Irish Math. Soc. Bulletin 60 (2007), 45—66 45

Solving Cubic Equations in Two Variables

BERND KREUSSLER

ABSTRACT. After recalling a geometric construction of all
Pythagorean triples of integers, the same idea is applied to
find rational solutions of cubic equations in two variables.
This leads to the definition of the Mordell-Weil group. The fi-
nal section collects some of the basic properties of this group.

1. PYTHAGORAS

The aim of this introductory section is to recall the well-known
geometric construction of all Pythagorean triples of integers. Three
integers a, b, ¢ € Z form a Pythagorean triple, if

a’ + b =2,

Almost everybody knows the Pythagorean triple (3,4,5) and many
know (5,12, 13). However, not everybody has come across (8,15,17)
or (20,21,29).

Clearly, if n € Z and (a, b, c) is such a triple, (na,nb,nc) will also
be one. In this way, starting with the well known triple (3,4,5) we
obtain (6, 8,10), (-3, —4, —5), (12,16, 20) etc.

Note that a prime number which divides two of the three inte-
gers in a Pythagorean triple automatically divides the third in the
triple. Therefore, it is enough to find all Pythagorean triples in
which any two of the three integers are co-prime. We shall call such
a Pythagorean triple reduced. Because the only Pythagorean triple
with ¢ =0 is (a, b, ¢) = (0,0,0), we shall assume in the sequel ¢ # 0.
This allows us to introduce the new variables

b

a
z=— and y=-.
c c
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Using these coordinates, the search for reduced Pythagorean triples
translates into the problem to find all rational solutions of the equa-
tion

2?4y =1
In other words, we would like to find all points on the unit circle
whose coordinates are rational.

The key observation is that a line which connects two points with
rational coordinates always has a rational slope. Therefore, we shall
look at all lines in the plane which pass through the point (0, —1)
and which have rational slope r € Q.

y=3z—-1

$2+y2:1 (

S
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SN—

(Oa _1)

Such a line is given by the equation y = rz — 1. Therefore, the a-
coordinates of the two intersection points of this line with the unit
circle satisfy the equation 22 + (rz — 1)? = 1, which is equivalent to
z ((r* + 1)z — 2r) = 0. The solution = = 0 corresponds to the point
(0, —1). The second intersection point has coordinates
o 2r =1
:c——r2+1 and y_—T2+1.

2r r2—1

The map which sends r € Q to the point (TQH, T

circle gives a parametrisation of the set of all rational points on this
curve. This completely solves our problem.

If we wish to derive a complete description of all Pythagorean
triples of integers, we start by writing the slope 7 as r = & with co-

prime integers u,v. Using symmetry, we may assume r > 1. More

) on the unit



SOLVING CUBIC EQUATIONS IN TWO VARIABLES 47

precisely, switching from r to —r corresponds to a sign change of
x, whereas a sign change of y is achieved by switching from r to
%. Thus, we assume v > v > 0 and u,v co-prime. Under these
assumptions, r = + produces the point with coordinates

2r 2uv r2—1 u? —v?

= = and = = .
r24+1 w2402 L I R
Now it is not hard to see that each reduced Pythagorean triples in
which a is odd can be written as
u? —v? u? 40?2
(a,b,c) = <uv, 55 )

with u > v > 0, both odd and co-prime. Up to interchanging a and
b this gives us all reduced Pythagorean triples, because a and b are

co-prime, hence at least one of these to integers is odd. For small
values of u,v we obtain the following table

u vl a b ¢ u v| a b ¢
3 1| 3 4 5 7 5135 12 37
5 1| 5 12 13 9 1 9 40 41
5 3|15 8 17 9 3|27 36 45
7T 1| 7 24 25 9 5|45 28 53
7 3121 20 29 9 7163 16 65

2. A CUBIC EXAMPLE

The aim of this section is to find integer solutions of cubic equa-
tions by using the geometric idea used in the previous section. We
shall explain this method through the following example

b’c = 4a® — dac® + 7.

As before, we assume ¢ # 0 and introduce new coordinates r = %
and y = % in which the above equation becomes

y? =42 — 42 + 1. (1)
This can be rewritten as
(y—1Dy+1)=4(x+ Dz(z—1).
In this form it is obvious that we have the following six solutions
(—1,£1), (0,£1), (1,£1).

Question: Are these all the solutions of equation (1)?



48 BERND KREUSSLER

It is not hard to produce a sketch of this curve in the real plane.
This can be done through the following step-by-step approach. First,
we draw the graph of the cubic polynomial 4z — 42 + 1. The inter-
section points with the z-axis can be found with Cardano’s formula.
This polynomial has three real roots because its discriminant is posi-
tive. To get the second picture, we remove all points from the graph
which have negative y-coordinate. The next picture is produced
by applying the square root function. Finally, the cubic curve is ob-
tained by adding in the mirror image along the z-axis, because (z,y)
is on this curve if and only if (z, —y) is so.

AV Nk
tp

The six marked points in the picture are the points we found before.
If we seek to find more rational points on this curve, we may try to
use lines with rational slope which pass through one of the known
points. This leads to a quadratic equation the solutions of which
correspond to two further intersection points of this line with the
curve given by equation (1).

(2
e
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For example, the line with slope 1 which passes through the point
(0,1) has the equation y = x+1. The z-coordinates of its intersection
with our curve are the solutions of the equation (z+1)% = 423 —4z+1
or equivalently 42> — 22 — 6z = 0. The known solution corresponds
to the factor x of this polynomial. The two new intersection points
correspond to the solutions of the quadratic equation 422 —x—6 = 0,
these are the irrational numbers liS—m.

This example shows that we should allow for one new point only.
In other words, we should work with a line connecting two of the
known points.

Example 1. Let us see how this works with P = (0,1) and @ =
(—=1,—1). The line which connects these two points is given by the
equation y = 2z + 1. Substituting this into equation (1) gives 4z° —
4z% — 8¢ = 0. The two points we started with give us two of the
roots of this polynomial, namely z; = 0 and 25 = —1. Now, it is not
hard to see that 423 — 42? — 8¢ = 4z(z + 1)(z — 2). Hence z3 = 2
is the third solution which corresponds to the point (2,5) on our
curve. We can even produce another new point, because the given
equation does not change when we replace y by —y. This gives the
point S = (2, -5).

Example 2. We may now continue by using the line through P =
(0,1) and S = (2,-5). Its equation is y = —3x + 1. Therefore,
we look at 4z% — (=3z + 1) — 4z + 1 which has to be equal to
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4z(x — 2)(x — x3). Comparing the coefficients of z? of these two
polynomials leads to the equation —9 = —4(2 + x3). This gives

T3 = i. The new points we obtain are (%, :t%).

In general, if we are using a line with slope r € Q which passes
through two points on our curve whose z-coordinates are xz; and
x2, we obtain the z-coordinate of the third point by comparing the
coefficients of 22 as above. The result will be 23 = % —x1— 122 € Q

We may also use other points from the six found originally.

Example 3. The line connecting S = (2,—5) with R = (1,1) has
the equation y = —6x + 7. This gives a new point with coordinate
r3=9—2—-1=6and y3 = —6x3 + 7 = —29. So we have two new
points (6, —29) and (6,29) which are not visible in the picture.

Note that we obtained (6,29) as follows. First we connected P =
(0,1) and @ = (—1,—1) by a line, whose third point of intersection
with the cubic curve had (2, —5) as its mirror image relative to the
z-axis. Then we connected (2,—5) and R = (1,1) by a line and
obtained (6, 29) as the mirror image of the third point of intersection.
It is interesting to see what happens if we carry out these steps in
another order. Let us first connect Q = (—1,—1) and R = (1,1) by
a line, reflect the third point on this line on the z-axis and connect
this point in the second step with P = (0,1).

Example 4. The line which connects Q@ = (—1,—1) and R = (1,1)
has the equation y = z. This line has (%, 1) as its third point of
intersection with the curve given by equation (1). Therefore, we shall
connect its mirror image (%, —%) with P = (0,1). The corresponding
line has the equation y = —5z + 1. The new point produced this
way is (6, —29), the same as we obtained in Example 3.

This coincidence is not an accident. It is in fact a special case
of a theorem from projective geometry which states that a cubic
curve (in projective space) which passes through eight of the nine
intersection points of two other cubics, must also contain the ninth
of these intersection points.

A closer look at examples 3 and 4 suggest that we are dealing here
with a kind of associativity. This can indeed be made precise by the
following definition.

Definition 5. Let P, @ be points on the cubic curve given by equa-
tion (1). We define P + @ to be the mirror image (relative to the
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z-axis) of the third point of intersection of the line which connects
P and ) and the cubic curve.

P+Q

In this language, we have shown above (P+Q)+ R = P+ (Q+R)
where P = (0,1), @ = (—1,—1) and R = (1,1). This definition also
extends to give P + P, which is obtained by using the tangent line
to our curve at P.

Example 6. Implicit differentiation reveals that the tangent line to
our curve at P = (0,1) has slope equal to —2. Therefore, this line is
given by the equation y = —2z + 1. In the same way as before, we
substitute y = —2x + 1 into equation (1) and use the fact that z = 0
will be a double root of the cubic equation so obtained. Then, we
get that the xz-coordinate of the new point of intersection is equal to
x = 1. This produces the known points (1,+£1).

This example shows that we actually need to know only one ra-
tional point on our cubic in order to get started. As before, we can
then produce many other points. Using the notation suggested by
Definition 5, we obtain here:

P=(0,1), 2P =(1,1), 3P =(-1,-1),

11
4P = (2,-5), 5P = (Z’Z)’ 6P = (6,29).
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—4P

We shall see in the next section that this is in fact the structure
of an Abelian group in which for each point T, —T is the mirror
image of T with respect to the z-axis. The line which connects an
arbitrary point 7" on our cubic with its mirror image —7 is a vertical
line. Because T + (—T') = 0, we expect all these lines to go through
the neutral element of this group. Therefore, we shall look for the
neutral element “at infinity”. This can be made more precise with
the aid of the projective plane P2, introduced in the following section.

3. THE COMPLETE PICTURE

In order to see all points on our cubic curve we have to return
to the original equation b*c = 4a® — 4ac® + ¢®>. The key observa-
tion is here that (a,b,c) is a solution of this equation if and only
if (Aa, Ab, Ac) is a solution for all numbers A. This means that the
solution set is a union of lines which pass through the origin. When
we switched to coordinates (z,y) in the previous two sections, we
agreed that it is sufficient to know one point on each of these lines.
But we missed those lines on which ¢ = 0 due to our division by ¢. If
we would like to keep these lines as well, we arrive at the idea of the
projective plane. Set theoretically, the projective plane is defined to
be the set of all lines in three-space which pass through the origin.
This leads to the following useful description.

Before we proceed we need to fix our notion of “number”. So far,
we have dealt with rational numbers and integers. But in general
it is much easier and more convenient to work with an algebraically
closed field like the field C of complex numbers. Many things which
will be said below are true for any field K. Therefore, we shall
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formulate the next definition for any field K. The reader who is not
familiar with the concept of a field may substitute Q or C for K.

Definition 7. The projective plane P?(K) over the field K is the set
of all equivalence classes (zg : 21 : 22) of non-zero vectors (zo, 21, 22) €
K?. Two such vectors (zq,21,29) and (wq,w;,ws) are equivalent if
and only if there exits a non-zero A € K such that (zq,21,22) =
Awo, wy,ws). This implies

(20:21:22) = (Azo : Az1 : Aze) forall X#DO.

The notation (zg : 21 : 2z2) for the equivalence class of the vector
(20, 21,22) is chosen in order to suggest that we are dealing with the
ratios between the three numbers 2y, 21 and 25 only. A similar con-
struction, of course, can be carried out in any dimension to produce
P"(K) for all n > 1. The one-dimensional case is particularly easy.
If K = C it leads to the Riemannian sphere. Notations used for the
Riemannian sphere are S?> = CU oo = C and P!(C), the notation
we are going to use here. Its points are equivalence classes (zg : 21)
of non-zero vectors (zg,21) € C2. All points in P!(C) with zg = 0
are equivalent to oo = (0 : 1). Any point with zg # 0 is equiva-
lent to (1 : z) where z = ZL. This gives a bijection between C and
P1(C) \ {oo}. A neighbourhood of co would be the set of all those
points of P!(C) which have z; # 0. This is again in bijection with
C by using w = j—‘l) The relationship between these two patches of
P*(C) is given by w = . This actually makes P*(C) into a complex
manifold of dimension one, the simplest compact Riemann surface.

The local structure of P?(K) can be studied in a similar way.
To this end, we define the three basic open sets which cover P?(KK)

completely

Uo :={(20: 21 : 29) | 20 # 0} C P}(K)
U1 = {(Z(] i Z1 22) | Z1 # 0} C PZ(K)
Us :={(20: 21 : 22) | 22 # 0} C P*(K).

Each of these sets is in bijection with K2. For example, the map
Up — K2 given by (20 : 21 : 22) (j—;, ﬁ—i) has as its inverse the
map K2 — Uy which sends (£1,&) to (1: & : &).

Similarly, on U; we can work with affine coordinates 7; = 22,

7 = 0,2 and on Us we have (; = 'z—’;, k = 0,1. The gluing maps
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between these three K2 are given by

_1_a _m_ 1
61_770_(0 62_770 Co
_1_G _e _ 1
PTG PTG
_ 1l _m _&a_ 1
C0_§2_772 <1—§2—n2

If K = C this defines the structure of a two dimensional complex
manifold on P?(C).

Let us apply this new language to the cubic equation b%c = 4a® —
4ac® + ¢ studied in the previous section. As we have seen above,
if we identify (a,b,c) with (z0,21,22) € Q®, the set of all solutions
of this cubic equation is a well defined subset E(Q) C P?(Q). Our
assumption ¢ # 0 means that we restricted our attention to the set
Us. The complement of U, is the set of all those points which have
z2 = 0. These are the points of the form (zg : 21 : 0), hence the
complement of Us in P?(K) is in bijection with P!*(KK). Therefore, we
call

Lz = {(ZO L2 0) | (Z(] : 21) S ]Pl(K)} C PZ(K)

the line at infinity. In a similar way we may define lines at infinity
Ly and Ly which are the complements of Uy and U; respectively.

In order to see what we missed when restricting to U, we simply
set ¢ = 0 in our cubic equation. This leaves us with the equation
0 = 4a3. Therefore, the only point missed is the point O = (0: 1 :
0) € Ly C P?(Q). In order to see how E(Q) looks like around this
point, we restrict our attention to the set U;. Using the coordinates
(10, 12) introduced above, E(Q) is described by the equation

n2 = 4ng — dnoms + 1.

The line at infinity Lo intersects U; at the ngp-axis, given by the
equation 1> = 0. This line is a tangent line to the cubic curve with
a triple contact at the point O = (0,0). The point O is an inflection
point of our curve.

The main result of the previous section was that we introduced
an “addition” of points in E(Q) by the rule that P+ Q + R = O
if and only if the three points P, @, R are collinear. Therefore, we
need to understand lines in the projective plane. These are given by
linear equations. In general, a line in P?(K) is the set of all solutions
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of an equation of the form
loZO + l121 + l222 =0

with lg, l1,l> € K but not all three equal to zero. Because Mg, Aly, A2
define the same line in P?(KK) if \ # 0, the set of all lines in P?(KK)
is another P?(K), called the dual projective plane and sometimes
denoted P?(K)V.

Each line in P?(K) is isomorphic to P}(K). The three lines at
infinity introduced before are also lines in this sense, because L; was
given by the equation z; = 0. In particular, the line Ly corresponds
to the point (0: 0 : 1) € P?2(K)V. Any other line, with coefficients
(0:0:1) # (lp : Iy : Iz) € P?2(K)V intersects Us in an ordinary line.
The equation of this intersection is

l(].’l? + lly = _l2

— a _ b : — 20 — Z1
where we used z = ¢,y = ¢ instead of (o = 22,1 = I as coor-

dinates on Us. If Iy # 0, this can be rewritten as y = rx 4+ s with

r = —f—‘l) and s = —f—f. If, however, I; = 0 the equation becomes
lox = —l5 and this defines a vertical line which intersects the z-axis
at —L.

I

On the other hand, the point O = (0: 1 : 0) is on the line given by
lozo+1121 + 1329 = 0 if and only if [y = 0. Hence, the vertical lines in
U, correspond precisely to those lines in P?(KK) which pass through
O and are different from Ls. Therefore, the point at infinity O is
the correct choice for the neutral element of the group structure on
E(Q) and reflection at the x-axis corresponds to taking the additive
inverse of a point.

With some background in projective geometry or by other means
it can be shown that the addition of points on E(Q) introduced in
the previous section equips E(Q) with the structure of an Abelian

group. More about projective geometry and a geometric proof can
be found in the article by M. Khalid [11].

Theorem 8. E(Q) is an Abelian group with neutral element O, its
only point at infinity. The group structure is determined by saying
that P+Q+ R = O if and only if P,Q and R are on a line in P?(Q).
This implies that — P is obtained from P by changing the sign of the
y-coordinate.
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Remark 9. This result is true for any field K and any cubic equation
of the form

2i2s = 25 + prozs + 2 (2)
with p, ¢ € K satisfying A = —16(4p>+27¢?) # 0. If the characteris-
tic of K is not equal to two or three (i.e.if 1+1#0and 1+1+1#0
in K), every regular cubic with a point over K can be given by such
an equation. When working in characteristic zero (e.g. K = Q or
K = C), we can change coordinates so that (2) becomes

2 3 2 3
2729 = 425 — G22025 — G3%5- (3)

The discriminant of such an equation is A = g5 — 27¢2. A cubic
equation of the form (3) is called a Weierstraf§ equation, named after
Karl Weierstraf (1815-1897). The coefficient 4 at z3 is used because
it appears in the differential equation of the Weierstrafl p-function.
(See the article by M. Franz [5].)

The most basic structure result about the group E(Q) was shown
in 1922 by Mordell [17].

Theorem 10 (Mordell). If E is given by (2) with p,q € Q and
4p® + 27¢% # 0 then the Abelian group E(Q) is finitely generated.

Remark 11. Theorem 10 has been generalised by A. Weil to Abelian
varieties of arbitrary dimension over any number field [23]. Therefore
Mordell’s Theorem is also known as the Mordell-Weil Theorem and
the group E(Q) is sometimes called the Mordell-Weil group.

The curve studied in section 2 has E(Q) = Z with generator
P =(0,1). The discriminant of this curve is A = 37.

Remark 12. The assumption 4p® 4+ 27¢? # 0 in Mordell’s Theorem
is crucial. If 4p® + 27¢%> = 0 the cubic polynomial 23 + pz + ¢ has
a multiple root and this gives rise to a singular point on the cubic
curve given by (2). This changes the situation completely, because
singular cubics are rational. More explicitly, suppose —4p? = 27¢>
and p,q € Q\ {0}. A straightforward calculation shows that, under
these assumptions,

3 3¢\°
:c3+p:c+q:<ac——q> <$+—q> .
D 2p

This implies that (—3—;,0) is a singular point of the cubic which

means that each line in P?(Q) that passes through this point will
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have at most one other intersection point with the cubic curve (2).
Just as in the case of the circle in section 1 this produces a bijection
between Q (the set of slopes) and all rational points on a singular
cubic apart from the singular point. This shows that the non-singular
rational points on a singular cubic form a group which is not finitely
generated.

Example 13. Look at the singular cubic z7z9 = 425 — 32023 +
23, which has discriminant A = 3% — 27(—1)? = 0. On Us, using
coordinates x,y as before, its equation is

y? =423 — 3z + 1.

From 423 — 3z +1 = (z + 1)(2z — 1)? we see that the singular point
has coordinates (1,0). Any line with rational slope r through this
point will have equation y = r (z — 1), hence the new intersection
point will be found by solving (%)2 (22 —1)? = (z + 1)(2z — 1)2.
Therefore, the coordinates of this point are given by

r* —4 r® — 6r

and y= V.

The main difference between this and the non-singular case is that we
cannot find such a closed formula for all rational solutions in the non-
singular case. This is explained by the involvement of transcendental
functions such as theta functions and the Weierstraf§ p-function (see
the article [5]).



58 BERND KREUSSLER

4. FURTHER RESULTS

In this section we collect some general results known about the
Mordell-Weil group E(Q). We also discuss several normal forms of
plane cubic curves.

Let us look at a cubic curve given by an equation of the form

=2 +pr+q with  4p® + 27¢ # 0. (4)
Such an equation is also called a Weierstrafl equation or Weierstraf}
canonical form. However, as we shall see below, it is not canonical.
To determine this we need to decide whether it is possible that two
curves given by a Weierstrafl equation with different (p,q) can be
transformed into each other by a linear transformation of coordi-
nates. Consider the following.

Given two curves y2 = 23 + pz + ¢ and §? = 3° + pz + ¢ with
p,q,D,q € Q the only possible linear transformations of coordinates
with rational coefficients which transform one of these equations into
the other are of the form 7 = A2z, = A3y with A € Q\ {0}. Such a
transform is successful if and only if we have p = Ap and ¢ = \%.
This can be used, in particular, to obtain integer coefficients p, q € Z.
Therefore, the following result is useful in broader generality than it
first may seem.

Theorem 14 (Siegel, [20, 16, 18]). The equation y*> = z3 + px + q
with p,q € Z has only finitely many solutions (z,y) € Z2, provided
that 4p® + 27¢% # 0.

A point P € E(Q) is called a torsion point if there exists a positive
integer n € Z such that nP = O in the additive group F(Q). In
other words, the torsion points of E(Q) are precisely the points of
finite order in the group E(Q). They form the torsion subgroup
E(Q)tor C E(Q). For example, if the curve is given by a Weierstrafl
equation, the two-torsion points in E(Q), i.e. the points P € E(Q)
with 2P = O, are precisely the intersection points of the curve E with
the z-axis (and the point O). The example studied in section 2 did
not have any two-torsion points apart from O, as the cubic equation
43® — 4z + 1 = 0 does not have a rational root. The following result
sheds some light on the torsion subgroup more generally.

Theorem 15 (Lutz—Nagell, [13, 19]). All torsion points of y?> =
23 +pr+q with p, q € Z have integer coordinates (z,y) € Z2, provided
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4p® 4+ 27¢% # 0. Moreover, if (z,y) € E(Q)s0r then either y = 0 or
y? divides 4p> + 27¢>.

Together with Siegel’s Theorem this implies that E(Q)ior is fi-
nite. This, however, is already a consequence of Mordell’s Theorem,
because every finitely generated Abelian group G is isomorphic to

L"XZL]aZ X LjasZ X ... x L]as 17 X 7 ]asZ

~~
Gtor

with positive integers a;. The number r > 0 is called the rank of this
group. The possibilities for the rank of E(Q) are not yet known, but
it is conjectured that there exist cubic curves for which the rank of
E(Q) is as large as you want. The largest known rank at the moment
seems to be 28, attained by an example found by N. Elkies in 2006.

On the other hand, the torsion subgroup of E(Q) is much better
understood. The main result is the following.

Theorem 16 (Mazur, [14, 15]). If E(Q) is given by the equation
y? = 2% + px + q with p,q € Q and 4p® + 27¢> # 0, then its torsion
subgroup E(Q)ior is isomorphic to one of the fifteen groups in the
following list:

Z/nZ, 1<n<10, or n=12,
L]2Zx Z[2nZ, 1<n<d4.

All these groups in fact occur as torsion subgroups.

Remark 17. This result is in sharp contrast to the situation over an
algebraically closed field. If K is an algebraically closed field whose
characteristic does not divide the positive integer m, then the m-
torsion subgroup of F(K), which consists of all the elements of F(K)
killed by m, is isomorphic to Z /mZ x Z/mZ. In the case K = C this
will be explained in the article of M. Khalid [11].

Example 18. Because 9 = 8 + 1, it is not so hard to discover that
P = (2,3) is an element of E(Q), the solution set of the equation
y? = 23 + 1. The tangent line at P to this cubic curve has equation
y = 2z—1. If we substitute this into y?> = 23+1 we obtain (22—1)% =
z3+1 or equivalently 0 = 2> —42? + 4z = x(x—2)?. This means that
this tangent line intersects the cubic at the new point (0, —1), hence
2P = (0,1). To find 3P, we use the line which connects P = (2, 3)
and 2P = (0,1). It has the equation y = z+1 and intersects the cubic
at 3P = (—1,0). This point is on the z-axis, so it is a two-torsion
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point. This implies 6P = O and we obtain 4P = —2P = (0, —1) and
5P = —P = (2,—3). In fact, E(Q) consists of the six points kP,
k=0,1,2,3,4,5 only, i.e. E(Q) = Z/6Z. In [21] and [7] examples
of cubic equations which realise all the other E(Q)¢or can be found.

The Tate canonical form, see (7) below, is very useful in the study
of cubics whose Mordell-Weil group has torsion. More precisely,
every cubic curve which has at least one point P € E(Q)or of order
at least four (i.e. P # O, 2P # O and 3P # O) can be brought into
Tate canonical form. For example, if b =1 and ¢ = d in (7), it can
be shown that the point (0:0: 1) is a point of order four.

A useful method which allows us to gain information about E(Q)
is reduction modulo a prime number p. This means that one studies
solutions of a given cubic equation with coordinates in the finite field
F, = Z/pZ. These solutions form the group E(F,). An interesting
result in this context says that for each prime p > 2 which does not
divide the discriminant A, the map which reduces the coordinates of
a torsion point P € E(Q) modulo p embeds E(Q)ior as a subgroup
into E(FF,). This can be used to determine the group E(Q)or. More
on the issue of calculating the torsion subgroup of E(Q) can be found
for example in [22], [10] and [6].

Example 19. Let us show that E(Q)io, = {O} for the cubic y* =
42% — 42 + 1 studied in the previous section. The idea is to calculate
E(F3) and E(F5) and show that these groups are of co-prime order.
This is sufficient because 3 and 5 do not divide the discriminant
A = 37 of this cubic. If we reduce the equation y? = 423 — 42 + 1
modulo 3 we obtain y? = 23 —z+ 1. Because z° —z = z(z—1)(z+1)
is equal to zero for all € Fs, we see that (0,+£1),(1,+1),(2,£1)
are the only solutions of this equation with coefficients in the finite
field F3. Therefore, E(F5) = {0, (0, 1), (1,+£1),(2,£1)} is of order
7. Reducing the equation y? = 423 — 42 + 1 modulo 5 gives y? =
—x3 + x + 1. Its solutions over F5 are (0,+1),(+1,41) and (2,0).
This means that E(FF5) is a group of order 8. Because E(Q)or is
isomorphic to a sub-group of E(IF3) and of E(Fs), it must be trivial.

More generally, solutions in all finite fields of fixed characteristic
p can be studied. If the number of solutions for such finite fields
are put together in a kind of generating function, the so-called zeta-
function is obtained. Lack of space forces us to skip the fascinat-
ing theory of zeta-functions of elliptic curves, the Weil conjectures
and their proof by Deligne and, last but not least, the Birch and
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Swinnerton-Dyer conjecture which is one of the millennium prize
problems, a solution of which is worth one million US-Dollars (see
http://www.claymath.org/millennium/). A starting point for the
interested reader could be [12], [7] or [21]. We confine ourselves to
look at Weierstrafl equations and other canonical forms over more
general fields K for the rest of this article.

There are several ways to proceed. One possibility would be to
introduce the abstract notion of a smooth projective curve of arith-
metic genus 1, defined over the field K. If such a curve has a point
with coordinates in K, it is possible to show that the curve is iso-
morphic to a plane cubic curve which has an inflection point at
O = (0:1:0). In particular, if K is algebraically closed, such a
point always exists. However, even in the case K = Q an equation
like 323 + 423 + 523 = 0 does not have a single point in P?(K). Of
course, we shall not proceed along these lines. The interested reader
is referred to standard textbooks on algebraic geometry, such as [8§].

We shall assume that we have a cubic equation f(zo,21,22) = 0
which defines a plane cubic curve with at least one point in P%(K).
Let us first try to see whether any such curve can be described by
a Weierstrafl equation, whereby we allow linear transformations of
coordinates only. The key to making progress is to understand in-
flection points. It is not hard to show that a point P € E(K) is an
inflection point if and only if it is on the zero set of the Hessian of
the cubic polynomial f. By definition, the Hessian of f is the deter-
minant of the 3 x 3—matrix formed by the second partial derivatives
of f. This is again a cubic polynomial and Bézout’s Theorem implies
that there are at most 9 inflection points (with coordinates in the
algebraic closure of K). As we have seen earlier, the only point at
infinity O of a curve, which is given by a Weierstrafy equation, is an
inflection point. Therefore, a necessary condition for a cubic to be
transformable to a Weierstrafl equation is that at least one of the
inflection points is defined over K. Let us assume such a point exists
on our curve. By a linear transformation of coordinates with coeffi-
cients in K we can arrange that this inflection point has coordinates
(0:1:0) and the tangent line to the curve at this point is the line
at infinity with equation zo = 0. Under these assumptions and using
coordinates z,y on Uy C P%(KK), it is clear that the cubic equation is
of the form

y2 +a1xy + azy = x° + a2x2 + a4 + ag.
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In order to simplify the left hand side to y?> we have to complete
the square, which means that y + ‘“gﬁ is going to be the new
y-coordinate. This obviously requires that we are able to divide by
2 which is possible in full generality only if the characteristic of K
is not equal to 2. On the other hand, in order to absorb the term
asz? on the right hand side we complete the cube. This is possible
in general only if the characteristic of K is not equal to 3. As a
result we obtain that any non-singular cubic with an inflection point
in P?(K) can be given by a Weierstral equation if the characteristic
of K is not equal to 2 or 3. Moreover, if the characteristic of K is
not equal to 2, we can easily switch between (2) and (3), both are
known as the Weierstrafl canonical form in the literature.

It seems that the Weierstrafl canonical form is the most widely
known one. There are other canonical forms for cubic equations,
each of which has its own advantages. Usually, it is only possible to
achieve such a canonical form under some additional assumptions.

These are the Legendre canonical form (Adrien Marie Legendre,
1752-1833)

2229 = 20(20 — 22)(20 — A22), (5)
the Hesse canonical form (Ludwig Otto Hesse, 1811-1874)
28+ 23 + 25 +tz02120=0 (6)

and the Tate canonical form (John Tate, 1925-)
2329 + b2o2129 + 2125 = 25 + dzg 2. (7

If the cubic is given by (5) or (7), the only point at infinity will
again be the inflection point O = (0: 1: 0). Therefore, we may also
consider
v =x(x —1)(z =N
as the Legendre canonical form and
y? + bay + cy = 22 + da®

as the Tate canonical form.

The Tate canonical form can be achieved for a cubic curve which
has at least one point of finite order n > 3. So, it is not a general
normal form for all cubics but it is very useful in order to find the
torsion subgroup of E(K).

The Legendre canonical form exhibits our curve as a double cover
of the projective line P!. This branched double cover is given by the
map which forgets the y-coordinate (or z; in the projective setting).
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The map so defined can be extended to a map which is also defined
at the point O at infinity. It has four branch points, namely O and
the three points given by the roots of the right hand side, these
are (0: 0:1),(1:0:1)and (A:0:1). These four points are
precisely the 2-torsion points of E(K), i.e. those points P which
satisfy P + P = O. This shows that only those cubic curves which
have four 2-torsion points with coordinates in the field K can be
transformed into a Legendre canonical form. In particular, if K = C
or any other algebraically closed field of characteristic not equal to
two, this is always possible.

On the other hand, an equation in Hesse normal form does not
have triple contact with the line at infinity. If the field K contains
three cubic roots of unity (e.g. K = C), it has three points at infinity,
namely the solutions of z3 + 2z} = 0. These are inflection points of
the cubic. If K = Q, for example, we see only one of them; this
is the point (1 : —1 : 0). This point is available over any field K
and can be taken as the origin for the group structure. Then, the
set of three-torsion points is precisely the set of inflection points of
this cubic. In particular, if K contains three cubic roots of unity,
the cubic contains nine three-torsion points which lie on the three
coordinate lines z; = 0.

The configuration of these nine points was studied by O. Hesse
[9] who found that the nine inflection points lie on 12 lines, each
of which contains three of these points. Each of the nine points is
contained in four of the 12 lines. This set of nine points and 12
lines is now called the Hesse configuration. A recent survey on the
Hesse configuration and an application to the study of examples of
K3-surfaces can be found in [1].

Finally, let us mention that it is not hard to give an explicit for-
mula for the group structure on E(Q) if the curve is given in Weier-
stall canonical form y? = z° + px + ¢. For example, if P = (z1,11)
and Q = (x2,y2) # — P, the point P + @ = (x3,y3) has coordinates

2

Y2 —

r3 = | — —x1 — T2
o — I

— <y2 —y1> Y122 — Y21
vB3=—\-—-|*r»B3 - ———:
To — I T2 —T1

This can be obtained using precisely the same calculations as in our
examples in section 2. Remarkably, this formula does not depend
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on p,q, which is due to the non-presence of z2 in the Weierstraf3
canonical form. However, p, q explicitly appear in the formula which
describes the coordinates of 2P. For each normal form such a formula
can be obtained.

A formula which is impressive because of its beauty and simplicity
is obtained when we start with an equation of the following form

2?4+ y* = a® + a’2Py .

If P = (z,y) and P’ = (2',y') are two solutions of this equation, the
group structure on the solution set is given by

pap oL (zy Ay yy — o
Ca \1+4zyz'y’ 1—zyz'y' )’

The point O = (0, a) is easily seen to be the neutral element of this
group. More on this formula can be found in the recent article [3].

Because the given equation is of degree four, it is not clear how this
example fits into the theory explained so far. That the solution set of
this equation indeed forms a Mordell-Weil group can be explained
using projective geometry. The basic idea is to show that, apart
from a small number of points, the curve defined by this equation of
degree four is isomorphic to a plane cubic curve.

The given curve of degree four has two singular points at infinity,
namely (1:0:0) and (0:1:0). If a® # a the curve has no other
singular point. We are going to show explicitly that a non-singular
version of this curve is the plane cubic given by the equation

1—a? 1+a®
y2:1‘<1‘+1+—a2><$+1_a2>. (8)

The outline of the construction is the following. We construct a
non-singular version of the degree 4 curve which is embedded in
projective three-space in such a way that a certain projection from a
centre outside this non-singular curve maps it to the original degree
4 curve. We then find another projection whose centre is on this
non-singular curve in three-space and which maps it isomorphically
onto the plane cubic given by equation (8).

More specifically, using coordinates (w : z : y : z) in P2, we define
the curve E in P3 by the two simultaneous quadratic equations

xy —wz =0

y? —a*w® + 2% —a?2® = 0.
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The projection with centre (1 : 0 : 0 : 0) is the map which sends
apoint (w: x :y: z) € P> to the point (z : y : 2) € P2, This
projection is not defined at the point (1:0:0:0). All other points
on the line in P? through (1 : 0 : 0 : 0) and (0 : = : y : z) are
sent to the same point (z : y : z) € P2. Because the line through
(1:0:0:0)and (0: 2 :y: z) meets the curve E precisely when
22(2% +y?) = a®2* +a’2%y?, the image of this projection is the plane
curve of degree four given by this equation. Moreover, such a line
has more than one intersection point with E if and only if it passes
trough (0:1:0:0) or (0:0:1:0). Therefore, away from the two
singular points we obtain an isomorphism between E and the image
curve in P2. B

The point (0 : 0 : —a : 1) is on the curve E. The projection
with centre (0 : 0 : —a : 1) is a map from P3\ {(0: 0 : —a : 1)}
to P2, It extends to a map which is defined on all of E and defines
an isomorphism between E and its image curve in P?, which can be
given by the cubic equation (8). The point on the curve E C P3
which corresponds to the neutral element O = (0,a), is the point
(0:0:a:1). The second projection sends this point to our usual
neutral element (0 : 1:0) € P? at infinity. We leave the details of
the calculations to the interested reader.
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