ∈ E(r, 0). By Theorem 4.3, we know that
there exists M2 ∈ Pic0(C) such that E ⊗M1

∼= E2 ⊗M2, where E2

is the so-called Atiyah bundle from Theorem 4.3. Then E2 sits in a
non-split exact sequence as follows

0 → OC → E2 → OC → 0.

If M := M2⊗M∗
1 , we obtain E ∼= E2⊗M and tensoring this sequence

by M , gives a short exact sequence

0 → M → E → M → 0.

�

The following proposition contains the odd degree case.

Proposition 4.6. On a curve, C, of genus 1, given a line bundle
L of odd degree, there exists, up to isomorphism, a unique indecom-
posable rank 2 vector bundle E with detE ∼= L.

We refer to [9] Proposition 10.47 for the proof.

Theorem 4.7. For each integer n, there is a one-to-one correspon-
dence between the set of isomorphism classes of indecomposable vec-
tor bundles of rank 2 and degree n on the elliptic curve C, and the
set of points on C.

Sketch of correspondence We will denote by Picn(C), the set of
degree n line bundles on C. Recall from [7], Theorem 20, that there is
an isomorphism of manifolds C ∼= Pic0(C) and in fact ([7], Theorem
21) there is an isomorphism C ∼= Picn(C) for all n ∈ Z.

Now let E be an indecomposable rank 2 vector bundle of degree
n on C. If n is odd, from Proposition 4.6, we know that there is
a unique indecomposable rank 2 vector bundle E of degree n, with
detE ∼= L. Hence use Picn(C) ∼= C to obtain the result.
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If n is even from Theorem 4.3 we know there exists, L, a line
bundle of degree zero, unique up to isomorphism such that E ⊗L is
isomorphic to the unique nontrivial extenstion of OC by OC . Since
Pic0(C) ∼= C again we obtain the result.

5. Stability

The notion of stability comes from the theory of moduli spaces. The
variety, Pic0(C) with the Poincaré bundle, of degree 0 line bundles
on an elliptic curve (See [7] Section 6) is an example of a mod-
uli space. Loosely described a moduli space is an algebraic variety
which parametrises the set of equivalence classes of some objects.
For example we could consider the moduli space of rank two vector
bundles on an elliptic curve, C. It turns out that the set of isomor-
phism classes of vector bundles of rank 2 and degree d on an elliptic
curve is unbounded (briefly, this means that we can find families of
arbitrarily high dimension which gives us vector bundles of rank 2
and degree d. See [6] Chapter 1), which poses a problem when con-
structing the corresponding moduli space. To overcome this problem
we restrict our study of vector bundles. One form of restriction is to
study ‘stable’ vector bundles. Using stable bundles, one to construct
the moduli space of (stable) vector bundles of rank 2 and degree d
on C.

We will begin by giving a more explicit definition of a subbundle
and quotient vector bundle.

Definition 5.1. Let F and E be vector bundles of rank r and n
respectively, with r ≤ n and F ⊂ E is a submanifold. Then, F
is called a subbundle of E if there exists an open covering {Ui} and
transition functions gij : Ui∩Uj → GL(r, C) for F and hij : Ui∩Uj →
GL(n, C) for E such that

hij(x) =
(

gij(x) ∗
0 fij(x)

)
.

The quotient bundle G = E/F is described by transition functions
fij .

Now we are ready to define the stability of a vector bundle.

Definition 5.2. A vector bundle, E on a curve, is stable (resp.
semi-stable) if every nonzero vector subbundle F ⊂ E satisfies

deg F

rkF
<

deg E

rkE
(resp. ≤).
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(Or equivalently, we can also say that a vector bundle E is stable
(resp. semi-stable) if deg G

rk G > deg E
rk E (resp. ≥) for every non-zero

quotient G of E).

From this definition we can see that a vector bundle E of rk 2 is
stable (resp. semi-stable) if every line subbundle F ⊂ E satisfies

deg F <
1
2

deg E (resp. ≤).

We call the rational number deg E
rk E the slope of E. The picture below

illustrates the reason for this name.

6

-�
�
�
��rE

rank

deg

The definition of stability above is often referred to as slope-stability.

Lemma 5.3. Let E be a vector bundle of rank 2. If deg E is odd,
then stability and semi-stability are equivalent.

Proof. Clearly if E is stable, then E is semi-stable. For the other
direction, we assume E is semi-stable with degree n. Now let F ⊂ E
be a nonzero subbundle of E, so deg F ≤ n

2 . Since deg F is an integer,
deg F 6= n

2 as n is odd. Hence deg F < n
2 , i.e. E is stable. �

Lemma 5.4. If E1 and E2 are semi-stable , and deg E1
rk E1

> deg E2
rk E2

,
then Hom(E1, E2) = 0

Proof. Let f : E1 → E2 be a morphism, and let F ⊂ E2 be it’s image.
Since E2 is semi-stable, if F 6= 0, then deg F

rk F ≤ deg E2
rk E2

. But E1 is
semi-stable and F is a quotient of E1, and therefore deg E1

rk E1
≤ deg F

rk F ,
a contradiction unless F = 0. �

5.1. Jordan–Hölder Filtrations. Consider a rational number µ
and let C(µ) denote the category of semi-stable vector bundles of
slope µ. This turns out to be an abelian category (See [8] Chapter 5
for more details). This allows us to define Jordan–Hölder filtrations
for each semi-stable bundle: these filtrations are important in order
to understand the points of the moduli space of stable vector bundles
of rank 2 and degree d (or indeed any fixed rank and degree).
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Definition 5.5. Let E be a semi-stable vector bundle of slope µ. A
Jordan–Hölder filtration of E is a filtration of vector subbundles

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E

in C(µ) such that the quotient gri = Ei/Ei−1 is a stable bundle in
C(µ). The integer k is called the length of the filtration and the
direct sum

⊕
i gri is called the associated grading.

Let us now see how to get such a filtration. Consider first if E
is stable, i.e. ∀Ei ⊂ E,µ(Ei) < µ(E). In this case, the filtration is
clear. Namely

0 ⊂ E1 = E

Now we consider when E is strictly semi-stable, then there exists
subbundles in C(µ) and one of these, E1 must be stable. If not then
we can construct an infinite descending sequence of subbundles in
C(µ) in which the rank strictly decreases but this is impossible as
the rank of nonzero subbundles of E is bounded below by 1. So
E/E1 is also in C(µ) and we can continue the construction until we
obtain our filtration as above.

5.2. Harder-Narasimhan Filtrations.

Lemma 5.6. (a) Let d, d′, r, r′ ∈ Z with r, r′ > 0.
(i) If d

r > d′

r′ , then d
r > d+d′

r+r′ > d′

r′ .
(ii) If d

r = d+d′

r+r′ or d′

r′ = d+d′

r+r′ then d
r = d′

r′ .
(b) Let 0 → E′ → E → E′′ → 0 be a short exact sequence of nonzero
vector bundles on X.

(i) If λ ∈ R such that µ(E′) ≤ λ and µ(E′′) ≤ λ, then µ(E) ≤ λ.
(ii) If µ(E′) = µ(E) or µ(E) = µ(E′′) then µ(E′) = µ(E′′).

(c) If 0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E is a filtration by
subbundles of E such that µ(Ei/Ei−1) ≤ λ for all i = 1, . . . , n:

(i) then µ(Ei) ≤ λ for all i = 1, . . . , n. In particular, µ(E) ≤ λ.
(ii) If, for at least one i, we have µ(Ei/Ei−1) < λ, then µ(E) < λ.

Proof. (a) The proof of this is a simple calculation.
(b) Because of the fact that rk(E) = rk(E′)+rk(E′′) and deg(E) =

deg(E′) + deg(E′′), this follows immediately from (a).
(c) This follows from (b) using exact sequences

0 → Ei−1 → Ei → Ei/Ei−1 → 0

for all i = 2, . . . n. �
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Each vector bundle admits a canonical increasing filtration whose
successive quotients are semi-stable. This allows us to classify bun-
dles which are not semi-stable in terms of semi-stable bundles.

Proposition 5.7. Let E be a vector bundle on a curve X. Then E
has an increasing filtration by vector subbundles

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E

where the quotient gri = Ei/Ei−1 satisfies the following conditions:
(1) the quotient gri is semi-stable;
(2) µ(gri) > µ(gri+1) for i = 1, · · · , k − 1.

Proof. ([8] Proposition 5.4.2) If E is already semi-stable then the
result is trivial. Assume, therefore that E is not semi-stable. We
will prove this by induction on the rank of E. If rk(E) = 1, then
the result is trivial as all line bundles are automatically stable. Now
assume rk(E) ≥ 2. We know, from Lemma 2.23, that the degree
of all subbundles of E is bounded above. On the other hand, sub-
bundles can only have ranks 1, 2, . . . , rk(E) − 1, hence the slope of
the subbundles of E is bounded above. Among all the subbundles
of maximal slope, let E1 be the one of maximal rank. Then E1 is
semi-stable because it has maximal slope. Let E′ = E/E1, then we
have the following short exact sequence:

0 → E1 → E → E′ → 0

where rk(E′) < rk(E).
By inductive assumption E′ has an increasing filtration satisfying

the conditions of the proposition, i.e.

0 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ Fk = E′

with
µ(F2) > µ(F3/F2) > · · · > µ(Fk/Fk−1)

and Fj/Fj−1 is semi-stable for 2 ≤ j ≤ k. In particular, F2 is semi-
stable.

Let Ej ⊂ E be the preimage of Fj ⊂ E′ under E → E′. This way
we obtain commutative diagrams with exact rows:

0 // E1
// Ej+1 // Fj+1 // 0

0 // E1
// Ej //?�

OO

Fj //?�

OO

0.
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Hence Ej+1/Ej
∼= Fj+1/Fj are semi-stable.

Now we need to prove µ(F2) < µ(E1), in order to show condi-
tion 2 holds. Since E1 has maximal slope, µ(E2) ≤ µ(E1). More-
over, since E1 has maximal rank among the subbundles with slope
µ(E1), µ(E2) < µ(E1). From the diagram above we know that
deg(F2) = deg(E2) − deg(E1) and rk(F2) = rk(E2) − rk(E1). So
we know µ(F2) = deg(E2)−deg(E1)

rk(E2)−rk(E1)
. We can also write this as µ(F2) =

rk(E2)µ(E2)−rk(E1)µ(E1)
rk(E2)−rk(E1)

. Then we have

rk(E2)µ(E2)− rk(E1)µ(E1)
rk(E2)− rk(E1)

<
rk(E2)µ(E1)− rk(E1)µ(E1)

rk(E2)− rk(E1)

i.e. µ(F2) < µ(E1). Now since E2/E1 = F2, we have µ(E1) >
µ(E2/E1). We can the repeat the process until we obtain a quotient
E/Ek−1 which is semi-stable. �

Lemma 5.8. If

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

is a filtration of E satisfying the conditions of Proposition 5.7 above
and E′ ⊂ E is a nontrivial subbundle of E then µ(E′) ≤ µ(E1) and
if µ(E′) = µ(E1), then E′ ⊂ E1.

Proof. We define a filtration of E′ by E′
i := E′ ∩ Ei for all i =

1, . . . , n. Because E′
i = Ei ∩E′

i+1 we obtain E′
i+1/E′

i ⊂ Ei+1/Ei for
i = 1, . . . , n − 1. Now since Ei+1/Ei is semi-stable, we have either
µ(E′

i+1/E′
i) ≤ µ(Ei+1/Ei) or E′

i+1 = E′
i. Because µ(Ei+1/Ei) ≤

µ(E1) for i = 1, 2, . . . , n − 1, we obtain from Lemma 5.6 (c) that
µ(E′) ≤ µ(E1). Now if i ≥ 1 and E′

i+1 6= E′
i then µ(E′

i+1/E′
i) ≤

µ(Ei+1/Ei) < µ(E1). Hence by Lemma 5.6 (c) again, if µ(E′) =
µ(E1) we must have E′

i+1 = E′
i for i = 1, 2, . . . , n − 1, i.e. E′ ⊂

E1. �

Proposition 5.9. This filtration of Proposition 5.7 is unique.
Proof. ([8], Proposition 5.4.2) Assume (Ei)i=1,...,n and (Fj)j=1,...,m

are two filtrations of E satisfying the conditions of Proposition 5.7
above. Now using the notation of Lemma 5.8 if we let E′ := F1

we get µ(F1) ≤ µ(E1). Similarly if we allow E′ := E1, we get
µ(E1) ≤ µ(F1). Clearly then, µ(F1) = µ(E1).

Lemma 5.8 again implies E1 ⊂ F1 and F1 ⊂ E1, hence E1 = F1.
Using E/E1 and F/F1 we can proceed by induction as in the proof
of Proposition 5.7 to conclude that the filtration is unique. �
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The filtration of Proposition 5.7 is called the Harder-Narasimhan
filtration of E.

6. Conclusion

In conclusion, it is fair to say that the theory of vector bundles is
vast and indeed very interesting. We have seen how vector bundles
on P1 are not very complex, in the sense that they can be written as
a direct sum of line bundles. We have also seen a classification for
indecomposable rank 2 vector bundles on elliptic curves.

One could also go on to study higher rank vector bundles on
elliptic curves or on curves of a higher genus, or even on higher
dimensional complex manifolds. These are all very interesting in
their own right.

In Section 5, we studied slope stability for vector bundles on
curves. As was mentioned, stable bundles are required when con-
structing moduli spaces of vector bundles. For the reader interested
in stability, from here you could go on to study Bridgeland stability
conditions ([2] and [3]) and the space of all stability conditions on a
particular complex manifold (e.g., an elliptic curve).
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