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Conformal Symmetries of Regions

ALAN F. BEARDONT AND IAN SHORT't

ABSTRACT. We discuss which groups arise as the group of
conformal symmetries of a plane region. We also show how
to compute the symmetry group of a given region.

1. CONFORMAL SYMMETRY GROUPS

A conformal symmetry of a region D in the complex plane is a one-
to-one conformal map of D onto itself. In this expository paper we
discuss conformal symmetry groups, mostly for plane regions, but
also for certain regions in higher dimensional spaces. In particular,
we address the following two questions.

Question 1. Which groups arise as conformal symmetry groups?
Question 2. Given a region, what is its conformal symmetry group?

Let us consider Question 2 in a concrete example. Let D be the
region exterior to the three circles Cy = {z : |z| = 16}, C2 = {z :
|z — (-16+24i)| =4} and C3 = {z : |2 — (9+ B4)| =t} 0<t <8
(this region is illustrated in Figure 1). The condition 0 < ¢t < 8
ensures that none of the circles intersect; C3 is tangent to C for
t =8.0013---. For each 0 < t < 8, what is the conformal symmetry
group of D? This group is determined up to isomorphism in §5, and
explicitly in §6.

Let us briefly review the basic ideas regarding conformal symme-
tries. As our examples will have symmetries that are Mdbius maps
we begin by discussing Mobius maps. The extended complex plane
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F1GURE 1. The region D is exterior to C, Cy and Cs

is the union of the complex plane C and the point oo at infinity, and
is denoted by Cu. It is homeomorphic to the unit sphere in R? via
stereographic projection, and it acquires the structure of a Riemann
surface with the introduction of the chart z + 1/z at cc. The con-
formal automorphisms (that is, the holomorphic bijections) of Cy
onto itself are the Mdbius transformations z — (az + b)/(cz + d),
where ad — bc # 0. Each Mobius transformation maps circles to
circles, where a circle in C, is either a Euclidean circle or a Eu-
clidean line with oo attached. The M&bius transformations that fix
oo are the maps z — az + b, where a # 0. These maps form the
group of conformal Euclidean similarities, and the subgroup of maps
with |a|] = 1 is the group of conformal Euclidean isometries. The
anti-conformal Euclidean isometries are the maps z — aZz + b with
|a|] = 1; more generally, the anti-conformal M&bius maps are the
maps z — (aZ + b)/(cZ + d), where ad — be # 0.

A region is a non-empty, open, connected subset of C,,. The con-
nectivity of a region is the cardinality of the set of components of its
(compact) complement, and this may be finite or infinite. Generally
speaking, much is known about regions of finite connectivity; little
is known about regions of infinite connectivity.

A conformal symmetry (or automorphism) of a region D is a bi-
jective holomorphic map of D onto itself. In this paper a conformal
symmetry is injective so that we are excluding such maps as z — 22
which is conformal (in the sense of angle-preserving), but not injec-
tive, on C\{0}. Because each conformal symmetry of D is a bijection,
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these symmetries form a group which we denote by Aut™ (D). An
automorphism of a region that fixes three distinct points is the iden-
tity map (see [8] and [10]). Also, it is known that if D is a region
of finite connectivity which is at least three, then any holomorphic
proper self-map of D is a conformal symmetry of D (see [11]).

We end this introduction with a simple example to show that there
are regions whose conformal symmetry group is trivial. In fact, the
region we construct has a much stronger property: it has no holomor-
phic self-maps other than the identity map. Let E = {1,—1,4,(, 00},
where ¢ = (14i)/+/2, and let f be a non—constant holomorphic map
of D = Cx \E into itself. Picard’s Theorem implies that each point
of E is a removable singularity of f, so that f extends to a func-
tion that is meromorphic on C,, and hence is a rational map. As
f maps D into itself we see that f*(E) C E, and as f is rational
(and therefore surjective) we conclude that f(E) = E = f~1(E). It
follows that f is a bijection of E onto itself, and so some iterate,
say f* of f, acts as the identity on E. In particular, f*(z) = oc if
and only if z = oo, so that f* is a polynomial, say of degree d. As
f(z) = 1if and only if z = 1, and similarly for —1, there must be
constants A and B such that A(z —1)?+1= f(2) = B(z+1)¢ — 1.
This can only happen if d = 1; thus f*, and hence f also, is a Mdbius
map. As f is Mdobius, it preserves the concyclic nature of any four
points. The circles in C,, that contain oo are the Euclidean lines,
and each Euclidean line meets E in at most three points (one of
which is oo); therefore f must map the set {1, —1,4,} of four con-
cyclic points onto itself. We deduce that f must fix oc, so that f
is a Euclidean similarity. Clearly, the only Euclidean similarity that
maps {1, —1,4, (} onto itself is the identity map. For more examples
of this type, see [3].

2. REDUCTION TO A PROBLEM IN GEOMETRY

In 1851 Riemann gave what is now known as the Riemann Mapping
Theorem: each simply connected proper subregion of C is confor-
mally equivalent to the open unit disc ). For a discussion of the
history of this result, see [12, page 181]. Koebe provided a rigorous
proof of Riemann’s theorem and, in 1920, he also proved a much
stronger result, namely that each finitely connected region is con-
formally equivalent to a circular region, where a circular region is a
region whose complement is a union of mutually disjoint closed discs.



52 ALAN F. BEARDON AND IAN SHORT

In 1993, this result was extended to countably connected regions by
He and Schramm [6], who also showed that the conformal symmetries
of circular regions of countable connectivity are M&bius maps (this
was known previously for circular regions of finite connectivity). Al-
though it is not known whether an arbitrary region D is conformally
equivalent to a circular region, Maskit [10] has shown that there is a
region D' conformally equivalent to D such that Aut™(D’) consists
only of Mobius transformations. In this paper we answer questions
1 and 2 only for circular regions of finite connectivity such that each
closed disc in the complement of the region has positive radius. For
regions whose complement has closed discs of zero radius, see [3].

Each conformal M&bius transformation acting on Cy, is a com-
position of an even number of inversions in circles in C,, and each
anti-conformal Mobius transformation is a composition of an odd
number of inversions. We embed C as the plane 3 = 0 in R3.
If we regard a circle in Cy, as the ‘equator’ of a sphere in R?,
we see that each Mobius transformation can be extended (as the
same composition of inversions) so as to act on R* U {oco} in such
a way that it preserves the upper—half H® = {(z1, 22, 73) |23 > 0}
of R®. Now, any real Mobius transformations that preserves the
upper—half H? = {(x1,72)|z2 > 0} of the complex plane acts as
an isometry of the hyperbolic plane H? with the hyperbolic met-
ric ds? = (dr? + dx3)/x3. In a similar way, any complex Mobius
transformation acts on H?, which we regard as a model of hyper-
bolic 3-space with metric ds® = (dz} + dz} + dz2)/23. In fact, the
group of (conformal and anti—conformal) M6bius transformations is
precisely the group of isometries of hyperbolic space H? (see [1] for
details). A corollary of this important fact is that complex analytic
questions about conformal symmetries of circular regions can be re-
duced to geometric questions about the action of the Mdbius group
of isometries of hyperbolic space H?. Each circle in Cy is the ideal
boundary of a hemisphere in H?, and these hemispheres are the hy-
perbolic planes in H® (just as semicircles in H? orthogonal to R are
geodesics).

We illustrate these ideas in Figure 2. The circular region D lying
in Cy is bounded by four circles. One of these circles is C, and
this is the ideal boundary of the hyperbolic plane II. The region
enclosed by the four hyperbolic planes is an unbounded hyperbolic
polyhedron, P, which has ideal boundary D. In addition, we can
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FIGURE 2

think of P as the hyperbolic convex hull of D; this is the union of
all hyperbolic geodesics whose endpoints lie in D.

3. THE SOLUTION TO QUESTION 1

In general, a conformal symmetry of a region D is defined only on D
and it need not extend analytically beyond (or even to) the bound-
ary of D. However, the conformal symmetries of a circular region
of countable connectivity are Mobius transformations and these are
defined on the whole of C,. This is an important point, and this
extra information can be used to answer Question 1 in the case of
regions of finite connectivity. First, any region of finite connectivity
is, by Koebe’s result, conformally equivalent to a circular region of
finite connectivity. Obviously, conformally equivalent regions have
isomorphic symmetry groups so in answering Question 1, we may
confine our attention to circular regions of finite connectivity.

Suppose that D = C \ (E1 U ---U E,;,), where Ey,..., E,, are
disjoint closed discs and m > 3. Each conformal symmetry of D,
necessarily a Mobius transformation, permutes these discs. This
argument provides a homomorphism

®: Autt(D) = Sp, > Oy,

where ®;(i) = j if and only if f(E;) = E;, and where S,, is the
permutation group on m symbols. If f lies in the kernel of ® then f
fixes each E; set-wise. By the Brouwer Fixed Point Theorem, f has
a fixed point in each F;. Thus f has at least three fixed points and
so is the identity map. Thus & is injective, and hence Aut™ (D) is,
up to isomorphism, a subgroup of S,,.

It is well known that each finite Mdbius group is isomorphic either
to the cyclic or dihedral symmetry group of a 2-dimensional regu-
lar polygon or to the rotational symmetry group of a 3-dimensional
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regular polyhedron (a Platonic solid). See either [1, §5.1] or [7, Chap-
ter VI] for a proof, although we sketch a proof later in this section.
There are exactly five Platonic solids: the tetrahedron, cube, octahe-
dron, dodecahedron and icosahedron, and their rotational symmetry
groups are, in order, Ay, Sy, S4, A5 and As. The cube and octa-
hedron have the same rotational symmetry group as they are dual
polyhedra; the dodecahedron and icosahedron are also dual polyhe-
dra. These facts show that each finite M6bius group is either cyclic,
dihedral or isomorphic to one of A4, Sy or As. All such groups arise
as conformal symmetry groups, and we have now answered Ques-
tion 1 completely.

FIGURE 3

We illustrate these ideas in Figure 3, where each sphere has a
number of points removed. The resulting regions have conformal
symmetry groups, from left to right, Cs, Dg and A4. Two octagons
and an octahedron are shown connecting the points to indicate the
relationship between subgroups of the Mobius group and the sym-
metries of the polygons and polyhedra.

Let us sketch a proof that each finite Mobius group G is iso-
morphic to a finite group of rotations of R*. Each ¢ in G acts on
hyperbolic space H?. As G is finite, each orbit in H® is a finite set.
Take any one orbit, say O, and enclose it in the smallest possible
closed hyperbolic ball B in H?, and let ¢ be the hyperbolic centre
of B. This construction is possible because O is finite. As O is
G-invariant, so is B, and hence so is (. We can now map H® bijec-
tively onto the open unit ball B* in R* (by a Mobius map acting on
R? U {oo}) with ¢ mapping to the origin. The elements of G trans-
form into Euclidean rotations, so G is isomorphic (indeed, conjugate
in the larger Mdbius group) to a finite group of Euclidean rotations
of R3.
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We conclude this section with a brief discussion of the higher
dimensional case. A (conformal or anti—conformal) M&bius map act-
ing on R™ U {oo} is a composition of inversions across (m — 1)-
dimensional spheres or hyperplanes, and Liouville proved that any
conformal or anti—conformal map acting on a subdomain of R™U{oc}
is M&bius. In answer to Question 2 in this case, for each finite group
G there is a circular region in some R™ U {oo} such that the group
of conformal symmetries of D is isomorphic to G.

4. THE INVERSIVE DISTANCE

In general, to understand symmetry groups it is useful to identify
group invariants. The inversive distance x(C1, C2) between two Eu-
clidean circles Cy and C3 in C is given by the equation

2.2 .2
X(ClaCQ): |cl C2| 1 75

2’!‘1’!‘2 ’ (41)
where C7 has centre ¢; and radius r;, and Cs has centre ¢, and
radius r5. There is a similar formula when one or both of C; and
C5 are Euclidean lines. The inversive distance is invariant under
Mobius transformations. If €y and Cs are disjoint then there is
a Modbius transformation f which maps C; and C3 to concentric
circles of radii s; and s that are centred on the origin, in which case
X(C1,Cs) = 5(s1/52 + 52/51).

The inversive distance has a simple interpretation with hyperbolic
geometry. The circles C; and Cy are the ideal boundaries of hyper-
bolic planes II; and II, in H?. If C; and C, are disjoint then II;
and II, are separated by a positive hyperbolic distance p (see Fig-
ure 4), and x(Cy,Cs) = cosh p. If C; and Cs intersect in an angle 8
in [0,7/2] then x(Ci,Cs) = cosf. For more information about the
inversive distance, see [1] and [5, page 129].

We can use this invariant of Mobius transformations to calcu-
late conformal symmetry groups. Consider a circular region D with
boundary circles C, . .., Cy,, each of positive radius, and correspond-
ing hyperbolic planes II;, ..., II,,. If ¢ € Aut™ (D) then

X(¢(Cl)7¢(0])) :X(Civcj) (iaj: 1:---7m)'

A converse to this observation, which is discussed in the next section,
enables us to answer Question 2.
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5. THE SOLUTION TO QUESTION 2

Let Q and Q' be two circular regions in C, bounded by circles C;
and C}, j =1,...,m, each of positive radius.

Theorem 5.1. There exists a hyperbolic isometry ¢ with ¢(Q2) = '
and ¢(Cj) = C; for each j = 1,...,m if and only if x(C;j,Cy) =
x(C5,Cy) forall j,k=1,...,m.

We emphasise that the hyperbolic isometry ¢ in Theorem 5.1 may
correspond to a conformal or an anti-conformal Md&bius transforma-
tion.

The circles C; in Theorem 5.1 are pairwise disjoint. The theorem
can be generalised to allow some, but not all, collections of circles.
An example of the failure of Theorem 5.1 when circles are allowed to
intersect is shown in Figure 5. The equalities x(C;, C;) = x(C;, C})
hold for i,j = 1,2, 3,4; each x(C;, C;) is either 0 or 1 depending on
whether C; and C; are orthogonal or parallel. The regions D and
D' are conformally equivalent as they are both simply connected.
Nevertheless, there is not a conformal map ¢ : D — D’ with ¢(C;) =
C} for i = 1,2,3,4, because the rectangular regions are not similar,
in the Euclidean sense.

C: C. c. C

FIGURE 5
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A proof of Theorem 5.1 is discussed in the next section.

Question 2 can now be answered with the help of Theorem 5.1.
The existence of a conformal symmetry is equivalent to the equality
of certain inversive distances, and these inversive distances are easily
computed using (4.1). Consider the example in Figure 1. We have

35 5121 — 16¢2
x(C1,Cs) = 5 x(C1,C3) = 1
9793 — 2561
R P

It can be checked that x(Cs,C5) > x(C1,C3) and x(Ca2,C3) >
x(C1,C3) for each ¢ € (0,8). Also, x(Cy,C3) = x(C1,C5) if and
only if ¢ = 9/4. Therefore when ¢ = 9/4 there is a Mdbius map o
(possibly anti-conformal) that fixes C; and interchanges Cy and Cs.
In fact, f is conformal therefore Aut™ (D) is isomorphic to Cy when
t equals 9/4, and otherwise Aut™ (D) is trivial. We show this in §6.

6. REDUCTION TO A PROBLEM IN LINEAR ALGEBRA

There are several models of hyperbolic space and, for calculating
symmetries of circular regions (or, equivalently, for calculating hy-
perbolic isometries that preserve a particular collection of hyperbolic
planes), there are many advantages to the hyperboloid model. To
construct the hyperboloid model of 3-dimensional hyperbolic space,
we endow R* with the Lorentz inner-product

(z,y) = T1y1 + T2y2 + T3Y3 — TaYs.
The hyperboloid sheet
H={zeR : (z,2) = -1, z4 > 0}

becomes a model of 3-dimensional hyperbolic space with metric d
determined by

coshd(z,y) = —(x,y)-

A hyperbolic plane II in H is the intersection of ‘H with a 3-dimen-
sional Euclidean plane P through the origin. Each such plane P
has a Lorentz unit normal n such that P = {z : (z,n) = 0}.
The hyperbolic isometries of H are the positive Lorentz orthogo-
nal maps, namely the linear isomorphisms of R* that preserve the
Lorentz inner-product and map A to H. A hyperbolic isometry ¢
maps one hyperbolic plane II to another, IT’, if and only if ¢ maps a
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unit normal n of II to a unit normal n' of II'. The inversive distance
between II and II' is |[(n,n')]|.

The elements of a proof of Theorem 5.1 are all present in the
hyperboloid model. A collection of hyperbolic planes can be rep-
resented by associated unit normals nq,...,n,,, and the inversive
distances are |(n;,n;)|, for i,j = 1,...,m. Let n; and n) be unit
normals associated to C; and C’} in Theorem 5.1. By taking some
(or all) of the Lorentz normals to the planes as basis vectors, one
can construct a linear transformation ¢ that maps n; to n; for each
7, and the Lorentz orthogonality of ¢ is ensured by the inversive
distance condition.

There are other benefits of the hyperboloid model. The proof of
Theorem 5.1 is valid for more general collections of boundary cir-
cles Cj; in particular, there may be infinitely many circles. The
Lorentz model of hyperbolic space can be constructed in all dimen-
sions, and likewise Theorem 5.1 generalises to all dimensions. Also,
the proof of Theorem 5.1 can be adapted to give results analogous
to Theorem 5.1 about punctured spheres.

The final advantage of the hyperboloid model that we mention is
that it allows one to construct conformal symmetry groups explicitly,
not just up to isomorphism. Consider the example of Figure 1. In §5
we showed that the automorphism group is trivial unless ¢t = 9/4, in
which case the automorphism group is C3. One can choose Lorentz
normals nq, ny and ns in R* that correspond to the circles C;, Co
and C5 and then construct a Lorentz orthogonal map L that fixes n;
and interchanges no and nz. The Mobius map o corresponding to L
is conformal because det L = 1 (the alternative is that if det L = —1
then o is anti-conformal). In this case, Aut™ (D) = {1,0},

-1 0 0 0
—41 —40
L 0 9 0 9
- 0 425 257 3485
12 32 96
0 1285 255 10537
36 32 288
and

) 20iz + 256
(2 =

z — 201
(One can check that the Lorentz orthogonal map L and the Mobius

map o correspond to the same hyperbolic isometry using [14, Theo-
rem 10].)



CONFORMAL SYMMETRIES OF REGIONS 59

7. REGIONS OF INFINITE CONNECTIVITY

Questions 1 and 2 are more complicated for regions of infinite connec-
tivity, even for regions with a countable number of boundary compo-
nents. There are many examples of such regions and their automor-
phisms groups in the literature. For a simple example, Aut™(C \ Z)
is infinite, and is generated by z — —z and z — 2z + 1. More compli-
cated examples arise in the theory of discrete Mébius groups where
the groups known as Schottky groups play a prominent role. With-
out going into details here, one can construct many examples of a
perfect, Cantor-like set L (the limit set), and discrete, finitely or
infinitely generated, free groups of Mobius conformal symmetries of
Co \E.

We shall content ourselves here by discussing just one example
(for an extension of these ideas see [2]). Let D be the complement
of a sequence z1, 22, ... of distinct points in C that converges to occ.
Next, let f be a non—constant holomorphic self-map of D (f may
be, but need not be, a conformal symmetry of D, and it need not be
injective). By Picard’s Theorem, each z, is a removable singularity
for f, and it is easy to see that for each n, f(z,) # oc. Thus
f extends to an entire function. As f maps D into itself, so too
do all the iterates of f, and Montel’s Theorem (on three omitted
values) implies that the family of iterates is normal in D. Thus
the Julia set of f lies in {z1,22,...,00}. It is well known that the
Julia set of an entire function is uncountable unless the function is
a linear polynomial (see [4]). We conclude that the entire function
f is a linear polynomial; thus every holomorphic self-map of D is
of the form z — az + b, where a # 0. In particular, the group
of conformal symmetries of D is a group of Mobius maps. Each
(M&bius) conformal symmetry of D must fix co. Moreover, Aut™ (D)
cannot contain any maps g(z) = az + b with |a| # 1 as otherwise
the set of images of z under the forward and backward iterates of g
accumulate at the finite fixed point of g. Therefore Aut™ (D) consists
only of Euclidean rotations and translations. As E N C is discrete,
and invariant under the conformal symmetries of D, Aut™ (D) must
be a discrete group of Euclidean isometries. Thus, as is well known,
Aut™ (D) is either a finite cyclic group of Euclidean rotations, or one
of the three conformal frieze groups (these are the discrete Euclidean
isometry groups whose translations form a cyclic subgroup), or one
of the five conformal wallpaper groups (whose translations form an
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abelian subgroup of rank two). Of course, in the problem we are
discussing here the determination of Aut™ (D) depends on the precise
location of the points z,. In fact, for almost all choices of the points
Zn, the group Aut™ (D) is trivial.

(1]
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