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Group Law on the Cubic Curve

MADEEHA KHALID

ABSTRACT. It is known that the set of rational points on a
cubic curve E forms a group. The same procedure defines a
group law on all points of E with complex coordinates. With
the aid of the Weierstrass p-function one can show that F
is isomorphic to a one dimensional complex torus, namely
E = C/A where A is a rank 2 lattice in C. The additive
group structure of C descends to the quotient C/A and so we
get another group structure on E. In fact these two group
structures are the same. A nice proof of this fact follows from
a classical result by Niels Henrik Abel (1802-1829), known as
“Abel’s theorem”. In this article we introduce the notions of
divisors, line bundles, and the Picard group, and then sketch
the isomorphism between the two group structures.

1. MANIFOLDS

Throughout this article we work over C, the field of complex num-
bers. We denote P"(C) by P™.

An n dimensional complex manifold M is a topological space
which locally looks like C*. This means that there exists an open
cover U, and co-ordinate maps ¢, : Uy, — C" such that qﬁaqﬁgl :
¢3(Us NUg) — C" is holomorphic for all @, 3. Similarly a func-
tion f on an open set U C M is holomorphic if for all a, f o ¢!
is holomorphic on ¢o(U, NU) € C*. A map f : M — N be-
tween two complex manifolds is holomorphic if it is given in terms
of local holomorphic co-ordinates on N by holomorphic functions.
Open subsets, products of complex manifolds and suitable quotients
of complex manifolds are also complex manifolds.

The simplest example of a one dimensional complex manifold is
just C itself. Then there is P! (isomorphic to the Riemann sphere)

This work was supported by the IRCSET Embark Initiative Postdoctoral
Fellowship Scheme.



68 MADEEHA KHALID

which we have seen already in [9] Section 3. By P! and P? we mean
the same objects as described in [9] Section 3, except that we replace
Kby C. Let A = {njw;s +nows | n; € Z} be a rank two lattice in C.
Then A is an additive sub-group of C generated by two complex
numbers wi,ws which are linearly independent over the real num-
bers. Addition by elements of A defines a fixed point free discrete
group action of A on C and hence the quotient C/A is a complex
manifold. Since R/Z is diffeomorphic to S via the exponential map
r — exp(2mir), C/A is diffeomorphic to S' x S' and is therefore
called the one dimensional complex torus. Although all tori are dif-
feomorphic to each other, they may not be isomorphic as complex
manifolds (see [3]).

Iy,

The complex torus is a nice example of a one dimensional manifold
which is easy to describe but which also has a very rich geometric
and arithmetic structure. See for example theta-functions in the
article by M. Franz [5], J. Silverman [11] on the arithmetic aspects
of elliptic curves or the survey article by J. B. Bost [2] on construction
of hyperelliptic Riemann surfaces.

A one dimensional complex manifold is called a Riemann sur-
face. Any complex manifold is orientable so Riemann surfaces are
orientable real surfaces. Compact Riemann surfaces are classified by
their genus g which is a topological invariant and is equal to the
number of holes in the surface. A more precise definition is that
the first homology group of a Riemann surface of genus g is a free
abelian group of rank 2g, i.e. H;(S) = 729,

So P! has g = 0, the complex torus C/A which is diffeomorphic
to S x S! has g = 1.
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Each compact Riemann surface can be embedded holomorphically
into some P". In fact we can choose n to be 3. This is like an analogue
of the Whitney embedding theorem which states that any compact n
dimensional real manifold M can be embedded in R?"**!. A compact
Riemann surface S together with an embedding i : S — P" is known
as an algebraic curve. In this article however we will often refer to
a compact Riemann surface as a curve without always necessarily
specifying the embedding in P™.

Examples of two dimensional manifolds include C2, P2, and the
two dimensional complex torus given by C? /A, where A is now a
rank 4 lattice in C?. These lead to some simple examples in higher
dimensions such as C*, P, and C*/A where A is a rank 2n lattice
in C".

Given a manifold M of dimension n, a subset V' C M given locally
(i.e. on open subsets) as the zero set of a single holomorphic function
f is called a hypersurface in M. For example P! embeds in P? as
the zero set of the homogeneous linear function z; = 0. In local
coordinates on Uy it is given by {(&1,&2) | & = 0}. Let azp+bz1 +c2o
be another linear equation. Then there is a matrix T in PGL(3)
such that T(z1) = azo + bz1 + czo. Then {z; = 0} gets mapped
isomorphically to {azp + bz1 +czo = 0}. This shows that the zero set
of any linear homogeneous equation in P? is isomorphic to P'. Next
we consider the zero sets of homogeneous equations of degree 2. If
the equation is irreducible then this is is isomorphic to a conic which
is again isomorphic to P! ([9] Section 1).

In general we denote the zero set in P? of a homogeneous polyno-
mial of degree d by C, (also known as a plane curve) but when d = 3
we denote it by E (also known as a “cubic curve”) for consistency
with the notation in [9].

Suppose the plane curve C = {(zp : 21 : 22) | f(20,21, 22) =0}, is
given by a (homogeneous) polynomial

f(z0,21,22) = Z aijkzoizljzzk

i+j+k=d

of degree d. Then, on open subsets of P2, the curve C is the zero
set of a single holomorphic function. Recall that P? = Uy U U U Us
where U; = {z; # 0}. Affine coordinates on U, are & = j—o Then

CNUy = {(&,6) | Fol(&1,&) = 0}, where Fy(&y, &) = LEeip22) —

Z0
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Zaijkfljfgk. So C N Uy is the zero locus of the holomorphic func-
tion Fo(&1,&2). The calculations for the other charts Uy and U, are
similar.

We say that p € C N Uy is a smooth point, if at least one of the
partial derivatives BF‘]&.”&) BFO(;E;’&) is not equal to zero at p. We
say C' is smooth if every point in C' is a smooth point. If C'is smooth
then in fact it is a submanifold of P2. Another example of a smooth
curve is the curve given locally by &™ + &" = 1. In homogeneous
coordinates it is the zero locus of 21" + 29™ = 2™ and is known as
the Fermat curve.

There is a nice formula that computes the genus of a smooth plane
curve C of degree d namely g = (dflgﬂ. So if C' has degree d
where d > 3 then g > 1 and hence C is not isomorphic to P'. The
genus of the Fermat curve is M—lgﬁ so for n = 1 and 2 it is
isomorphic to P! while for n = 3 it has genus one and is a complex
torus.

The curve C’ in P? given by the equation 22212 — 20° + 20222 = 0
is not smooth as all the partial derivatives vanish at (0:0:1). We
say (0:0:1) is a singular point of C'.

These notions of smooth points and singular points can also be ex-
tended to higher dimensional manifolds. In fact just as the implicit
and inverse function hold in the differentiable case, so do their ana-
lytic versions. For example if V' is a hypersurface given locally as the
zero set of a single holomorphic function f and the jacobian matrix
of f has rank 1 everywhere then V is a manifold of dimension n — 1.

b

2

2. CuBIC CURVES AND THE GROUP LAw

It is mentioned in [9] that any smooth cubic E in P? can be written as
the zero set of the Weierstrafl equation after an appropriate change
of variables.

E={(z0:21:2)| 21220 = 420° — p2oz? — q22°}.

Locally on U, this corresponds to {(z,y) | y? = 42° — pz — q¢}.
In addition, the set of rational points on E forms a group, see [9]
Theorem 8. In our case, i.e. when E is defined over C, we show
that this defines a group structure on all points of E with complex
coordinates. As before, let O denote the point (0 : 1 : 0). Let P
and @ be any two points on E and consider the line in P? containing
P and @. Then, by the same prescription as in [9] Definition 5,
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we see that it meets F in a third point R. Now consider the line
containing O and R. It meets E in a third point say R. In the local
coordinates (x,%), R is the reflection of R in the x-axis as mentioned
in [9] Definition 5. We define P + Q := R.

[ P

%/

P+Q:=R

This is exactly the same as in [9] Theorem 8, except now we allow
P and @ to have complex co-ordinates. In this way we get a group
law on all of points of E with complex coordinates.

The choice of O as the zero element of the group E is not unique.
In fact any point on E can be a zero ([10] Chapter 1, Section 2),
however for E in the Weierstraf form this choice of the zero element
simplifies the group law. We state the analogue of [9] Theorem 8
over C.

Theorem 1. Let E be a cubic curve in P? given by the Weierstraf§
equation

E={(z0:21:22) € P2 | 21229 = 420° — gazoza® — g3223},

where g, g3 are constants. Then there exists a unique group law on
E such that O := (0 :1:0) is the zero element. The group structure
is determined by requiring

P+Q+R=0 ifandonlyif P,Q, and R are on a line.

3. ComMPLEX TORUS

In this section we relate F to the one dimensional complex torus
given as the quotient C/A of C by a rank 2 lattice A in C. Since
C/A is diffeomorphic to S x S! it is like a hollow doughnut and so
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has genus 1. Recall that by the “genus formula” for smooth plane
curves F also has genus 1. The following theorem shows that despite
its different appearance E is isomorphic to C/A.

Theorem 2. Let A be a rank two lattice in C. Then the one di-
mensional complez torus C/A can be embedded in P? as a cubic in
Weierstraf$ form.

We sketch the main ideas of the proof and introduce the notion
of elliptic integrals. For more details see [7] and [3]. Associated to
A there is a meromorphic function on C/A called the Weierstrafl
p-function (Karl Weierstraf}, 1802), defined as follows.

1 1 1
plz) =5+ D (72——2)
T ueno} (z-w) w
When viewed as a meromorphic function on C, p(z) is doubly

periodic with respect to A and has poles of order 2 at all the lattice
points. It satisfies the following differential equation.

0(2)”? = 4p(2)° — g2p(2) — gs. (1)

The constants g, g3 are related to A and are given by

1 1
=060 > — gg=140 > —
weA\{0} weA\{0}

A complete proof of Equation (1) and the derivations of gs, g3 is
given in [5] Theorem 10.

The map C/A — P? which identifies C/A with a cubic curve, is
given as follows:

7([2]) = {(W) H(z) 1) it [ i

(0:1:0) if [2] @)

Since p(z) satisfies the differential equation (1) we see that in the
local co-ordinates (x,y) on Us,, the image of C/A via 7 is given by

y? = 4a° — gox — g3
which is the Weierstrafl cubic equation. To justify the definition of

7([0]), we observe that gp(z) has a pole of order 2 and p'(z) has a
pole of order 3 at [0]. So

9(2)

o2)= 12 ana ()= 2

Y
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for some holomorphic functions f and g such that f(0) # 0, and
9(0) # 0. Then, for values of z € C close to 0 € C, we have

7([2]) = (p(2) : 9'(2) : 1) = (2f(2) : g(2) : 2°)

and at z = 0 we obtain (2f(2) : g(2) : 2°) = (0 : 1 : 0), which is
7([0]) = O, the zero element of the group structure on the cubic
curve E. This shows that we get a holomorphic map 7 : C/A — E,
where E is a cubic curve in Weierstrafl form. One way of showing
that it is an isomorphism is via an inverse mapping and this brings
us to the topic of elliptic integrals.

An elliptic integral is an integral of the form

| By
Zo

where R(z,y) is a rational function, and y? is a polynomial in z of
degree 3 or 4 without multiple roots.

They are called elliptic integrals because they first arose in the
context of determining the arc lengths of an ellipse and of other sec-
ond order curves. Early work on such integrals goes back to Wallis,
Bernoulli, MacLaurin, Riccati and D’Alembert. However for a long
time the problem of inverting such integrals was unsolved. It was
found that they cannot be expressed in terms of the known transcen-
dental functions and also that only three types of new transcendents
suffice to express all such integrals.

Building on work of Fagnano (Giulio Carlo Fagnano dei Toschi,
1682-1766), Euler discovered in 1756 an addition formula for such
integrals. In modern language Euler’s formula is an addition formula
for elliptic functions such as the Weierstraf3 p-function. Much later,
in the second half of the 19-th century, Weierstrafl showed that in fact
elliptic functions can be characterised by their property of possessing
an algebraic addition theorem.

The mystery surrounding the mathematical nature of elliptic in-
tegrals was only unveiled by the works of Abel and Jacobi, simul-
taneously published in September 1827. The main new idea was to
study the inverse of the function given by an elliptic integral. Nowa-
days, such functions are called elliptic functions. Abel also noted
that while the elliptic integral itself is a highly complicated function
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of the point (z,y), sums of such integrals (known as Abelian sums)

Z ?R(m,y)dz

satisfy simpler relations. We state and use a special case of Abel’s
theorems later (Section 7, Theorem 22).

Liouville identified in 1844 that the property to be doubly periodic
is the crucial one upon which their analytic study should be based.
Jacobi’s theta functions and the Weierstafl p-function form now the
fundaments of a modern theory of elliptic functions. Their definition
and basic properties can be found in the article by M. Franz [5].

Even though elliptic integrals are historically older than elliptic
functions, we usually come across elliptic functions first. The reason
being the work of Cauchy in the theory of complex analysis which
has made the latter an easier object of study today than the integrals
themselves. The elliptic integrals appear then as inverses of elliptic
functions.

If y? = 42 — gow — g3, an elliptic integral (of the first kind) which
is of particular importance, is

This is to be understood as a contour integral along a path (x(t), y(t))
in C? which connects the point O with the point P. It is assumed the
this path is completely contained in the curve given by the equation
y? = 42® — gox — g3 which we know is the curve E in terms of
local coordinates (z,y). Since the genus of E is 1, the curve E is
not simply connected and the integral depends on the choice of the
path. However, this dependence is only modulo the periods of %"‘.
This means that the value of the elliptic integral changes only by an
additive constant of the form nw; + mwy with m,n € Z. Here the
complex numbers w; and wy are given by

dx dx
wi=[— and w = [ —,
Y Y

7 72
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where 1,72 are two closed paths representing a pair of generators
of the fundamental group of E. The numbers w;,ws are called peri-
ods because the inverse function of this integral (which is the Weier-
straf} p-function) is doubly periodic with periods w1, ws. The periods
w1,ws are linearly independent over R because the paths 7;,v2 are
generators of the fundamental group.
So A = {nwy + mw, | n,m € Z} is a lattice in C and in this way
we reconstruct the lattice A we started with. Moreover, if we set
P
Y P)= d_a:
)
0]

where O is the point at infinity and P € E any point, we obtain a
well-defined map 7=! : E — C/A which is the inverse of the map
T defined earlier. This gives an isomorphism of E with C/A. The
differential %ﬂ” is actually the familiar differential dz on the torus
C/A. That is because z = p(z),y = ¢'(z) so we get T*df = dz, the
integral of which is well defined modulo A.

In order for this procedure to work, all we need is that the cubic
curve y? = 42° — gox — g3 be smooth, i.e. g3 — 27g2 # 0. Since
any smooth cubic curve in P? is isomorphic to a cubic in Weierstraf
form, it follows that every smooth cubic in P? is isomorphic to a
complex torus. For more details see [7] Chapter 2.

4. DIVISORS

In the previous section we saw that a plane cubic curve F is isomor-
phic to a complex torus C/A. Now C/A inherits a group structure
from C and hence induces a group structure on FE via the isomor-
phism. In Section 2 we defined a group operation on E using geom-
etry. How do these two compare?

The answer is: they coincide! In the subsequent sections we de-
scribe a proof which weaves together some pretty ideas from algebraic
geometry. To do so we have to first introduce an important notion
in algebraic geometry which is that of a divisor. In the case of a
curve it has a simple description.

Definition 3. Let C be a smooth curve in P2. A divisor on C is a
formal finite linear combination D = a1 - P; + - - - + a4y, - Py, of points
P; € C with integer coeflicients a;.
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Divisors can be added or subtracted and hence form a group de-
noted Div(C).

Definition 4. The degree of a divisor D = a1 - Py + - - + @, - Py 18
defined to be deg D = > | a; and this gives a group homomorphism
deg : Div(C) — Z.

Remark 5. The notion of a divisor extends also to higher dimen-
sional manifolds. In that case a divisor is a linear combination of
subsets given locally by zero sets of irreducible holomorphic func-
tions.

The group Div(C) is very large, even in the one-dimensional case.
Therefore we introduce the sub-group of principal divisors. The ben-
efit is that the factor group of all divisors modulo principal divisors
is finitely generated. This factor group will prove to be useful in Sec-
tion 6 as well. In order to explain the definition of principal divisors,
we need the notion of the order of a function at a point P.

Let f be a holomorphic function on an open set U C C. Let
P € U and let x be the local co-ordinate on U such that P is given
by  — A for some A € C. The order of f at P, denoted ordp(f), is
the largest integer a € Z such that locally

f(z) = (z =N h(z)
where h is a holomorphic function with h(\) # 0. Since f is holomor-
phic a is non negative. Note that for g, h any holomorphic functions

ordp(gh) = ordp(g) + ordp(h).

We would like to include the cases when ordp(f) is negative. To
do so we have to include what are known as meromorphic functions.
A function f on C'is called a meromorphic function if it can be writ-
ten locally as a ratio 4, where g # 0 and h are holomorphic functions
which do not have a common zero. Then, by using a Laurent series
expansion for f at P, we see that ordp(f) = ordp(g) — ordp(h). So
ordp(f) is negative if ordp(g) < ordp(h).

Collecting zeros and poles of a global meromorphic function f
gives us a natural way to associated a divisor to it.

Definition 6. Let f be a meromorphic function on C. Then the
divisor of f, called a principal divisor and denoted (f), is given by

(f) = ZOI‘de‘P.

pPeC
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Example 7. Consider P!, the Riemann sphere with homogeneous
co-ordinates (zo : z1). Then any ratio f = %, where g and h are
homogeneous polynomials of the same degree d, is a global mero-
morphic function. So for instance if f = ﬁ then (f) =

2'P0—P1—P2 where PU = (0 : 1),P1 = (]. : 0),P2 = (]. : —1)
Note that deg(f) = 0.

Now we do the same thing for curves in P2. A meromorphic
function f on P? restricts to a meromorphic function on the curve
C if the denominator in the local expression for f does not vanish
identically on the curve. Its associated divisor (f) restricts to a
divisor on C'. As an example lets take the function f = ZUQJFZ#
and the line Ly = {z> = 0}. Then a local computation shows that

(H=Q:9)+1:=i)—2-(1:0).
Given any curve C' C P? and any divisor D on C, a natural question

to ask is whether D = (f) for some meromorphic function f on C?
The following example is a partial answer to this question.

Example 8. Consider the line Ly = {(z0 : 21 : 22)]22 = 0} in P2,
(see [9] Section 3) and O the point (0 : 1:0). Then D =2-0 is
a divisor on L. If D = (f) for some meromorphic function on Lo,
then f has a zero of order 2 at O and is holomorphic and nonzero
everywhere else. Since L is isomorphic to P' there are no non-
constant holomorphic functions on P!, D # (f) for any f.

In the case of P! the answer to the above question is very simple.
A divisor D = (f) if and only if deg D = 0. For a cubic curve E the
answer is not so simple. For instance there exist divisors of degree 0
which are not associated to any meromorphic function. In fact there
are as many such divisors as there are points on E. We discuss this
in more detail in Section 6. See also the article by C. Daly [4].

5. LINE BUNDLES

Divisors are closely tied together to another geometric notion which
is that of a line bundle. A line bundle is a rank 1 holomorphic
vector bundle (Definition 10). In this section we discuss the relations
between line bundles and divisors.

Let us for the moment refer back to Example 8. The homoge-
neous coordinates zg, z; of P? are also natural homogeneous coordi-
nates on Lo, since Ly = {(z0 : 21 : 0) € P?}. Our aim is to associate
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to a homogeneous polynomial in the ring Clzq, z1] its “divisor of ze-
roes”. For example consider the homogeneous quadratic polynomial
2¢. Since it is a homogeneous polynomial it is invariant under scalar
multiplication and so D := {22 = 0} is a well defined subset of Ls.

This zero set has a local description. Recall from [9] Section 3 that
L is covered by two open charts Vo = {29 # 0} and V; = {z; # 0}.
The affine coordinate on Vj is z = j—; and the affine coordinate on
Vi is w = 2. On Vy N Vi we have the identification map z = <

Conside?D NVi={(z0:21) €V1 |22 =0} If (20:21) € Dwﬁ i
then certainly (Azg : Az1) € DN Vy, so we divide by z; to get that
DnVvi={(£:1)] % = 0}. In terms of the coordinate on V; this
is just {w € V4 | w? = 0}.

Similarly D N Vo = {(20 : 21) € Vo | 22 = 0}. In terms of the
coordinate on Vp this corresponds to {(1 : z) | % =1 = 0} which

20

is just the empty set. So, locally D corresponds to the following
subsets

DnVy = {z€VW|1=0},
DNVy = {weV;|w?=0}.

Set fo := 1, f1 := w?, then {(V4, fo), V1, f1)} are local defining
functions for D. Notice that on Vo N Vy, we have w? = Zl—z # 0 and

fol2) = fi(z) - 2°.
Similarly f1(w) = fo(w)-w? on VoNV4, so the local defining functions
are related by a nowhere vanishing factor.

Now DNVy = () and DNV is the origin w = 0 counted with
multiplicity 2. The point w = 0 in V; corresponds to (0 : 1: 0) on
L. Since this occurs with multiplicity 2, D is the divisor 2-O where
O =(0:1:0), as before.

The interesting thing is that from these local defining functions
of D we construct a new manifold L called a line bundle. The non-
vanishing factor that relates these local defining functions of D is
known as a transition function. We give one more example before
stating the definitions.

Example 9. Set
L=VyxCuV; xC/ ~

where V5 x C and V; x C are open charts of L. The equivalence
relation ~ gives the “patching” condition on the overlap (VoNV;) xC
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and is defined as follows. For w =1 € vy NV; and (w,\) € Vi x C,
(z,u) € Vo x C we define

(w,\) ~ (z,p) <= p=2"\

Note that we define the “patching” condition using 22, the nowhere
vanishing function on V5 N V; relating the two local descriptions of
D above.

This new manifold L is an example of a line bundle (Definition 10
below) and is often denoted O(D). The collection {(fo, Vo), (f1,V1)}
of local defining functions for D = 2-O defines a section (see subsec-
tion 5.2) of O(D) and the function z? relating these local functions
on the overlap Vo NV} is a transition function of O(D).

We now give the general definition of a line bundle.

Definition 10. Let M be a complex manifold. A line bundle L = M
is a holomorphic vector bundle of rank 1. That is

(1) L is a complex manifold such that for any z € M, 7~ (z) =
L, is equipped with the structure of a one dimensional com-
plex vector space.

(2) The projection mapping 7 : L — M is holomorphic.

(3) There is an open cover {U,} of M and biholomorphic maps,
bo : T H(U,) — U, x C, compatible with the projections
onto Uy, such that the restriction to the fibre ¢, : L, —
{z} x C is linear for all € U,. The pair (¢4,U,) is called
a trivialisation of L over U,.

L, Ly, CL

Uo.CM

IS
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Since L is a complex manifold, for any pair of trivialisations ¢, ¢g
the map gog : Uo NUg — C* given by

90 (65" (@,0)) = @, 9as(@) -v)

is holomorphic. The maps gog are called transition functions of L
with respect to the trivialisations (¢a,Ua),(¢3,Us). They deter-
mine the line bundle L and satisfy the following conditions

(1) gap(2) - gsa(x) =1 for all x € Uy N Up;
(2) gap(z) - ga(x) - gyalx) = 1for all x € Uy NUg N U,.
Condition (2) is known as the cocycle condition.

Conversely, given an open cover {U, } of M and holomorphic maps
gap : UaNUg — C*, satisfying the conditions above, we can construct
a line bundle L with transition functions g,3. Define an equivalence
relation ~ on the union over all a of U, x C as follows. For z €
Ua NUgz, (z,A) € Ug x C and (z,p) € Ug x C set (x,A) ~ (z,p) if
and only if y = gop(z) - A\. Then

L=|JU.xC/~

is a line bundle with transition functions g.z.

For ease of notation from now on we set Ly = n~1(U).

Given L as above, for any collection of nowhere vanishing holo-
morphic functions f, on U, we can define alternative trivialisa-
tions ¢/, of L over U, by multiplying the second component of
() € Uy x C with fo(z). In a more sloppy way we write

¢:1 = faPa- (3)

The transition functions relative to (¢.,,U,) are

Jap = f—ay 3
= s
af fﬁ

Any other trivialisation of L can be obtained in this way, so we see
that the collections {g;;} and {gss} define the same line bundle if
and only if there exist nowhere vanishing holomorphic functions f,
on U, satisfying (3) above.

Example 11. The simplest example of a line bundle on a manifold
is M x C also known as the trivial bundle Oy.

Example 12. The line bundle that we constructed in Example 9
is known as Op:(2). All line bundles constructed in this way from
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a divisor defined by a homogeneous quadratic polynomial on P! are
isomorphic because for any two such polynomials there is an isomor-
phism of P! which maps one to the other.

Remark 13. In fact given any n € Z™ all line bundles obtained
from divisors corresponding to a homogeneous polynomial of degree
n on P! are isomorphic and denoted by Op1(n).

Example 14. Recall that P! = (C? \ {0})/~ where (zg,21) ~
(Az0,Az1) for all A € C*. This means, each line | C C? through
the origin corresponds to a point [I] € P*. Let
L={((:22),0) € P x € |0 € C- (2, 20)}
={([l],v) eP* xC* |vel}
and denote projection onto the first factor by m : L — P'. Then, in
terms of local co-ordinates on Uy and U; as before, we obtain

Ly, ={(2,(8,82)) | B € C}
Ly, ={(w, (qw,n)) | n € C}
with trivialisations
¢o: Ly, > Uy x C ¢1: Ly, > U xC
(2,(8,82)) = (2,8) (w, (nw,n)) = (w,n)

The reader can check that the transition function go1 is:

gn1(2) = godr" = .

This vector bundle is also known as the universal bundle on P! de-
noted Op1(—1) and is an important example.

A nice property of line bundles is that they can be “pulled back”.
Suppose f : M — N is a holomorphic map of complex manifolds,
and 7 : L — N is a line bundle on N. Then we define the pull back
bundle f*L by setting (f*L), = Ly(,). More precisely,

FL = {(m,v)| f(m) = 7(v)} C M x L.

If ¢ : Ly — U x C is a trivialisation of L in a neighbourhood U of
f(z), then we obtain a trivialisation

F o (f L)@ = f1(U)xC
which is the composition

(f*L) -1 C FHU) x Ly "2 fU) x U x C 2 f7(U) x C.
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This gives f*L its manifold structure over the open set f~(U). The
transition functions for f*L are the pull backs f*(gag) := gas o f of
the transition functions g,z of L.

Remark 15. If D is a divisor on N with local defining functions
{(ha,Uq)}, we can pull it back to a divisor f*D on M with local
defining functions {(hq o f, f71(Uy))}. If L = O(D), then f*(L) =
O(f*D).

5.1. Group structure on the set of all line bundles. The ten-
sor product of C with itself, C ® C is C again. Similarly given two
line bundles L; and L, with transition functions g3 and h,g respec-
tively, we can define the tensor product Ly ® Lo and get a new line
bundle L. The fibres of L are just the tensor product of fibres of L
and Ly. The transition functions t,5 of L are therefore the product
of the transition functions of L; and Ly, i.e. for all z € U, N Up

tap(2) = gap(2)hap(z).

This defines a binary operation on the set of line bundles. Tensoring
with the trivial bundle O gives the same bundle back, so it is the
neutral element of the group structure. Associated to each line bun-
dle L with transition functions g,g, there is another line bundle L*
whose transition functions are g;ﬁl. It is called the dual bundle of L.
Since L ® L* = O, the dual bundle is like the inverse of L. Hence
we get a group structure on the isomorphism classes of line bundles
on M. This group is called the Picard group of M denoted Pic(M).
In the next section we describe Pic(E) for E a smooth cubic curve
in P2.

5.2. Sections of a line bundle. A section s of a line bundle L is a
holomorphic map s : M — L such that mos = Id. Locally this means
we have an open cover U, and a collection of holomorphic functions
Sq : Uy — C such that

Sa(x) = gap(x) - sp(x) YV x € UyNUs.

An example of a section is given in Example 9. It may be the case
that a line bundle does not have any holomorphic sections. Lo-
cal holomorphic sections always exist but they may not satisfy the
patching condition on overlaps.

For instance consider the line bundle Op1(—1) as in Example 14.
Suppose it has a local holomorphic section s (w) on Uy where s1(w)
is a holomorphic function. Then on Uy NU; it transforms to so(z) =
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s1(1) - L which is a meromorphic function on Uy and certainly not
holomorphic. This shows that Opi(—1) does not have any global
holomorphic sections and therefore we extend our definition to al-
low meromorphic sections of L. A collection of local meromorphic
functions {sq : Uy — C} such that so = gapss will be called a mero-
morphic section of L. The section si(w) = 1,s0(z) = L is a global
meromorphic section of Op1(—1) with a simple pole at (1 : 0).

Finally we come to the correspondence between divisors and line
bundles.

5.3. Divisors and line bundles. Let D be a divisor on a curve
C and let {(fa,Ua)} be local defining functions for D. Then the
functions go3 = {c—; are holomorphic and non zero on U, NUg. They
also satisfy the cocycle condition on U, N Ug N U, since

Jals 1y

gaﬁgﬁ"/gﬂ/azﬁf 7 =1on UaﬂUgﬂUw.
~ Ja

So the collection {gag} defines a line bundle called the associated
line bundle of D, and denoted O(D) (see also Example 9.)

Conversely since any curve C' embeds in some projective space
P™, given a line bundle L over a curve C, there exists a meromorphic
section s of L (for a proof see [7] Chapter 1, Section 2, the proposition
directly before the Lefschetz theorem on (1,1) classes.) Consider a
local representation {s,,U,} of s. Then given any P € C we can
define the order of s at P as

ordp(s) = ordp(s,)
Where « is arbitrary with P € U,. This does not depend on the
choice of a, since Z;Ezg = gap(x) € C* for all z € U, N Uz and so
ordps, = ordpsg, if P € U, NUg. We take the divisor (s) of s to be

(s) = Z ordp(s) - P.

pPeC

If we were to take the line bundle associated to the divisor (s) we
would recover L our original line bundle. So we get a map

Div(C) — Pic(C) (4)
D ~ O() (5)

Remark 16. This correspondence still holds if we replace C' by an
algebraic complex manifold M.
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In fact (4) is a group homomorphism. A good exercise is to
check it is well defined. Suppose D1, Dy are two divisors. We can
choose an open cover fine enough so that they are locally defined
by {fa}.{ha}. Then D; + D> has local defining functions {fohq}-
The corresponding line bundle O(D; + D») has transition functions

tag = f;;ﬁg The line bundles O(D;) and O(D-) have transition
fa h

functions gapy = %= and gap = 32 respectively. Tt is clear that
tag = 9apdas, 50 O(D1 + D2) = O(Dq) ® O(D,). In other words
addition of divisors in Div(C) maps to tensor product of line bun-
dles in Pic(C). If D = (f) for some global meromorphic function
then fo = fs 50 gap = 1 and hence O(D) is the trivial line bundle.
We say D1 is linearly equivalent to Do, denoted Dy ~ Ds, if and
only if there exists a global meromorphic function f on C such that
Dy = Dy + (f)-

Lemma 17. Let C be a curve. Let Div(C) denote the group of
divisors and Pic(C) the group of line bundles on C. Then O(D) is
trivial if and only if D = (f) for some meromorphic function on C,

i.e. Div(C)/ ~ = Pic(C).

Proof. We have seen that (f) corresponds to the trivial line bundle
so we just need to show that if O(D) is a trivial line bundle then
D = (f). Let {(fa;Uq)} be local defining functions for D. Then
O(D) trivial implies there exist functions h, : Uy — C* such that

fa ha
% = Yap = E =1L
Hence,
o fe_gefs o
ha  gaphs  hgs
is a global meromorphic function on C with divisor D. O

Let L be aline bundle on C' and s a meromorphic section of L. For
the reader familiar with some differential geometry we now mention
a nice relation between the first chern class of O(D) and D. Given
a divisor D on C let np denote its Poincare dual in H*(C,Z). Let L
be any line bundle. Then L admits a hermitian metric and there is
a unique connection on L compatible with the metric and complex
structure. Let © be the curvature form associated to this metric
connection.
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Theorem 18. Let L = O(D) be a line bundle. Let © be the cur-
vature form associated to a metric connection. Let np denote the
Poincaré dual of D in H5(C) and let ¢1(L) denote the first Chern
class of L. Then

01
2| = e mh(O)
For a proof see [7] Chapter 1, Section 1. This implies
i
— = =degD.
5 @ = (. [C)) = deg
Remark 19. All the results of this section also hold when we replace
C by a complex manifold M.

6. POINCARE BUNDLE

Now we restrict attention to the case of a plane cubic curve E and
ask ourselves the following question. What does the set Pic’(FE) of
all degree zero line bundles on E look like?

Here by degree of a line bundle we mean the degree of its associ-
ated divisor (Definition 4). In the case of P! up to isomorphism there
is only one line bundle of degree zero and that is the trivial bundle.
However on E there are many non-trivial line bundles having degree
zero as we shall soon see. In fact they form a family parametrised
by E.

First let’s take a point P € E. This is a divisor of degree 1 on
E, and it defines a line bundle O(P). Now choose another point @
distinct from P and take the divisor P — (). This has degree zero
and correspondingly defines a line bundle O(P — @). One could ask
is O(P — @) isomorphic to the trivial bundle?

If so then by Lemma 17 there would exist some global meromor-
phic function f on E such that P — @ = (f). This means that f
has exactly a pole of order 1 at () and a zero of order 1 at P and no
other poles or zeroes. But then we can define a bijective map

E — P!

z = (f(z):1)
Under this mapping @ maps to the point at co = (1 : 0) on P!. Since
f is meromorphic with exactly one pole and holomorphic elsewhere

it is an isomorphism. But E has genus 1 while P! has genus 0 so
they cannot be isomorphic. Therefore P — Q ~ 0, i.e. P, @) are
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inequivalent divisors and define non isomorphic line bundles. The
following theorem says that in fact the family of degree 0 line bundles
on F is itself a manifold.

Theorem 20. Let E be a cubic curve in P2. Then there is a bijection
E = Pic®(E).

Proof. We just show that there is an injection from FE to Pic’(E).
For a proof of surjectivity see [6] Chapter 6.

Fix a point in E (doesn’t matter which one) for instance O. Then
given any other point P € E we get a degree 0 line bundle O(P — 0).
This defines a map E — Pic’(E). For P and @ distinct points the
line bundles O(P — O) and O(Q — O) are non isomorphic. Because
if they were isomorphic then by Lemma 17 the divisor P — O would
be linearly equivalent to ¢ — O which implies P — @ ~ (f) for some
meromorphic function f. But as we have already seen, in that case f
defines an isomorphism between E and P! which is a contradiction.
Hence our map is bijective. O

In fact there is a more general theorem.

Theorem 21. Let E be a cubic curve in P2. Then for all n € 7 we
have Pic"(E) = E.

The idea is that if we fix a point O on E then any line bundle L
of degree n, can be mapped to a line bundle of degree zero by taking
the tensor product L ® O(—nO) and vice versa.

There is a special line bundle on E x Pic’(E) = E x E called the
Poincaré bundle P. It has the property that P, ., = Op(P —0).
We construct this line bundle as follows. Let (z,y) be the local co-
ordinates on E x E. Consider the subset A = {(z,y)|z = y} called
the diagonal. It is a divisor since it is given by the zero locus of
a single equation. Its associated line bundle O(A) has the prop-
erty that O(A),, ., = Op(P). The idea is simple, by Remark 15
(’)(A)|EX{P} = (’)(A|EX{P})|EX{P}. Let p1,ps denote projection of
E x Pic’(E) = E x E onto the first and second factor respectively.
Consider the line bundle P := O(A) @ p;O(—0). Then p;O(—0) is
just the line bundle associated to the divisor —({O} x E) in E x E.

0A)ep”0(=0) . 1,
N ©O(~(0xB), .
Ogp(P) ® Op(—0) = Op(P - 0)

Plesie

|E><{P}

1
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The point P in the second factor of E x E represents the line bundle
O(P — O) when viewing E x E as E x Pic’(E) via the isomorphism

E — Pic’(E)
P - OP-0)

So we see that P|_ ., is isomorphic to the corresponding element

Op(P — 0) in Pic’(E). This is an example of a moduli space and
its universal bundle. The moduli space of degree zero line bundles
on F is isomorphic to E. The universal line bundle on E x Pic(E) is
given by P characterised by the property that for any P € Pic’(E),
Plewipy 18 aline bundle of degree zero belonging to the isomorphism
class of P € Pic’(E). For more details about moduli spaces of vector
bundles on elliptic curves see the article by C. Daly [4].

7. ABEL’S THEOREM; GROUP LAW REVISITED

In Section 3 we showed that a cubic curve E is isomorphic to a
complex torus C/A. We now have all the pieces to put together a
proof of the fact that the geometric group structure on E is the same
as the group structure on C/A.

The main result involved in proving this is the following classical
theorem known as Abel’s theorem [1] (1827).

Theorem 22. Let A be a rank two lattice in C, let ny,...,n, and
mi, ..., My be integers and let [a1],. .., [an] and [b1], ..., [by] denote
points in C/A.

Then there exists a meromorphic function f : C/A — C with
zeroes at [a;] of order n; and poles at [b;] of order m; if and only if

n m n m
Zni = ij and Zni[ai] = ij[bj] € C/A.
i=1 j=1 i=1 j=1
Moreover this function is unique up to a constant factor.

For a proof of Abel’s theorem involving a nice application of theta-
functions see [5] Theorem 7.

Theorem 23. Let E be a smooth cubic curve in P2. Then E = C/A
for some rank 2 lattice A in C. The geometric group structure on
E as defined in Theorem 1 is isomorphic to the group structure on

C/A.
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Proof. Consider three points Py, P>, P3 on E which lie on a line L.
This is equivalent to saying P; + P, + P; = O. Let [21], [22], [23] be
the unique points on the complex torus C/A which are mapped to
Py, Py, P3 under the isomorphism 7, i.e. 7([z;]) = P; (see Section 3
for the definition of 7.) If we can show that [21] + [22] + [23] = 0 then
we are done.

Suppose L = {(z0 : 21 : 22) € P? | lozo + l121 + lz2o = 0}.
Then since 25 is not identically zero on L the meromorphic function
F = W on P? restricts to a meromorphic function f on
E. The divisor of F' in P? has a simple zero along the line L and
a simple pole along the line Ly = {(z¢ : 21 : 22) | 22 = 0}. So the
divisor of F restricted to E is (f) = > P; — > Q; where {F;} =
LNE and {Q;} = L, N E with multiplicities. Implicit differentiation
shows that O is an inflection point of £ and hence O is a triple
point of contact of the line Ly and E. So Ly meets E at O with
multiplicity 3. Therefore (f) = P, + P>+ P; —30. Now f pulls back
to a meromorphic function 7* f on C/A with zeroes of order one each
at [z1], [22], [23] and a pole of order three at [0]. By Abel’s theorem
this is the case if and only if [21] + [22] + [23] = 3[0] in C/A, i.e. if
the points [z1], [22], [23] sum to zero in C/A. O

This concludes our overview of the group structure on an elliptic
curve E in P2, For other interesting features of elliptic curves and
moduli spaces of vector bundles on elliptic curves see the article by
C. Daly [4].

In two dimensions the only compact complex manifold that admits
a group structure is a complex torus. However one can consider
families of elliptic curves called elliptic fibrations. The geometry
of these elliptic fibrations is very interesting and has been studied
in detail. In the complex analytic case they have been classified
by Kodaira (see [8]). Recently there has also been much interest
in higher dimensional elliptically fibred manifolds in the context of
mathematical physics.
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