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Theta Functions

MARINA FRANZ

ABSTRACT. On our analytic way to the group structure of
an elliptic function we meet so called theta functions. These
complex functions are entire and quasi-periodic with respect
to a lattice A. In the proof of Abel’s theorem we use their
properties to characterise all meromorphic functions f from
C/A to C. Finally we have a closer look at a very special and
interesting A-periodic meromorphic function, the Weierstrafl
g-function. This function delivers an analytic way to give a
group structure to an algebraic variety.

1. INTRODUCTION

First of all, we want to analyse periodic complex functions f : C — C
with respect to a lattice A. So let us fix once and for all a complex
number 7 € C, Im 7 > 0 and consider the lattice A :=Z & 7Z C C.

T/ /1+T
0 1

FIGURE 1. The lattice A = Z & 77Z and its funda-
mental parallelogram V = {z =1t; +t,7 € C:0 <
t1,ta < 1}.

Lemma 1. An entire doubly-periodic complex function is constant.

To prove this lemma we need Liouville’s Theorem, which we know
from complex analysis. It states that each entire and bounded com-
plex function f : C — C is constant.
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Proof. The values of a doubly-periodic function are completely deter-
mined by the values on the closure of the fundamental parallelogram
V ={2€C:z=t +tyr for some 0 < t1,t < 1} which is a com-
pact set. But a continuous function on a compact set is bounded.
Hence our function is entire and bounded. Therefore it is constant
by Liouville’s Theorem. (Il

As we have seen, entire doubly-periodic functions are not very
interesting, so in the following we will consider entire quasi-periodic
functions and use them to prove Abel’s Theorem which says what
meromorphic doubly-periodic functions look like.

2. THETA FUNCTIONS AND ABEL’S THEOREM

Definition. The basic theta function is defined to be the function
0 : C — C given by

0(z) :=0(1)(2) == Z exp(min®7) exp(2minz)
nez
Note. The function 6 depends on 7. So for each 7 € C withIm 7 > 0
we get a (not necessarily different) basic theta function. Hence there
is a whole family of basic theta functions {6(7)}rec,im »>0. But here
we assume 7 to be fixed, so we have only one basic theta function.

Remark. As the series in the definition above is locally uniformly
unordered convergent (without proof) our basic theta function is an
entire function.

Lemma 2. The basic theta function is quasi-periodic.

Proof. Consider 6(z + \) for A € A, i.e. A =pr+ ¢ for p, ¢ € Z.
For A =1, i.e. for p =0 and ¢ =1 we have

0(z+1) e Z exp(min?1) exp(2min(z + 1))
neZ
= Z exp(min?t + 2minz 4 2mwin)
nez
= Z exp(min®t) exp(2minz) exp(2mwin)

nez Y
=1 for all nez
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= Z exp(min?T) exp(2minz)
nez

o)

Hence the basic theta function is periodic with respect to the x-
direction.
For A =7, i.e., for p=1 and ¢ = 0 we have

O0(z+T1) = Z exp(min?t) exp(2min(z 4 7))
nez
= Z exp(min?t + 2minz 4 2minT)
nez
if we complete the square and rearrange the summands then

= Z exp (7m'n27' + 2minT + miT — WIT
neZ
+2minz + 2mwiz — 27iz)

= exp(—miT — 2miz) Z exp(mi(n + 1)7) exp(27mi(n + 1)z)

nez
if we make a simple index shift m = n + 1 then

= exp(—miT — 2miz) Z exp(mim?7) exp(2mimz)

meZ

= exp(—miT — 2miz)0(2)

Hence the basic theta function is not periodic with respect to the
7-direction as in general exp(—miT — 2miz) # 1.
In the general case we obtain

0(z+\) =0(z+ pr +q)
S S exp(min®)exp2ring: + 77 +0)
nez

= Z exp(min?t + 2minz + 2mwinpt + 2mwing)
nez
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if we complete the square and rearrange the summands then

Z exp (m'n27' + 2minpT + mip*T — wip?T
nez
+2minz + 2wipz — 2wipz + 2wing)

= exp(—mip*t — 2mipz)

: Z [ exp(mi(n + p)°1) exp(2mi(n + p)2)
ne
exp(2ming) |
—_————

=1 for all nez
= exp(—mip*t — 2mipz)

: Z exp(mi(n + p)7) exp(27i(n + p)z)
nez

if we make a simple index shift m = n + p then

= exp(—mip*t — 2mipz) Z exp(mim?7) exp(2mimz)
meZ

= exp(—mip®T — 2mipz)0(z)

Hence the basic theta function 6 is quasi-periodic with

0(z+A) =0(z+pr+q)
= exp(—mip*T — 2mipz)0(2)

foral A\=pr+q€ A and z € C. (]

Definition. We define
e(\, 2) := exp(—mip?T — 2mipz)
and call this the automorphy factor.

Remark. We have e(A; + A3, 2) = e(A1, 2 + A2)e(Ag, 2) for all Aq,
Ao € AL
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Let A1, Ao € A, i.e. A\ =p17+ q1 and Ay = po7 + g2 for some pq,
D2, q1, g2 € Z, and thus A\ + Ay = (p1 + p2)7 + (g1 + ¢2) € A. Then

e(A1 + X2, 2) = e((p1 +p2)7 + (@1 + ¢2), 2)

de . .
ef exp(—mi(p1 +p2)27' —2mi(p1 + p2)2))

= exp(—mipiT — 2Wip1paT — WiPsT — 2mip1 2 — 2Tipe2)

def exp(—mipiT — 2mip1paT — 2mip12)e(Ag, 2)
= exp(—mipiT — 2mwip1z — 2mip1peT —  2mipiqy )
———
exp(2mip1g2)=1
~e(Ag, 2)
= exp(—mipiT — 2mip1 (2 + X2))e(Az, 2)
def e(A1,z 4+ Aa)e(Ng, 2)

Summary. The basic theta function 6 : C — C is entire and quasi-
periodic with automorphy factor e, i.e., we have

0(z+ \) = e(\, 2)0(2) = exp(—mip?T — 2mipz)6(z) (1)
forall \=pr+q¢e€ A and all z € C.

Now we want to enlarge our category of theta functions. So far
we have only one (basic) theta function corresponding to the point
0 € C (and each point ¢ € Z C C). Now, for our fixed 7, we will
define a new theta function for each point in C. Therefore let’s start
with our old theta function and translate z by a fixed £, i.e. consider
0(z + &) for & = ar + b for some fixed a, b € R:

0(z+¢&) =0(z+ar +b)
def Z exp(min?1) exp(2min(z 4 at + b))
nez
= Z exp(min?t + 2minz 4 2minat + 2winb)

neEZ

If we complete the square and rearrange the summands then we
obtain
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0(z+¢) = Z exp (m’nQT + 2minat + mia®T — mia*T

nez
+2min(z + b) + 2mia(z + b) — 2wia(z + b))
= exp(—mia®T — 2mia(z + b))

=) exp(mi(n + a)’) exp(2mi(n + a)(z + b))
nez

Note that the sum Y, _, exp(mi(n + a)?7) exp(2mi(n + a)(z + b))
looks very similar to the sum in the definition of our basic theta
function above.

Definition. For £ = ar+b and a, b € R the modified theta function
is defined to be the function ¢ : C — C given by

Oc(2) == 0¢(7)(2) := Z exp(mi(n + a)?7) exp(2mi(n + a)(z + b))
nez

and ¢ is called theta characteristic.
Note. From the calculation above we obtain a relation between the

basic theta function and the modified theta function with character-
istic &€ = at + b for some fixed a, b € R:

Oc(2) = Z exp(mi(n + a)?7) exp(2mi(n + a)(z + b)) (2)

= exp(mia®t + 2mia(z + b))0(z + &) (3)

for all z € C.

Remark. As the series in the definition is locally uniformly un-
ordered convergent (without proof) the modified theta functions are
entire functions.

Lemma 3. Modified theta functions are quasi-periodic functions.
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Proof. Let a, b € R such that & = a7 + b is the characteristic of the
modified theta function ;. Consider 0¢(z + A) for A = pr +¢ € A.

Oc(z+ N) © exp(mia®t + 2mia(z + X +))0(z + X+ €)

(
w exp(mia®t + 2mia(z + X +b))e(\, z + €)0(z + )
(
)

@ exp(mia®t + 2mia(z + X\ +b))e(\, z + €)
-exp(—mia*t — 2mia(z + b))0¢(2)

= exp(2mial) exp(—mip*t — 27ip(z + €))0¢(2)

= exp(2mia\ — Tip®T — 27ip(z + €))0¢(2)

Hence the modified theta function 6 is quasi-periodic with
Oc(z+ A) = Opro(z + 07+ q)
= exp(2mia\ — wip?T — 2mip(z + €))0¢(2)

forall \=pr+q€ A and z € C. O

Definition. Let a, b € R be fixed and let £ = a7 + b. We define
ee(N, 2) i= exp(2mia) — wip®T — 2mip(z + £))
and call this the automorphy factor.

Remark. Let a, b € R be fixed and let £ = ar +b. We have
ee(M + A2, 2) = ec(A1, 2 + Aa)eg(Ao, 2) for all Aq, Ao € A

Let A1, Ao € A, i.e. A\ =p17+ q1 and Ao = po7 + ¢ for some pq,
D2, q1, g2 € Z, and A1 + Ao = (p1 + p2)7 + (1 + ¢2) € A. Then

ec(M + A2, 2) = ee((p1 + p2)7 + (01 + q2), 2)

et exp (2m’a()\1 + A2) — mi(py + p2)°7

—2mi(p1 + p2)(z +§))
= exp (27ria)\1 + 2miads — m’p%T — 2WiP1paT — m’pgT
—2mip1(z + &) — 2mip2 (2 +¢€))
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d . . . .

=) exp(2mia\; — TipiT — 2mwip1paT — 2mip1 (2 + £))
ee(A2, 2)

= exp (2m'a)\1 — ﬂip%T — 2Wip1paT—  2WiP1q2

exp(2mip1g2)=1
ripy (= + €)) ee(Na, 2)
= exp(2mia); — mipiT — 2mip1 (2 + A2 + €))eg(A2, 2)
E ee(M,z + A)eg(Na, 2)

Summary. Let £ = ar 4+ b with a, b € R fixed. The modified
theta function with characteristic £ is entire and quasi-periodic with
automorphy factor eg, i.e. we have

O(z + A) = ec(A, 2)0¢(2) (4)
exp(2mia\ — Tip®T — 27ip(z + €))0¢(2) (5)

forall \=pr+q € A and all z € C.

Now we want to determine all zeros of all theta functions. There-
fore we consider a special modified theta function, the theta function
with characteristic o := %T + % In this case the determination of

zeros is very simple because the zeros are easy to describe.

Lemma 4. 0, is an odd function, i.e. 0,(—2) = —60,(2) for all
z € C. In particular we have 6,(0) = 0.

Proof. We have

e os(er3) ()
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if we make a simple index shift m = —n — 1 then
1\2
= Z lexp <7Ti (—m — 2) 7')
meZ
1
exp (271'2 m — > (—z + 2))}
= Z lexp (m (m—i— 2) >
mEZ

—_

(-
oo 2) (-2
:m%[exp (m m—l-;) T>
exp (m (m ; ;) ( )) Y, (2).

From complex analysis we know a simple way to count zeros and
poles of a meromorphic function f: C — C:

f/
i ), T
where v is a piecewise smooth path that runs around each zero and

each pole exactly one time. We will use this integral to determine
all zeros of the theta functions 8, with o = %T + %

O

(z) dz = total number of zeros - total number of poles

Lemma 5. We have 0,(z) = 0 precisely for all z € A and all zeros
are simple zeros.

Proof. Consider the fundamental parallelogram V := {z € C: z =
t17+t2 for some 0 < t1,t5 < 1}. Choose w € C such that the border
of V, := w + V contains no zeros of 8, and 0 € V.

Further consider the following paths along the border of V,,:

o 2 X R
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w4+ T ¥ w+1+71

« 0

[« 9

w « w+1

FIGURE 2

In the above figure w € C is chosen such that the border of the
parallelogram V,, = w + V contains no zeros of f and such that
0 € V. The paths «, 8, v and ¢ run along the border of V,,. Note
that

V) =w+(1-t)+7=al—t)+7

and
(t)=w+ 1 —-t)r=p(1-1t) -1
/
We want to show that = o —Z(z)dz=1.
27i Jgy, Oo

Therefore we will show that

1 /9(',() /’
omi ) 6, T 2 ), 0

and
1 [ 1 [
— [ Z2(2)de = —— [ 22(2) d=.
278 Js 04 ?) 270 J3 05 ) dz
L[ty = b [y
ori ) 0, 2 090 7
Lot

(T )00 (2 )+€a(7 2)0(2)
eq (T, 2)9

_ 1 [eln /’
o 2mi J, eo(T, S 2mi ), 6

dz
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when we use e, (7, 2) = exp(2miiT —miT —27i(2+0)) then the above
expression becomes

1 [ exp/(—2mi(z +0)) d 1 /0’

_ = [ Zena
27 J, exp(—2mi(z + o)) “ 7 omi o 0 (2) dz

1 ’ !
= —— | —omids — —
271 i dz /9

/
2m/9

1 / /
%/59 271'1/9

27”/9 B(1—t) — 1)(—7) dt
1

- 2 —1)dz
274 ﬁeg( )
1 [en(=1,2)05(2) + es(—1,2)05(2) ds
o 2mi g es(—1,2)0,(z
1 ! /
= eo’( 1”2) dz_i 90'<Z) dZ
2mi Jg eo(—1,2) 2mi J5 05 (2)
when we use
1
es(—1,2) = exp(f27ri§)
then
B exp’(—mi) / ' (2)
B 2772 3 exp(—mi) 2w (2)
/ (Z
- o\*) 1
2ri 5 0,(2)
Then we have
1 0! 1 0 1 0!
dz = 20 de+ — | 27(2)d
27 Jov, O Bl =5 | @) det o 59g(z) :
1 0! 1 0’
— dz+ — [ Y2(2)a
271 790( ?) +27rz s 0o = (2) dz
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As 6, is holomorphic in V4, i.e. it doesn’t have any poles, we know
that 6, has a single zero. And by Lemma 4 this zero is in 0. Now con-
sider Vi, + A = Vyy for some A € A. As 0,(2 + \) = e, (A, 2)0,(2)
we obtain that 6, has the only zero 0+ A = X in V,,;» and this is a
simple zero. But C = UxcpV w4a. Hence 0, has zeros exactly in A
and all zeros are simple. (I

Corollary 6. Let { = at + b with a, b € R. We have ¢(z) = 0
precisely for all z € 0 — € + A and all its zeros are simple.

Proof. We know 6,(z) =0 if and only if z € A and all the zeros are
simple. Hence
0c(2) = 0 L exp(miar + 2mia(z + b))0(z + €) = 0

il exp (mia®T + 2mia(z + b))

B )
bOe(z+E—0)=0

Sz+E—0el

Szeoc—E+A

In particular we have 0(z) = 0 if and only if z € o + A. O

So far we have considered entire quasi-periodic functions. Now
we want to use our knowledge about them to see what meromorphic
doubly-periodic functions with given zeros a; and poles b; of given
order n; resp. m; and number n resp. m look like. Furthermore we
will decide whether such a function exists or not and whether it is
unique or not.

Abel’s Theorem 7. There is a meromorphic function on C/A with
zeros [a;] of order n; for 1 < i < n and poles [b;] of order m; for
1 <j <mifand only if 35_ ni = 370 my and Y31, nila;] =
Z;’nzl m;[b;].

Moreover, such a function is unique up to a constant factor.

Proof. “=" Let f: C/A — C be a meromorphic function with zeros
[a;] of order n; and poles [b;] of order m;. Choose w € C such that
Vw ={w+2 € C:z=t7+ ty for some 0 < ¢1,t2 < 1} contains
a representative a; resp. b; for every zero resp. pole of f. Further
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consider the paths

along the border of V,, and the paths
@i 1 [0,1] = C;t v a; 4 rie*™
B :10,1] = C;t —b; + sjezmt

around the zeros resp. poles of f where r; resp. s; is chosen small
enough that D; = {z € C: |z —a;| < r;} resp. D} = {z € C:
|z — b;| < s;} contains no other zeros or poles of f.

w+T v w+1l+71

azi(Dz Yo
/ B
D) o
X

0,1'2

bj;

w « w+1

FIGURE 3

Here, w € C is chosen such that the parallelogram V,, = w4+ V|
contains a representative a; resp. b; for every zero resp. pole of f.
The paths «, 3, v and 0 run along the border of V,,, the paths o,
around the zero a;, of f and the path 3;, around the pole b;, of f.

First we show that Y/, na; — >72; m;b; € A as follows:

n m n 1 f, m 1 f,
Zmaimejbj:Z%/ 27(2) derZ% z?(z) dz
i=1 j=1 i=1 i j=1 Bj

1 !
=— zf—(z) dz e A
2mi OV
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To establish the first equality note that we can write
f(2) = ci(z = ai)" hi(2)
for a constant ¢; and with h;(a;) = 1 around a; and hence
f'(2) = cing(z — a;)™ " hi(2)
with h;(a;) = 1. We obtain

mhi)

z—aihi

L
/

(2) =z
with %(ai) = 1. Hence we have

1 !/
o . zf7(z) dz =n;a;

by Cauchy’s integral formula for discs. The same holds for the poles
of f.
The second equality is clear since V,, contains a representative for
every zero and pole of f in C/A.
/

To see, that QLTK'Z 27(2) dz is an element of A, note that
OV,
1 1! 1 ! I ’
3t | 77 d = 5 [ A0 @
1 /
=557 | =0+ L0 =0+ )1 i
1 1 f/
= “omi /. (l—t)T(a(l—t)) dt
1 1 f/
~omi ), 7'7(04(1 —t))dt

_ f
=—3 QZT(Z) dz—T%/QT(Z) dz
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and

Fyae= 2 Mool 6w
2wp/ Jdz =g | SOF @@ di
1 !
- o [a-n-nL

omi (B(1=1t) =1))(—7) dt
2m/61_t B(l—t))r dt

f/
+ 27” 7 —(B(1—t)Tdt
__1 f’ 1 [r
" ami g 2R+ o 5f(z)dz
hence
1 I 1 f’ 1 f/
5 avwz7(z)d2—% i f()dz—&—% f()dz
1 f’

! !
/ f / f 2)dze A
2m 271'2

sinceﬁfﬁg(z)dz L af( z)dz € Z.

’ 2mi

Secondly we show that

n

Zni—ij:% f?(z)dz
j=1

OV

=0

Again the first equality is clear, since V,, contains a representative
for every zero and pole of f in C/A.
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The second equality follows from:
1 ! 1 1 /
2mi ), f 2mi Jo  f
f/

T o

m/ f’ a1 - 1)) dt
2772/f/

(v(t)'(t) dt

( (I—=t)+7)(-1)dt

and
o [ F@ =5k [ Lo a
27”/ P80 -1 = 1) (=) dt
—% J}'(ﬁ(l—t))r dt
- ﬁ§< 2) dz
hence

B 1 f/ f/
3t o, T dz*fm/*@ 2m/

2m/f/ 2m/f/

“«<” Now let [a;], [b;] € C/A and n;, m; € N for 1 < i < n and

1 < j < m be such that 33;° n; = 3200 my and 3311 nifa;] =
Z;ﬂ 1 m;[b;]. We will construct a meromorphlc function f: C/A —
C with zeros [a;] of order n; and poles [b;] of order m;. We choose

representatives a;, b; € C for [a;] resp. [bj] such that Y  nja; =
>j=1m;b; and define the function

H?:l 05 (2 — a;)™

g:C—Cz— 55
Hj:l 00-(2 — bj)’mj
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where 60, is the theta function with characteristic %T + % Obviously
g is a meromorphic function with zeros in a; + A of order n; and poles
in b+ A of order m;. We have to show that g is doubly-periodic with
respect to A. Therefore we have to show that g(z + \) = g(z) for all
A € A. Tt suffices to show that g(z + 1) = ¢g(z) and g(z + 7) = g(2).

[T, 0s(z+1—a;)™ B [T, 05(z —a;)™ B
(z " 1) Hm 00(3 +1- bj)mj a Hm— 90(2 - bj)mj B g(Z)

Jj=1 j=1
and
[T 0o(z + 7 —a;)™
glz+T1 o
( )= =1 O,(z+ 7 —b;)mi
_ ITimi(eo (T2 — ai)fy (2 — a;))™
IT7%, (eo (7,2 = b;)00 (2 — b;))™
_ H?:l 60(7—’ Z— al)m H?:1 90(2 - az)m
[T72 eo(r, 2 = bj)™ [1)2, 05(2 — bj)™
T eo(T, 2 —a;)™
leemeta)”
i1 €o(T 2 = bj)™
but

= ( 27Tl(z—al+a- )m
HJ 1 ea( T,z —bj)mi H;n=1 exp(—2mi(z — bj + o))"
[T, exp(—2mi(z + 0'))
= [12, exp(=27i(z + o)™
[T, exp(2mia;)™
[}, exp(2mib;)™s
exp(—2mi(z + g)) iz m
- exp(—2mi(z + 0))23‘"’:1 mj
exp(2mi Y iy nia;)
" exp(2mi Sy myb;)

=1

So g(z+ 1) = g(2) as well. Hence g is doubly periodic w.r.t. A and
the function f : C/A — C with f([z]) = g(2) is well-defined and a
solution.
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Now suppose we are given two meromorphic functions f, g :
C/A — C with zeros [a;] of order n; and poles [b;] of order m;.
Then 5 has no zeros or poles. Hence it is constant. O

3. WEIERSTRASS p-FUNCTION

Now we want to capitalize on our work above. Therefore we consider
a very special periodic function, the Weierstraf3 p-function.

Definition. The Weierstrafi o — function is defined to be the
function p : C — C given by

(2) = 1 n 1 1
e =" (z=X)2 A2
Proposition 8. (Without proof) ¢ is a A-periodic meromorphic

function with poles of order 2 exactly in A.

The following lemma gives a connection between the Weierstrafl
p-function and our well known theta function with characteristic
1,1
g = 5 + 57’.

Lemma 9. There is a constant ¢ € C such that

plz) = - (Zi)/<z>+c

Note. The quotient Z—:’ isn’t doubly-periodic, but the derivative
Ny
(g—”) is doubly-periodic.
O

To see this consider 5 (z 4+ A) for some A = pr + ¢ € A.
0, ©) (eo(\2)0(2))" _ ep (A 2)00(2) + ea(N, 2)0, ()
Z(z4+A) = =
05 es(N, 2)0,(2) es (A, 2)0,(2)

def exp’ (mi\ — wip?T — 2mip(z 4 0))0,(2) + €5 (A, )0, (2)

N ex (A, 2)04(2)

“mipes (0 2)05(2) + e (A 2)84(2)
e (A, 2)05(2)

/ /

= —2mip+ Z—Z(z) # Z—Z(z)

as in general p # 0. From the equation %(z + ) = —2mip + Z—:’(z)

SN/
above it follows directly that (g—z) is doubly-periodic.
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Proof. We know that 6, is holomorphic and has its zeros precisely

in the lattice points A € A. That means that the expansion of Z—” in

a Laurent series around 0 looks like

0’ 1
0—"(2’) =a_1-+ag+ a1z + axz® + azz® + terms of higher order
- z

for some constants a; € C. We can choose a neighborhood U of 0
such that 0 is the only zero of 6, in U. As 0 is a single zero we know

that
o, 0!
a—1 = Resg (é) = /{l i(z) dz=1

where « : [0,1] — C;t +— re?™ for some suitable r. We conclude
9/
0o

and calculate

(z) = 2 +ag 4+ a1z + a2z + azz® + terms of higher order

0\’ 1
<90) (z) = 2 + ay + 2as2 + 3azz? + terms of higher order

Ny
If we add p and (%) then we obtain

@(Z)Jr(Z:;)l(Z): > ((2:_1/\)2—)\12>+a1+2a22+3a322+...

0#£NEA

Ny
From this sum we see directly that o+ (Z—”) doesn’t have any poles

Ny
in U. Hence p + (%) is holomorphic in a neighborhood of 0 and

thus holomorphic everywhere. As it is in addition doubly-periodic
/ /
(since g is as well as (Z—") doubly-periodic) we know from our very

first lemma that it must be constant. O

The Weierstra3 p-function satisfies a number of equations and
differential equation. This feature makes the Weierstrafl p-function
to be of interest. The most important differential equation that is
satisfied by the Weierstrafl p-function is the following:

Theorem 10. The Weierstrafl p -function satisfies the differential

equation
2

0 (2)? = e3p(2)® + cap(2)? + c19(2) + co
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where the constants
1
c3=4,c=0,c1=-60 »_ 11 and co = 140 >
0£AEA 0#£AEA

depend on the lattice A.

Proof. Consider p(z) — % = Do04NeA (ﬁ - %) This function
is holomorphic in a neighborhood of 0. We can expand the sum-

1 1.
mands m — 3z

1 1

(A <<1§ 1)
1 Ooz
A(ZA)

1 22 23 24
2 3 4 5
)\2<)\+ )\2+)\3+/\4+ )

2,2 2,3 4

—2F+3F +4F+5F
This sum is absolutely convergent for all z € C with |z| < |A|; in
particular in a neighbourhood of 0.
To simplify the big sum from above we define s, := ZO#\GA )\n—lﬂ
for n € N. Note that s, = 0 for all odd n € N. We obtain

1
p(2) = = +2s12 + 3592% + 4532° + Bsgzt + ...
z

1
==+ 33222 + 58424 + 75626 o
z

which is true in a neigborhood of 0. With the constants

1
cs5=4,c0=0,c1 =—60 Z 17 and ¢p = 140 Z

0£AEA 0#AEA
we obtain
1
p(z) = 27 %22 ;08 2% 4+ terms of higher order
hence
2
o (2) = —5 %z - %Oz + terms of higher order
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4 21 4
o (2)* = T %2—2 + % + terms of higher order
and
1 3101 3
p(2)% = i 2%)12—2 — 2i80 + terms of higher order
Now consider
f(2) = ¢ (2)" = e3p(2)” — c1p(2) — o
The series of f has only positive powers of z. Hence f is holomorphic
around 0. Hence it is holomorphic everywhere. And as it is doubly-
periodic, it is constant. But the constant part of the series is %CO +
4-%00—6020. Hence f = 0. O

We will mention one more equation that is satisfied by the Weier-
strafl p-function:

Remark. Remember that our lattice A is generated by 1 and 7.

Hence the set of zeros of g’ is given by (% + A) U(% + A) U (HTT + A).

Set e; :=p (%), €2 =g (%), €3 =@ (H%) € C. Then we have
(9')? = 4p — e1)(p — e2)(p — e3)

and

€1+€2+63:0

eies + ejeg + eges = 161
1
€1€2€3 = _ZCO

where ¢y and ¢; are the constants from above.

Finally we will see how to use the Weierstraf§ p-function to give
a group structure to an elliptic curve.

Remark. If we consider the elliptic curve
C:={(z,y) € C? such that y? = c323 4 cox® + 1z + co}
for the constants

1 1
cs=4,c0=0,c1=—-60 ) 17 and ¢p = —140 > G
0£AEA 0#£XEN

from the theorem above then we have a bijection
C/AN\{0} — C given by z — (p(2), ¢'(2))

In particular we can give the variety C' the group structure of C/A.
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This can be extended to an embedding of C/A into the projective
plane. For more details see the article of M. Khalid [2].
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