# Theta Functions

#### MARINA FRANZ

ABSTRACT. On our analytic way to the group structure of an elliptic function we meet so called theta functions. These complex functions are entire and quasi-periodic with respect to a lattice  $\Lambda$ . In the proof of Abel's theorem we use their properties to characterise all meromorphic functions f from  $\mathbb{C}/\Lambda$  to  $\mathbb{C}$ . Finally we have a closer look at a very special and interesting  $\Lambda$ -periodic meromorphic function, the Weierstraß  $\wp$ -function. This function delivers an analytic way to give a group structure to an algebraic variety.

### 1. Introduction

First of all, we want to analyse periodic complex functions  $f: \mathbb{C} \to \mathbb{C}$  with respect to a lattice  $\Lambda$ . So let us fix once and for all a complex number  $\tau \in \mathbb{C}$ , Im  $\tau > 0$  and consider the lattice  $\Lambda := \mathbb{Z} \oplus \tau \mathbb{Z} \subset \mathbb{C}$ .



FIGURE 1. The lattice  $\Lambda = \mathbb{Z} \oplus \tau \mathbb{Z}$  and its fundamental parallelogram  $V = \{z = t_1 + t_2 \tau \in \mathbb{C} : 0 \le t_1, t_2 < 1\}.$ 

**Lemma 1.** An entire doubly-periodic complex function is constant.

To prove this lemma we need Liouville's Theorem, which we know from complex analysis. It states that each entire and bounded complex function  $f: \mathbb{C} \to \mathbb{C}$  is constant.

Proof. The values of a doubly-periodic function are completely determined by the values on the closure of the fundamental parallelogram  $\overline{V} = \{z \in \mathbb{C} : z = t_1 + t_2\tau \text{ for some } 0 \leq t_1, t_2 \leq 1\}$  which is a compact set. But a continuous function on a compact set is bounded. Hence our function is entire and bounded. Therefore it is constant by Liouville's Theorem.

As we have seen, *entire doubly-periodic* functions are not very interesting, so in the following we will consider *entire quasi-periodic* functions and use them to prove Abel's Theorem which says what *meromorphic doubly-periodic* functions look like.

### 2. Theta Functions and Abel's Theorem

**Definition.** The *basic theta function* is defined to be the function  $\theta : \mathbb{C} \to \mathbb{C}$  given by

$$\theta(z) := \theta(\tau)(z) := \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau) \exp(2\pi i n z)$$

**Note.** The function  $\theta$  depends on  $\tau$ . So for each  $\tau \in \mathbb{C}$  with Im  $\tau > 0$  we get a (not necessarily different) basic theta function. Hence there is a whole family of basic theta functions  $\{\theta(\tau)\}_{\tau \in \mathbb{C}, \text{Im } \tau > 0}$ . But here we assume  $\tau$  to be fixed, so we have only one basic theta function.

**Remark.** As the series in the definition above is locally uniformly unordered convergent (without proof) our basic theta function is an entire function.

**Lemma 2.** The basic theta function is quasi-periodic.

*Proof.* Consider  $\theta(z + \lambda)$  for  $\lambda \in \Lambda$ , i.e.  $\lambda = p\tau + q$  for  $p, q \in \mathbb{Z}$ . For  $\lambda = 1$ , i.e. for p = 0 and q = 1 we have

$$\theta(z+1) \stackrel{def}{=} \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau) \exp(2\pi i n (z+1))$$

$$= \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau + 2\pi i n z + 2\pi i n)$$

$$= \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau) \exp(2\pi i n z) \underbrace{\exp(2\pi i n)}_{=1 \text{ for all } n \in \mathbb{Z}}$$

$$= \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau) \exp(2\pi i n z)$$

$$\stackrel{def}{=} \theta(z)$$

Hence the basic theta function is periodic with respect to the x-direction.

For  $\lambda = \tau$ , i.e., for p = 1 and q = 0 we have

$$\theta(z+\tau) \stackrel{def}{=} \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau) \exp(2\pi i n (z+\tau))$$
$$= \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau + 2\pi i n z + 2\pi i n \tau)$$

if we complete the square and rearrange the summands then

$$= \sum_{n \in \mathbb{Z}} \exp\left(\pi i n^2 \tau + 2\pi i n \tau + \pi i \tau - \pi i \tau + 2\pi i n z + 2\pi i z - 2\pi i z\right)$$
$$= \exp(-\pi i \tau - 2\pi i z) \sum_{n \in \mathbb{Z}} \exp(\pi i (n+1)^2 \tau) \exp(2\pi i (n+1) z)$$

if we make a simple index shift m = n + 1 then

$$= \exp(-\pi i \tau - 2\pi i z) \sum_{m \in \mathbb{Z}} \exp(\pi i m^2 \tau) \exp(2\pi i m z)$$

$$\stackrel{def}{=} \exp(-\pi i \tau - 2\pi i z) \theta(z)$$

Hence the basic theta function is not periodic with respect to the  $\tau$ -direction as in general  $\exp(-\pi i\tau - 2\pi iz) \neq 1$ .

In the general case we obtain

$$\theta(z+\lambda) = \theta(z+p\tau+q)$$

$$\stackrel{def}{=} \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau) \exp(2\pi i n (z+p\tau+q))$$

$$= \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau + 2\pi i n z + 2\pi i n p \tau + 2\pi i n q)$$

if we complete the square and rearrange the summands then

$$= \sum_{n \in \mathbb{Z}} \exp\left(\pi i n^2 \tau + 2\pi i n p \tau + \pi i p^2 \tau - \pi i p^2 \tau\right)$$

$$+ 2\pi i n z + 2\pi i p z - 2\pi i p z + 2\pi i n q$$

$$= \exp(-\pi i p^2 \tau - 2\pi i p z)$$

$$\cdot \sum_{n \in \mathbb{Z}} \left[\exp(\pi i (n+p)^2 \tau) \exp(2\pi i (n+p) z)\right]$$

$$= \exp(2\pi i n q)$$

$$= \exp(-\pi i p^2 \tau - 2\pi i p z)$$

$$\cdot \sum_{n \in \mathbb{Z}} \exp(\pi i (n+p)^2 \tau) \exp(2\pi i (n+p) z)$$

if we make a simple index shift m = n + p then

$$\begin{split} &= \exp(-\pi i p^2 \tau - 2\pi i p z) \sum_{m \in \mathbb{Z}} \exp(\pi i m^2 \tau) \exp(2\pi i m z) \\ &\stackrel{def}{=} \exp(-\pi i p^2 \tau - 2\pi i p z) \theta(z) \end{split}$$

Hence the basic theta function  $\theta$  is quasi-periodic with

$$\theta(z+\lambda) = \theta(z+p\tau+q)$$
  
=  $\exp(-\pi i p^2 \tau - 2\pi i pz)\theta(z)$ 

for all 
$$\lambda = p\tau + q \in \Lambda$$
 and  $z \in \mathbb{C}$ .

**Definition.** We define

$$e(\lambda, z) := \exp(-\pi i p^2 \tau - 2\pi i p z)$$

and call this the automorphy factor.

**Remark.** We have  $e(\lambda_1 + \lambda_2, z) = e(\lambda_1, z + \lambda_2)e(\lambda_2, z)$  for all  $\lambda_1$ ,  $\lambda_2 \in \Lambda$ .

Let  $\lambda_1, \lambda_2 \in \Lambda$ , i.e.  $\lambda_1 = p_1\tau + q_1$  and  $\lambda_2 = p_2\tau + q_2$  for some  $p_1$ ,  $p_2, q_1, q_2 \in \mathbb{Z}$ , and thus  $\lambda_1 + \lambda_2 = (p_1 + p_2)\tau + (q_1 + q_2) \in \Lambda$ . Then

$$e(\lambda_{1} + \lambda_{2}, z) = e((p_{1} + p_{2})\tau + (q_{1} + q_{2}), z)$$

$$\stackrel{def}{=} \exp(-\pi i (p_{1} + p_{2})^{2}\tau - 2\pi i (p_{1} + p_{2})z))$$

$$= \exp(-\pi i p_{1}^{2}\tau - 2\pi i p_{1}p_{2}\tau - \pi i p_{2}^{2}\tau - 2\pi i p_{1}z - 2\pi i p_{2}z)$$

$$\stackrel{def}{=} \exp(-\pi i p_{1}^{2}\tau - 2\pi i p_{1}p_{2}\tau - 2\pi i p_{1}z)e(\lambda_{2}, z)$$

$$= \exp(-\pi i p_{1}^{2}\tau - 2\pi i p_{1}z - 2\pi i p_{1}p_{2}\tau - \underbrace{2\pi i p_{1}q_{2}}_{\exp(2\pi i p_{1}q_{2})=1})$$

$$\cdot e(\lambda_{2}, z)$$

$$= \exp(-\pi i p_{1}^{2}\tau - 2\pi i p_{1}(z + \lambda_{2}))e(\lambda_{2}, z)$$

$$\stackrel{def}{=} e(\lambda_{1}, z + \lambda_{2})e(\lambda_{2}, z)$$

**Summary.** The basic theta function  $\theta : \mathbb{C} \to \mathbb{C}$  is entire and quasi-periodic with automorphy factor e, i.e., we have

$$\theta(z+\lambda) = e(\lambda, z)\theta(z) = \exp(-\pi i p^2 \tau - 2\pi i p z)\theta(z) \tag{1}$$

for all  $\lambda = p\tau + q \in \Lambda$  and all  $z \in \mathbb{C}$ .

Now we want to enlarge our category of theta functions. So far we have only one (basic) theta function corresponding to the point  $0 \in \mathbb{C}$  (and each point  $q \in \mathbb{Z} \subset \mathbb{C}$ ). Now, for our fixed  $\tau$ , we will define a new theta function for each point in  $\mathbb{C}$ . Therefore let's start with our old theta function and translate z by a fixed  $\xi$ , i.e. consider  $\theta(z + \xi)$  for  $\xi = a\tau + b$  for some fixed  $a, b \in \mathbb{R}$ :

$$\theta(z+\xi) = \theta(z+a\tau+b)$$

$$\stackrel{def}{=} \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau) \exp(2\pi i n (z+a\tau+b))$$

$$= \sum_{n \in \mathbb{Z}} \exp(\pi i n^2 \tau + 2\pi i n z + 2\pi i n a \tau + 2\pi i n b)$$

If we complete the square and rearrange the summands then we obtain

$$\begin{split} \theta(z+\xi) &= \sum_{n \in \mathbb{Z}} \exp\left(\pi i n^2 \tau + 2\pi i n a \tau + \pi i a^2 \tau - \pi i a^2 \tau \right. \\ &\quad + 2\pi i n (z+b) + 2\pi i a (z+b) - 2\pi i a (z+b)) \\ &= \exp(-\pi i a^2 \tau - 2\pi i a (z+b)) \\ &\quad \cdot \sum_{n \in \mathbb{Z}} \exp(\pi i (n+a)^2 \tau) \exp(2\pi i (n+a) (z+b)) \end{split}$$

Note that the sum  $\sum_{n\in\mathbb{Z}} \exp(\pi i (n+a)^2 \tau) \exp(2\pi i (n+a)(z+b))$  looks very similar to the sum in the definition of our basic theta function above.

**Definition.** For  $\xi = a\tau + b$  and  $a, b \in \mathbb{R}$  the modified theta function is defined to be the function  $\theta_{\xi} : \mathbb{C} \to \mathbb{C}$  given by

$$\theta_{\xi}(z) := \theta_{\xi}(\tau)(z) := \sum_{n \in \mathbb{Z}} \exp(\pi i (n+a)^2 \tau) \exp(2\pi i (n+a)(z+b))$$

and  $\xi$  is called theta characteristic.

**Note.** From the calculation above we obtain a relation between the basic theta function and the modified theta function with characteristic  $\xi = a\tau + b$  for some fixed  $a, b \in \mathbb{R}$ :

$$\theta_{\xi}(z) = \sum_{n \in \mathbb{Z}} \exp(\pi i (n+a)^2 \tau) \exp(2\pi i (n+a)(z+b))$$
 (2)

$$= \exp(\pi i a^2 \tau + 2\pi i a(z+b))\theta(z+\xi) \tag{3}$$

for all  $z \in \mathbb{C}$ .

**Remark.** As the series in the definition is locally uniformly unordered convergent (without proof) the modified theta functions are entire functions.

Lemma 3. Modified theta functions are quasi-periodic functions.

*Proof.* Let  $a, b \in \mathbb{R}$  such that  $\xi = a\tau + b$  is the characteristic of the modified theta function  $\theta_{\xi}$ . Consider  $\theta_{\xi}(z + \lambda)$  for  $\lambda = p\tau + q \in \Lambda$ .

$$\theta_{\xi}(z+\lambda) \stackrel{(3)}{=} \exp(\pi i a^{2}\tau + 2\pi i a(z+\lambda+b))\theta(z+\lambda+\xi)$$

$$\stackrel{(1)}{=} \exp(\pi i a^{2}\tau + 2\pi i a(z+\lambda+b))e(\lambda,z+\xi)\theta(z+\xi)$$

$$\stackrel{(3)}{=} \exp(\pi i a^{2}\tau + 2\pi i a(z+\lambda+b))e(\lambda,z+\xi)$$

$$\cdot \exp(-\pi i a^{2}\tau - 2\pi i a(z+b))\theta_{\xi}(z)$$

$$= \exp(2\pi i a\lambda) \exp(-\pi i p^{2}\tau - 2\pi i p(z+\xi))\theta_{\xi}(z)$$

$$= \exp(2\pi i a\lambda - \pi i p^{2}\tau - 2\pi i p(z+\xi))\theta_{\xi}(z)$$

Hence the modified theta function  $\theta_{\xi}$  is quasi-periodic with

$$\theta_{\xi}(z+\lambda) = \theta_{a\tau+b}(z+p\tau+q)$$
$$= \exp(2\pi i a\lambda - \pi i p^{2}\tau - 2\pi i p(z+\xi))\theta_{\xi}(z)$$

for all  $\lambda = p\tau + q \in \Lambda$  and  $z \in \mathbb{C}$ .

**Definition.** Let  $a, b \in \mathbb{R}$  be fixed and let  $\xi = a\tau + b$ . We define

$$e_{\xi}(\lambda, z) := \exp(2\pi i a \lambda - \pi i p^2 \tau - 2\pi i p(z + \xi))$$

and call this the automorphy factor.

**Remark.** Let  $a, b \in \mathbb{R}$  be fixed and let  $\xi = a\tau + b$ . We have  $e_{\xi}(\lambda_1 + \lambda_2, z) = e_{\xi}(\lambda_1, z + \lambda_2)e_{\xi}(\lambda_2, z)$  for all  $\lambda_1, \lambda_2 \in \Lambda$ .

Let  $\lambda_1, \lambda_2 \in \Lambda$ , i.e.  $\lambda_1 = p_1\tau + q_1$  and  $\lambda_2 = p_2\tau + q_2$  for some  $p_1$ ,  $p_2, q_1, q_2 \in \mathbb{Z}$ , and  $\lambda_1 + \lambda_2 = (p_1 + p_2)\tau + (q_1 + q_2) \in \Lambda$ . Then

$$e_{\xi}(\lambda_{1} + \lambda_{2}, z) = e_{\xi}((p_{1} + p_{2})\tau + (q_{1} + q_{2}), z)$$

$$\stackrel{def}{=} \exp\left(2\pi i a(\lambda_{1} + \lambda_{2}) - \pi i (p_{1} + p_{2})^{2}\tau - 2\pi i (p_{1} + p_{2})(z + \xi)\right)$$

$$= \exp\left(2\pi i a\lambda_{1} + 2\pi i a\lambda_{2} - \pi i p_{1}^{2}\tau - 2\pi i p_{1}p_{2}\tau - \pi i p_{2}^{2}\tau - 2\pi i p_{1}(z + \xi) - 2\pi i p_{2}(z + \xi)\right)$$

$$\begin{array}{l} \stackrel{def}{=} \exp(2\pi i a \lambda_1 - \pi i p_1^2 \tau - 2\pi i p_1 p_2 \tau - 2\pi i p_1 (z + \xi)) \\ e_{\xi}(\lambda_2, z) \\ = \exp\left(2\pi i a \lambda_1 - \pi i p_1^2 \tau - 2\pi i p_1 p_2 \tau - \underbrace{2\pi i p_1 q_2}_{\exp(2\pi i p_1 q_2) = 1} \right. \\ \left. - 2\pi i p_1 (z + \xi)\right) e_{\xi}(\lambda_2, z) \\ = \exp(2\pi i a \lambda_1 - \pi i p_1^2 \tau - 2\pi i p_1 (z + \lambda_2 + \xi)) e_{\xi}(\lambda_2, z) \\ \stackrel{def}{=} e_{\xi}(\lambda_1, z + \lambda_2) e_{\xi}(\lambda_2, z) \end{array}$$

**Summary.** Let  $\xi = a\tau + b$  with  $a, b \in \mathbb{R}$  fixed. The modified theta function with characteristic  $\xi$  is entire and quasi-periodic with automorphy factor  $e_{\xi}$ , i.e. we have

$$\theta_{\xi}(z+\lambda) = e_{\xi}(\lambda, z)\theta_{\xi}(z)$$

$$= \exp(2\pi i a\lambda - \pi i p^{2}\tau - 2\pi i p(z+\xi))\theta_{\xi}(z)$$
(5)

for all  $\lambda = p\tau + q \in \Lambda$  and all  $z \in \mathbb{C}$ .

Now we want to determine all zeros of all theta functions. Therefore we consider a special modified theta function, the theta function with characteristic  $\sigma := \frac{1}{2}\tau + \frac{1}{2}$ . In this case the determination of zeros is very simple because the zeros are easy to describe.

**Lemma 4.**  $\theta_{\sigma}$  is an odd function, i.e.  $\theta_{\sigma}(-z) = -\theta_{\sigma}(z)$  for all  $z \in \mathbb{C}$ . In particular we have  $\theta_{\sigma}(0) = 0$ .

*Proof.* We have

$$\theta_{\sigma}(-z) = \theta_{\frac{1}{2}\tau + \frac{1}{2}}(-z)$$

$$\stackrel{def}{=} \sum_{n \in \mathbb{Z}} \left[ \exp\left(\pi i \left(n + \frac{1}{2}\right)^{2} \tau\right) \right.$$

$$\left. \exp\left(2\pi i \left(n + \frac{1}{2}\right) \left(-z + \frac{1}{2}\right)\right) \right]$$

if we make a simple index shift m = -n - 1 then

$$\begin{split} &= \sum_{m \in \mathbb{Z}} \left[ \exp\left(\pi i \left(-m - \frac{1}{2}\right)^2 \tau\right) \right. \\ &\left. \exp\left(2\pi i \left(-m - \frac{1}{2}\right) \left(-z + \frac{1}{2}\right)\right) \right] \\ &= \sum_{m \in \mathbb{Z}} \left[ \exp\left(\pi i \left(m + \frac{1}{2}\right)^2 \tau\right) \right. \\ &\left. \exp\left(2\pi i \left(m + \frac{1}{2}\right) \left(z + \frac{1}{2}\right) - 2\pi i \left(m + \frac{1}{2}\right)\right) \right] \\ &= \sum_{m \in \mathbb{Z}} \left[ \exp\left(\pi i \left(m + \frac{1}{2}\right)^2 \tau\right) \right. \\ &\left. \exp\left(2\pi i \left(m + \frac{1}{2}\right) \left(z + \frac{1}{2}\right)\right) \stackrel{def}{=} -\theta_{\sigma}(z). \end{split}$$

From complex analysis we know a simple way to count zeros and poles of a meromorphic function  $f: \mathbb{C} \to \mathbb{C}$ :

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}(z) dz = \text{total number of zeros - total number of poles}$$

where  $\gamma$  is a piecewise smooth path that runs around each zero and each pole exactly one time. We will use this integral to determine all zeros of the theta functions  $\theta_{\sigma}$  with  $\sigma = \frac{1}{2}\tau + \frac{1}{2}$ .

**Lemma 5.** We have  $\theta_{\sigma}(z) = 0$  precisely for all  $z \in \Lambda$  and all zeros are simple zeros.

*Proof.* Consider the fundamental parallelogram  $V:=\{z\in\mathbb{C}:z=t_1\tau+t_2\text{ for some }0\leq t_1,t_2<1\}$ . Choose  $w\in\mathbb{C}$  such that the border of  $V_w:=w+V$  contains no zeros of  $\theta_\sigma$  and  $0\in V_w$ .

Further consider the following paths along the border of  $V_w$ :

$$\alpha: [0,1] \to \mathbb{C}; t \mapsto w + t$$

$$\beta: [0,1] \to \mathbb{C}; t \mapsto w + 1 + t\tau$$

$$\gamma: [0,1] \to \mathbb{C}; t \mapsto w + (1-t) + \tau$$

$$\delta: [0,1] \to \mathbb{C}; t \mapsto w + (1-t)\tau$$



Figure 2

In the above figure  $w \in \mathbb{C}$  is chosen such that the border of the parallelogram  $V_w = w + V$  contains no zeros of f and such that  $0 \in V_w$ . The paths  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  run along the border of  $V_w$ . Note

$$\gamma(t) = w + (1 - t) + \tau = \alpha(1 - t) + \tau$$

and

$$\delta(t) = w + (1 - t)\tau = \beta(1 - t) - 1.$$

We want to show that  $\frac{1}{2\pi i} \int_{\partial V_w} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz = 1$ . Therefore we will show that

$$\frac{1}{2\pi i} \int_{\gamma} \frac{\theta_{\sigma}'}{\theta_{\sigma}}(z) \ dz = 1 - \frac{1}{2\pi i} \int_{\alpha} \frac{\theta_{\sigma}'}{\theta_{\sigma}}(z) \ dz$$

and

$$\frac{1}{2\pi i} \int_{\delta} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) \ dz = -\frac{1}{2\pi i} \int_{\beta} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) \ dz.$$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz = \frac{1}{2\pi i} \int_{0}^{1} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(\gamma(t))\gamma'(t) dt$$

$$= \frac{1}{2\pi i} \int_{0}^{1} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(\alpha(1-t)+\tau)(-1) dt$$

$$= -\frac{1}{2\pi i} \int_{\alpha} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z+\tau) dz$$

$$= -\frac{1}{2\pi i} \int_{\alpha} \frac{e'_{\sigma}(\tau,z)\theta_{\sigma}(z) + e_{\sigma}(\tau,z)\theta'_{\sigma}(z)}{e_{\sigma}(\tau,z)\theta_{\sigma}(z)} dz$$

$$= -\frac{1}{2\pi i} \int_{\alpha} \frac{e'_{\sigma}(\tau,z)}{e_{\sigma}(\tau,z)} dz - \frac{1}{2\pi i} \int_{\alpha} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz$$

when we use  $e_{\sigma}(\tau,z) = \exp(2\pi i \frac{1}{2}\tau - \pi i \tau - 2\pi i (z+\sigma))$  then the above expression becomes

$$-\frac{1}{2\pi i} \int_{\alpha} \frac{\exp'(-2\pi i(z+\sigma))}{\exp(-2\pi i(z+\sigma))} dz - \frac{1}{2\pi i} \int_{\alpha} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz$$

$$= -\frac{1}{2\pi i} \int_{\alpha} -2\pi i dz - \frac{1}{2\pi i} \int_{\alpha} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz$$

$$= 1 - \frac{1}{2\pi i} \int_{\alpha} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz$$

$$\begin{split} \frac{1}{2\pi i} \int_{\delta} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) \; dz &= \frac{1}{2\pi i} \int_{0}^{1} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(\delta(t))\delta'(t) \; dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(\beta(1-t)-1)(-\tau) \; dt \\ &= -\frac{1}{2\pi i} \int_{\beta} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z-1) \; dz \\ &= -\frac{1}{2\pi i} \int_{\beta} \frac{e'_{\sigma}(-1,z)\theta_{\sigma}(z) + e_{\sigma}(-1,z)\theta'_{\sigma}(z)}{e_{\sigma}(-1,z)\theta_{\sigma}(z)} \; dz \\ &= -\frac{1}{2\pi i} \int_{\beta} \frac{e'_{\sigma}(-1,z)}{e_{\sigma}(-1,z)} \; dz - \frac{1}{2\pi i} \int_{\beta} \frac{\theta'_{\sigma}(z)}{\theta_{\sigma}(z)} \; dz \end{split}$$

when we use

$$e_{\sigma}(-1,z) = \exp(-2\pi i \frac{1}{2})$$

then

$$= -\frac{1}{2\pi i} \int_{\beta} \frac{\exp'(-\pi i)}{\exp(-\pi i)} dz - \frac{1}{2\pi i} \int_{\beta} \frac{\theta'_{\sigma}(z)}{\theta_{\sigma}(z)} dz$$
$$= -\frac{1}{2\pi i} \int_{\beta} \frac{\theta'_{\sigma}(z)}{\theta_{\sigma}(z)} dz$$

Then we have

$$\frac{1}{2\pi i} \int_{\partial V_w} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz = \frac{1}{2\pi i} \int_{\alpha} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz + \frac{1}{2\pi i} \int_{\beta} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz + \frac{1}{2\pi i} \int_{\delta} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz + \frac{1}{2\pi i} \int_{\delta} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) dz$$

As  $\theta_{\sigma}$  is holomorphic in  $\overline{V_w}$ , i.e. it doesn't have any poles, we know that  $\theta_{\sigma}$  has a single zero. And by Lemma 4 this zero is in 0. Now consider  $\overline{V}_w + \lambda = \overline{V}_{w+\lambda}$  for some  $\lambda \in \Lambda$ . As  $\theta_{\sigma}(z+\lambda) = e_{\sigma}(\lambda,z)\theta_{\sigma}(z)$  we obtain that  $\theta_{\sigma}$  has the only zero  $0 + \lambda = \lambda$  in  $\overline{V}_{w+\lambda}$  and this is a simple zero. But  $\mathbb{C} = \bigcup_{\lambda \in \Lambda} \overline{V}_{w+\lambda}$ . Hence  $\theta_{\sigma}$  has zeros exactly in  $\Lambda$  and all zeros are simple.

**Corollary 6.** Let  $\xi = a\tau + b$  with  $a, b \in \mathbb{R}$ . We have  $\theta_{\xi}(z) = 0$  precisely for all  $z \in \sigma - \xi + \Lambda$  and all its zeros are simple.

*Proof.* We know  $\theta_{\sigma}(z) = 0$  if and only if  $z \in \Lambda$  and all the zeros are simple. Hence

$$\theta_{\xi}(z) = 0 \stackrel{\text{(3)}}{\Leftrightarrow} \exp(\pi i a^{2} \tau + 2\pi i a(z+b)) \theta(z+\xi) = 0$$

$$\stackrel{\text{(3)}}{\Leftrightarrow} \exp\left(\pi i a^{2} \tau + 2\pi i a(z+b)\right)$$

$$\cdot \exp\left(-\pi i \left(\frac{1}{2}\right)^{2} \tau - 2\pi i \frac{1}{2} \left(z+\xi - \frac{1}{2}\tau - \frac{1}{2} + \frac{1}{2}\right)\right)$$

$$\cdot \theta_{\sigma}(z+\xi-\sigma) = 0$$

$$\Leftrightarrow z+\xi-\sigma \in \Lambda$$

$$\Leftrightarrow z \in \sigma - \xi + \Lambda$$

In particular we have  $\theta(z) = 0$  if and only if  $z \in \sigma + \Lambda$ .

So far we have considered entire quasi-periodic functions. Now we want to use our knowledge about them to see what meromorphic doubly-periodic functions with given zeros  $a_i$  and poles  $b_j$  of given order  $n_i$  resp.  $m_j$  and number n resp. m look like. Furthermore we will decide whether such a function exists or not and whether it is unique or not.

**Abel's Theorem 7.** There is a meromorphic function on  $\mathbb{C}/\Lambda$  with zeros  $[a_i]$  of order  $n_i$  for  $1 \leq i \leq n$  and poles  $[b_j]$  of order  $m_j$  for  $1 \leq j \leq m$  if and only if  $\sum_{i=1}^n n_i = \sum_{j=1}^m m_j$  and  $\sum_{i=1}^n n_i [a_i] = \sum_{j=1}^m m_j [b_j]$ .

Moreover, such a function is unique up to a constant factor.

*Proof.* " $\Rightarrow$ " Let  $f: \mathbb{C}/\Lambda \to \mathbb{C}$  be a meromorphic function with zeros  $[a_i]$  of order  $n_i$  and poles  $[b_j]$  of order  $m_j$ . Choose  $w \in \mathbb{C}$  such that  $V_w = \{w + z \in \mathbb{C} : z = t_1\tau + t_2 \text{ for some } 0 \leq t_1, t_2 < 1\}$  contains a representative  $a_i$  resp.  $b_j$  for every zero resp. pole of f. Further

consider the paths

$$\begin{split} &\alpha:[0,1]\to\mathbb{C};t\mapsto w+t\\ &\beta:[0,1]\to\mathbb{C};t\mapsto w+1+t\tau\\ &\gamma:[0,1]\to\mathbb{C};t\mapsto w+(1-t)+\tau\\ &\delta:[0,1]\to\mathbb{C};t\mapsto w+(1-t)\tau \end{split}$$

along the border of  $V_w$  and the paths

$$\alpha_i : [0,1] \to \mathbb{C}; t \mapsto a_i + r_i e^{2\pi i t}$$
  
 $\beta_i : [0,1] \to \mathbb{C}; t \mapsto b_i + s_i e^{2\pi i t}$ 

around the zeros resp. poles of f where  $r_i$  resp.  $s_j$  is chosen small enough that  $D_i = \{z \in \mathbb{C} : |z - a_i| < r_i\}$  resp.  $D'_j = \{z \in \mathbb{C} :$  $|z - b_j| < s_j$  contains no other zeros or poles of f.



FIGURE 3

Here,  $w \in \mathbb{C}$  is chosen such that the parallelogram  $V_w = w + V$ contains a representative  $a_i$  resp.  $b_j$  for every zero resp. pole of f. The paths  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  run along the border of  $V_w$ , the paths  $\alpha_{i_0}$ around the zero  $a_{i_0}$  of f and the path  $\beta_{j_0}$  around the pole  $b_{j_0}$  of f. First we show that  $\sum_{i=1}^n n_i a_i - \sum_{j=1}^m m_j b_j \in \Lambda$  as follows:

$$\sum_{i=1}^{n} n_i a_i - \sum_{j=1}^{m} m_j b_j = \sum_{i=1}^{n} \frac{1}{2\pi i} \int_{\alpha_i} z \frac{f'}{f}(z) dz + \sum_{j=1}^{m} \frac{1}{2\pi i} \int_{\beta_j} z \frac{f'}{f}(z) dz$$
$$= \frac{1}{2\pi i} \int_{\partial V_w} z \frac{f'}{f}(z) dz \in \Lambda$$

To establish the first equality note that we can write

$$f(z) = c_i(z - a_i)^{n_i} h_i(z)$$

for a constant  $c_i$  and with  $h_i(a_i) = 1$  around  $a_i$  and hence

$$f'(z) = c_i n_i (z - a_i)^{n_i - 1} \overline{h}_i(z)$$

with  $\overline{h}_i(a_i) = 1$ . We obtain

$$z\frac{f'}{f}(z) = z\frac{n_i}{z - a_i} \frac{\overline{h}_i}{h_i}(z)$$

with  $\frac{\overline{h}_i}{h_i}(a_i) = 1$ . Hence we have

$$\frac{1}{2\pi i} \int_{\alpha_i} z \frac{f'}{f}(z) \ dz = n_i a_i$$

by Cauchy's integral formula for discs. The same holds for the poles of f.

The second equality is clear since  $V_w$  contains a representative for every zero and pole of f in  $\mathbb{C}/\Lambda$ .

To see, that  $\frac{1}{2\pi i} \int_{\partial V_{in}} z \frac{f'}{f}(z) dz$  is an element of  $\Lambda$ , note that

$$\begin{split} \frac{1}{2\pi i} \int_{\gamma} z \frac{f'}{f}(z) \ dz &= \frac{1}{2\pi i} \int_{0}^{1} \gamma(t) \frac{f'}{f}(\gamma(t)) \gamma'(t) \ dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} (\alpha(1-t) + \tau) \frac{f'}{f} ((\alpha(1-t) + \tau))(-1) \ dt \\ &= -\frac{1}{2\pi i} \int_{0}^{1} \alpha(1-t) \frac{f'}{f} (\alpha(1-t)) \ dt \\ &- \frac{1}{2\pi i} \int_{0}^{1} \tau \frac{f'}{f} (\alpha(1-t)) \ dt \\ &= -\frac{1}{2\pi i} \int_{\alpha} z \frac{f'}{f}(z) \ dz - \tau \frac{1}{2\pi i} \int_{\alpha} \frac{f'}{f}(z) \ dz \end{split}$$

and

$$\begin{split} \frac{1}{2\pi i} \int_{\delta} z \frac{f'}{f}(z) \; dz &= \frac{1}{2\pi i} \int_{0}^{1} \delta(t) \frac{f'}{f}(\delta(t)) \delta'(t) \; dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} \left(\beta(1-t) - 1\right) \frac{f'}{f}((\beta(1-t) - 1)) (-\tau) \; dt \\ &= -\frac{1}{2\pi i} \int_{0}^{1} \beta(1-t) \frac{f'}{f} (\beta(1-t)) \tau \; dt \\ &+ \frac{1}{2\pi i} \int_{0}^{1} \frac{f'}{f} (\beta(1-t)) \tau \; dt \\ &= -\frac{1}{2\pi i} \int_{\beta} z \frac{f'}{f}(z) \; dz + \frac{1}{2\pi i} \int_{\beta} \frac{f'}{f}(z) \; dz \end{split}$$

hence

$$\begin{split} \frac{1}{2\pi i} \int_{\partial V_w} z \frac{f'}{f}(z) \; dz &= \frac{1}{2\pi i} \int_{\alpha} z \frac{f'}{f}(z) \; dz + \frac{1}{2\pi i} \int_{\beta} z \frac{f'}{f}(z) \; dz \\ &+ \frac{1}{2\pi i} \int_{\gamma} z \frac{f'}{f}(z) \; dz + \frac{1}{2\pi i} \int_{\delta} z \frac{f'}{f}(z) \; dz \\ &= -\tau \frac{1}{2\pi i} \int_{\alpha} \frac{f'}{f}(z) \; dz + \frac{1}{2\pi i} \int_{\beta} \frac{f'}{f}(z) \; dz \in \Lambda \end{split}$$

since  $\frac{1}{2\pi i} \int_{\beta} \frac{f'}{f}(z) dz$ ,  $\frac{1}{2\pi i} \int_{\alpha} \frac{f'}{f}(z) dz \in \mathbb{Z}$ .

Secondly we show that

$$\sum_{i=1}^{n} n_i - \sum_{j=1}^{m} m_j = \frac{1}{2\pi i} \int_{\partial V_w} \frac{f'}{f}(z) dz$$
$$= 0$$

Again the first equality is clear, since  $V_w$  contains a representative for every zero and pole of f in  $\mathbb{C}/\Lambda$ .

The second equality follows from:

$$\begin{split} \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}(z) \; dz &= \frac{1}{2\pi i} \int_{0}^{1} \frac{f'}{f}(\gamma(t)) \gamma'(t) \; dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} \frac{f'}{f} (\alpha(1-t) + \tau)(-1) \; dt \\ &= -\frac{1}{2\pi i} \int_{0}^{1} \frac{f'}{f} (\alpha(1-t)) \; dt \\ &= -\frac{1}{2\pi i} \int_{\alpha} \frac{f'}{f}(z) \; dz \end{split}$$

and

$$\begin{split} \frac{1}{2\pi i} \int_{\delta} \frac{f'}{f}(z) \; dz &= \frac{1}{2\pi i} \int_{0}^{1} \frac{f'}{f}(\delta(t)) \delta'(t) \; dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} \frac{f'}{f} (\beta(1-t) - 1) (-\tau) \; dt \\ &= -\frac{1}{2\pi i} \int_{0}^{1} \frac{f'}{f} (\beta(1-t)) \tau \; dt \\ &= -\frac{1}{2\pi i} \int_{\beta} \frac{f'}{f} (z) \; dz \end{split}$$

hence

$$\begin{split} \frac{1}{2\pi i} \int_{\partial V_w} \frac{f'}{f}(z) \; dz &= \frac{1}{2\pi i} \int_{\alpha} \frac{f'}{f}(z) \; dz + \frac{1}{2\pi i} \int_{\beta} \frac{f'}{f}(z) \; dz \\ &+ \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f}(z) \; dz + \frac{1}{2\pi i} \int_{\delta} \frac{f'}{f}(z) \; dz \\ &= 0. \end{split}$$

" $\Leftarrow$ " Now let  $[a_i]$ ,  $[b_j] \in \mathbb{C}/\Lambda$  and  $n_i$ ,  $m_j \in \mathbb{N}$  for  $1 \leq i \leq n$  and  $1 \leq j \leq m$  be such that  $\sum_{i=n}^n n_i = \sum_{j=m}^m m_j$  and  $\sum_{i=1}^n n_i [a_i] = \sum_{j=1}^m m_j [b_j]$ . We will construct a meromorphic function  $f : \mathbb{C}/\Lambda \to \mathbb{C}$  with zeros  $[a_i]$  of order  $n_i$  and poles  $[b_j]$  of order  $m_j$ . We choose representatives  $a_i$ ,  $b_j \in \mathbb{C}$  for  $[a_i]$  resp.  $[b_j]$  such that  $\sum_{i=1}^n n_i a_i = \sum_{j=1}^m m_j b_j$  and define the function

$$g: \mathbb{C} \to \mathbb{C}; z \mapsto \frac{\prod_{i=1}^n \theta_{\sigma}(z - a_i)^{n_i}}{\prod_{j=1}^m \theta_{\sigma}(z - b_j)^{m_j}}$$

where  $\theta_{\sigma}$  is the theta function with characteristic  $\frac{1}{2}\tau + \frac{1}{2}$ . Obviously g is a meromorphic function with zeros in  $a_i + \Lambda$  of order  $n_i$  and poles in  $b_j + \Lambda$  of order  $m_j$ . We have to show that g is doubly-periodic with respect to  $\Lambda$ . Therefore we have to show that  $g(z + \lambda) = g(z)$  for all  $\lambda \in \Lambda$ . It suffices to show that g(z + 1) = g(z) and  $g(z + \tau) = g(z)$ .

$$g(z+1) = \frac{\prod_{i=1}^{n} \theta_{\sigma}(z+1-a_{i})^{n_{i}}}{\prod_{j=1}^{m} \theta_{\sigma}(z+1-b_{j})^{m_{j}}} = \frac{\prod_{i=1}^{n} \theta_{\sigma}(z-a_{i})^{n_{i}}}{\prod_{j=1}^{m} \theta_{\sigma}(z-b_{j})^{m_{j}}} = g(z)$$

and

$$\begin{split} g(z+\tau) &= \frac{\prod_{i=1}^{n} \theta_{\sigma}(z+\tau-a_{i})^{n_{i}}}{\prod_{j=1}^{m} \theta_{\sigma}(z+\tau-b_{j})^{m_{j}}} \\ &= \frac{\prod_{i=1}^{n} (e_{\sigma}(\tau,z-a_{i})\theta_{\sigma}(z-a_{i}))^{n_{i}}}{\prod_{j=1}^{m} (e_{\sigma}(\tau,z-b_{j})\theta_{\sigma}(z-b_{j}))^{m_{j}}} \\ &= \frac{\prod_{i=1}^{n} e_{\sigma}(\tau,z-a_{i})^{n_{i}}}{\prod_{j=1}^{m} e_{\sigma}(\tau,z-b_{j})^{m_{j}}} \frac{\prod_{i=1}^{n} \theta_{\sigma}(z-a_{i})^{n_{i}}}{\prod_{j=1}^{m} \theta_{\sigma}(z-b_{j})^{m_{j}}} \\ &= \frac{\prod_{i=1}^{n} e_{\sigma}(\tau,z-a_{i})^{n_{i}}}{\prod_{j=1}^{m} e_{\sigma}(\tau,z-b_{j})^{m_{j}}} \cdot g(z) \end{split}$$

but

$$\begin{split} \frac{\prod_{i=1}^{n} e_{\sigma}(\tau, z - a_{i})^{n_{i}}}{\prod_{j=1}^{m} e_{\sigma}(\tau, z - b_{j})^{m_{j}}} &= \frac{\prod_{i=1}^{n} \exp(-2\pi i (z - a_{i} + \sigma))^{n_{i}}}{\prod_{j=1}^{m} \exp(-2\pi i (z - b_{j} + \sigma))^{m_{j}}} \\ &= \frac{\prod_{i=1}^{n} \exp(-2\pi i (z + \sigma))^{n_{i}}}{\prod_{j=1}^{m} \exp(-2\pi i (z + \sigma))^{m_{j}}} \\ &\cdot \frac{\prod_{i=1}^{n} \exp(2\pi i a_{i})^{n_{i}}}{\prod_{j=1}^{m} \exp(2\pi i b_{j})^{m_{j}}} \\ &= \frac{\exp(-2\pi i (z + \sigma))^{\sum_{i=1}^{n} n_{i}}}{\exp(-2\pi i (z + \sigma))^{\sum_{j=1}^{m} n_{j}}} \\ &\cdot \frac{\exp(2\pi i \sum_{i=1}^{n} n_{i} a_{i})}{\exp(2\pi i \sum_{j=1}^{m} m_{j} b_{j})} \\ &= 1. \end{split}$$

So  $g(z+\tau)=g(z)$  as well. Hence g is doubly periodic w.r.t.  $\Lambda$  and the function  $f:\mathbb{C}/\Lambda\to\mathbb{C}$  with f([z])=g(z) is well-defined and a solution.

Now suppose we are given two meromorphic functions  $f, g : \mathbb{C}/\Lambda \to \mathbb{C}$  with zeros  $[a_i]$  of order  $n_i$  and poles  $[b_j]$  of order  $m_j$ . Then  $\frac{f}{g}$  has no zeros or poles. Hence it is constant.

# 3. Weierstrass $\wp$ -function

Now we want to capitalize on our work above. Therefore we consider a very special periodic function, the Weierstraß  $\wp$ -function.

**Definition.** The Weierstra $\beta \wp - function$  is defined to be the function  $\wp : \mathbb{C} \to \mathbb{C}$  given by

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left( \frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right)$$

**Proposition 8.** (Without proof)  $\wp$  is a  $\Lambda$ -periodic meromorphic function with poles of order 2 exactly in  $\Lambda$ .

The following lemma gives a connection between the Weierstraß  $\wp$ -function and our well known theta function with characteristic  $\sigma = \frac{1}{2} + \frac{1}{2}\tau$ .

**Lemma 9.** There is a constant  $c \in \mathbb{C}$  such that

$$\wp(z) = -\left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'(z) + c$$

**Note.** The quotient  $\frac{\theta'_{\sigma}}{\theta_{\sigma}}$  isn't doubly-periodic, but the derivative  $\left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'$  is doubly-periodic.

To see this consider  $\frac{\theta'_{\sigma}}{\theta_{\sigma}}(z+\lambda)$  for some  $\lambda=p\tau+q\in\Lambda$ .

$$\begin{split} \frac{\theta_{\sigma}'}{\theta_{\sigma}}(z+\lambda) &\stackrel{(5)}{=} \frac{\left(e_{\sigma}(\lambda,z)\theta_{\sigma}(z)\right)'}{e_{\sigma}(\lambda,z)\theta_{\sigma}(z)} = \frac{e_{\sigma}'(\lambda,z)\theta_{\sigma}(z) + e_{\sigma}(\lambda,z)\theta_{\sigma}'(z)}{e_{\sigma}(\lambda,z)\theta_{\sigma}(z)} \\ &\stackrel{def}{=} \frac{\exp'(\pi i\lambda - \pi i p^2\tau - 2\pi i p(z+\sigma))\theta_{\sigma}(z) + e_{\sigma}(\lambda,z)\theta_{\sigma}'(z)}{e_{\sigma}(\lambda,z)\theta_{\sigma}(z)} \\ &= \frac{-2\pi i p e_{\sigma}(\lambda,z)\theta_{\sigma}(z) + e_{\sigma}(\lambda,z)\theta_{\sigma}'(z)}{e_{\sigma}(\lambda,z)\theta_{\sigma}(z)} \\ &= -2\pi i p + \frac{\theta_{\sigma}'}{\theta_{\sigma}}(z) \neq \frac{\theta_{\sigma}'}{\theta_{\sigma}}(z) \end{split}$$

as in general  $p \neq 0$ . From the equation  $\frac{\theta'_{\sigma}}{\theta_{\sigma}}(z + \lambda) = -2\pi i p + \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z)$  above it follows directly that  $\left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'$  is doubly-periodic.

*Proof.* We know that  $\theta_{\sigma}$  is holomorphic and has its zeros precisely in the lattice points  $\lambda \in \Lambda$ . That means that the expansion of  $\frac{\theta'_{\sigma}}{\theta_{\sigma}}$  in a Laurent series around 0 looks like

$$\frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) = a_{-1}\frac{1}{z} + a_0 + a_1z + a_2z^2 + a_3z^3 + \text{ terms of higher order}$$

for some constants  $a_i \in \mathbb{C}$ . We can choose a neighborhood U of 0 such that 0 is the only zero of  $\theta_{\sigma}$  in U. As 0 is a single zero we know that

$$a_{-1} = \operatorname{Res}_0\left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right) = \int_{\alpha} \frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) \ dz = 1$$

where  $\alpha:[0,1]\to\mathbb{C};t\mapsto re^{2\pi it}$  for some suitable r. We conclude

$$\frac{\theta'_{\sigma}}{\theta_{\sigma}}(z) = \frac{1}{z} + a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \text{ terms of higher order}$$

and calculate

$$\left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'(z) = -\frac{1}{z^2} + a_1 + 2a_2z + 3a_3z^2 + \text{ terms of higher order}$$

If we add  $\wp$  and  $\left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'$  then we obtain

$$\wp(z) + \left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'(z) = \sum_{0 \neq \lambda \in \Lambda} \left(\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2}\right) + a_1 + 2a_2z + 3a_3z^2 + \dots$$

From this sum we see directly that  $\wp + \left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'$  doesn't have any poles in U. Hence  $\wp + \left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'$  is holomorphic in a neighborhood of 0 and thus holomorphic everywhere. As it is in addition doubly-periodic (since  $\wp$  is as well as  $\left(\frac{\theta'_{\sigma}}{\theta_{\sigma}}\right)'$  doubly-periodic) we know from our very first lemma that it must be constant.

The Weierstraß  $\wp$ -function satisfies a number of equations and differential equation. This feature makes the Weierstraß  $\wp$ -function to be of interest. The most important differential equation that is satisfied by the Weierstraß  $\wp$ -function is the following:

**Theorem 10.** The Weierstraß  $\wp$  -function satisfies the differential equation

$$\wp'(z)^2 = c_3\wp(z)^3 + c_2\wp(z)^2 + c_1\wp(z) + c_0$$

where the constants

$$c_3 = 4$$
,  $c_2 = 0$ ,  $c_1 = -60 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^4}$  and  $c_0 = -140 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^6}$ 

depend on the lattice  $\Lambda$ .

*Proof.* Consider  $\wp(z) - \frac{1}{z^2} = \sum_{0 \neq \lambda \in \Lambda} \left( \frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2} \right)$ . This function is holomorphic in a neighborhood of 0. We can expand the summands  $\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2}$ :

$$\frac{1}{(z-\lambda)^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} \left( \frac{1}{(1-\frac{z}{\lambda})^2} - 1 \right)$$

$$= \frac{1}{\lambda^2} \left( \left( \sum_{n=0}^{\infty} \left( \frac{z}{\lambda} \right)^n \right)^2 - 1 \right)$$

$$= \frac{1}{\lambda^2} \left( 2\frac{z}{\lambda} + 3\frac{z^2}{\lambda^2} + 4\frac{z^3}{\lambda^3} + 5\frac{z^4}{\lambda^4} + \dots \right)$$

$$= 2\frac{z}{\lambda^3} + 3\frac{z^2}{\lambda^4} + 4\frac{z^3}{\lambda^5} + 5\frac{z^4}{\lambda^6} + \dots$$

This sum is absolutely convergent for all  $z \in \mathbb{C}$  with  $|z| < |\lambda|$ ; in particular in a neighbourhood of 0.

To simplify the big sum from above we define  $s_n := \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^{n+2}}$  for  $n \in \mathbb{N}$ . Note that  $s_n = 0$  for all odd  $n \in \mathbb{N}$ . We obtain

$$\wp(z) = \frac{1}{z^2} + 2s_1 z + 3s_2 z^2 + 4s_3 z^3 + 5s_4 z^4 + \dots$$
$$= \frac{1}{z^2} + 3s_2 z^2 + 5s_4 z^4 + 7s_6 z^6 \dots$$

which is true in a neighborhood of 0. With the constants

$$c_3 = 4$$
,  $c_2 = 0$ ,  $c_1 = -60 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^4}$  and  $c_0 = -140 \sum_{0 \neq \lambda \in \Lambda} \frac{1}{\lambda^6}$ 

we obtain

$$\wp(z) = \frac{1}{z^2} - \frac{c_1}{20}z^2 - \frac{c_0}{28}z^4 + \text{ terms of higher order}$$

hence

$$\wp'(z) = -\frac{2}{z^3} - \frac{c_1}{10}z - \frac{c_0}{7}z^3 + \text{ terms of higher order}$$

$$\wp'(z)^2 = \frac{4}{z^6} + \frac{2c_1}{5} \frac{1}{z^2} + \frac{4c_0}{7} + \text{ terms of higher order}$$

and

$$\wp(z)^3 = \frac{1}{z^6} - \frac{3c_1}{20} \frac{1}{z^2} - \frac{3c_0}{28} + \text{ terms of higher order}$$

Now consider

$$f(z) := \wp'(z)^2 - c_3\wp(z)^3 - c_1\wp(z) - c_0$$

The series of f has only positive powers of z. Hence f is holomorphic around 0. Hence it is holomorphic everywhere. And as it is doubly-periodic, it is constant. But the constant part of the series is  $\frac{4}{7}c_0 + 4 \cdot \frac{3}{28}c_0 - c_0 = 0$ . Hence f = 0.

We will mention one more equation that is satisfied by the Weierstraß  $\wp$ -function:

**Remark.** Remember that our lattice  $\Lambda$  is generated by 1 and  $\tau$ . Hence the set of zeros of  $\wp'$  is given by  $\left(\frac{1}{2} + \Lambda\right) \cup \left(\frac{\tau}{2} + \Lambda\right) \cup \left(\frac{1+\tau}{2} + \Lambda\right)$ . Set  $e_1 := \wp\left(\frac{1}{2}\right), e_2 := \wp\left(\frac{\tau}{2}\right), e_3 := \wp\left(\frac{1+\tau}{2}\right) \in \mathbb{C}$ . Then we have

$$(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$$

and

$$e_1 + e_2 + e_3 = 0$$

$$e_1e_2 + e_1e_3 + e_2e_3 = \frac{1}{4}c_1$$

$$e_1e_2e_3 = -\frac{1}{4}c_0$$

where  $c_0$  and  $c_1$  are the constants from above.

Finally we will see how to use the Weierstraß  $\wp$ -function to give a group structure to an elliptic curve.

Remark. If we consider the elliptic curve

$$C := \{(x,y) \in \mathbb{C}^2 \text{ such that } y^2 = c_3 x^3 + c_2 x^2 + c_1 x + c_0 \}$$

for the constants

$$c_3=4$$
 ,  $c_2=0$  ,  $c_1=-60\sum_{0
eq\lambda\in\Lambda}\frac{1}{\lambda^4}$  and  $c_0=-140\sum_{0
eq\lambda\in\Lambda}\frac{1}{\lambda^6}$ 

from the theorem above then we have a bijection

$$\mathbb{C}/\Lambda \setminus \{0\} \to C$$
 given by  $z \mapsto (\wp(z), \wp'(z))$ 

In particular we can give the variety C the group structure of  $\mathbb{C}/\Lambda$ .

This can be extended to an embedding of  $\mathbb{C}/\Lambda$  into the projective plane. For more details see the article of M. Khalid [2].

# References

- [1] A. Gathmann, Algebraic Geometry, Notes for a class taught at the University of Kaiserslautern 2002/2003, available at http://www.mathematik.uni-kl.de/gathmann/de/pub.html
- [2] M. Khalid, Group Law on the Cubic Curve, this issue.
- [3] D. Mumford, Tata Lectures on Theta, Progress in Mathematics Vol 28, Birkhauser Verlag, 1983.
- [4] G. Trautmann, Complex Analysis II, Notes for a class taught at the University of Kaiserslautern 1996/1997.

Marina Franz, Fachbereich Mathematik, Technische Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany franz@mathematik.uni-kl.de

Received in final form on 23 August 2007.