Irish Math. Soc. Bulletin 59 (2007), 37-47 37

The Centre of Unitary Isotopes of JB*Algebras

AKHLAQ A. SIDDIQUI

ABSTRACT. We identify the centre of unitary isotopes of a
JB*-algebra. We show that the centres of any two uni-
tary isotopes of a J B*-algebra are isometrically Jordan *-iso-
morphic to each other. However, there need be no inclusion
between centres of the two unitary isotopes.

1. BaAsics

We begin by recalling (from [3], for instance) the following concepts
of homotope and isotope of Jordan algebras.

Let J be a Jordan algebra, cf. [3], and = € J. The z-homotope
of J, denoted by J|, is the Jordan algebra consisting of the same
elements and linear algebra structure as J but a different product,
denoted by “..”, defined by

a..b = {axb}

for all a,b in Jp. By {pgr} we will always denote the Jordan
triple product of p, ¢, r defined in the Jordan algebra [J as below:

{pgr} = (pogq)or—(por)oq+(gor)op,

where o stands for the original Jordan product in J. An element
x of a Jordan algebra J with unit e is said to be invertible if there
exists z~1 € J , called the inverse of x, such that x o = e
and 220z~ ! = x. The set of all invertible elements of J will be
denoted by Jiny- In this case, = acts as the unit for the homotope
\7[171] of j

If J is a unital Jordan algebra and x € J;,, then by z-isotope
of J, denoted by J!, we mean the z~'-homotope Tz of J.
We denote the multiplication “ .,-1” of J&! by ¢ o,”.

The following lemma gives the invariance of the set of invertible
elements in a unital Jordan algebra on passage to any of its isotopes.
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Lemma 1.1. For any invertible element a in a unital Jordan algebra

j7 \7i7w = \77,[;11; .
Proof. See Lemma 1.5 of [8]. O

Let J be a Jordan algebra and let a, b € J . The operators Ty
and U, aredefined on J by Tp(x) = box and U, u(z) = {azb}.
We shall denote U, 4 simply by U,. The elements a and b are said
to operator commute if 7, commute with 7Tj.

Let J be a complex unital Banach Jordan algebra and let x € J.
As usual, the spectrum of z in J, denoted by oz(x), is defined
by

og(x) = {A ¢ C : z— Xe is not invertible in J} .

A Jordan algebra J with product o is called a Banach Jordan
algebra if there is a norm ||.|] on J such that (J,].|]) is a
Banach space and |laob| < |la|| ||b]|. If, in addition, J has a unit
e with |le]| = 1 then J is called a unital Banach Jordan alge-
bra. In the sequel, we will only be considering unital Banach Jordan
algebras; the norm closure of the Jordan subalgebra J(zi,...,x,)
generated by x1,...,z, of Banach Jordan algebra J will be denoted
by J(x1,...,%.).

The following elementary properties of Banach Jordan algebras
are similar to those of Banach algebras and their proofs are a fairly
routine modifications of these [1, 2, 7, 9].

Lemma 1.2. Let J be a Banach Jordan algebra with unit e and

T1,...,2. € J.
(i) If J(z1,...,z.) 1is an associative subalgebra of J, then
J(x1,...,x,) is a commutative Banach algebra.

(ii) Ty, and Uy, 4, are continuous with ||Ty, | < ||lzi|| and
Vs | < 3l 2]

(ii) J(x1,...,2,) is a closed subalgebra of J.

(iv) If J is unital then J(e,x1) 14s a commutative Banach
algebra .

(v) Ifz € J and ||z|| < 1 then e—x is invertible and (e —x) "' =
S e J(e ).

(vi) If K is a closed Jordan subalgebra of J containing e and
x € K such that C\ o7(x) is connected then oz7(x) =
ok (x).
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We are interested in a special class of Banach Jordan algebras,
called JB*-algebras. These include all C*-algebras as a proper sub-
class (see [10, 13]).

A complex Banach Jordan algebra J with isometric involution *
(see [6], for instance) is called a JB*-algebra if ||{zz*z}| = |z|®
for all z € J.

The class of JB*-algebras was introduced by Kaplansky in 1976
(see [10]) around the same time when a related class called JB-
algebras was being studied by Alfsen, Shultz and Stgrmer (see [1]).

A real Banach Jordan algebra J is called a J B-algebra if ||z||? =
22| < ||z +y?|| for all x,y € J.

These two classes of algebras are linked as follows (see [10, 13]).

Theorem 1.3. (a) If A is a JB*-algebra then the set of self-adjoint
elements of A is a JB-algebra.

(b) If B is a JB-algebra then under a suitable norm the complexi-
fication Cp of B is a JB*-algebra.

There is an easier subclass of these algebras. Let H be a complex
Hilbert space and let B(H) denote the full algebra of bounded linear
operators on H.

(a) Any closed self-adjoint complex Jordan subalgebra of B(H)
is called a JC*-algebra.

(b) Any closed real Jordan subalgebra of self-adjoint operators of
B(H) is called a JC-algebra.

Any JB*-algebra isometrically *-isomorphic to a JC*-algebra is
also called a JC*-algebra; similarly, any JB-algebra isometrically
isomorphic to a JC-algebra is also called a JC-algebra.

It is easy to verify that a JC*-algebra is a JB*-algebra and a
JC-algebra is a JB-algebra. It might be expected, conversely, that
every JB-algebra is a JC-algebra (with a corresponding statement
for JB*-algebras and JC*-algebras) but unfortunately this is not
true (for details see [1]).

2. UNITARY ISOTOPES OF A JB*-ALGEBRA

In [8], we presented a study of unitary isotopes of JB*-algebras. In
this section, we recall some facts from [8] which are needed for the
sequel.

Let J be a JB*-algebra. The element v € J is called unitary
if u* = u~!, the inverse of u. The set of all unitary elements of J
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will be denoted by U(J). If u is a unitary element of JB*-algebra
J then the isotope J™ is called a unitary isotope of 7.

Theorem 2.1. Let u be a unitary element of the JB*-algebra J.
Then the isotope J™ is a JB*-algebra having u as its unit with
respect to the original norm and the involution *, defined by z*+ =
{uz*u}.

Proof. See Theorem 2.4 of [8]. O

Recall (from [3], for instance) that a Jordan algebra is said to be
special if it is isomorphic to a Jordan subalgebra of some associative
algebra. We require the following fact.

Lemma 2.2. If J s a special Jordan algebra and a € J , then
Jla) 18 a special Jordan algebra.

Proof. See Lemma 1.3 in [8]. O

Theorem 2.3. The unitary isotope of a JC*-algebra is again a JC* -
algebra.

Proof. This follows from Theorem 2.1 and Lemma 2.2 (also see [8,
Theorem 2.12]). O

We close this section by noting following facts.

Lemma 2.4. Let J be a JB*-algebra with unit e. Then u €
UT) = e eU(TM). Moreover gl — 7.

Proof. See Lemma 2.7 of [8]. O

Next theorem establishes the invariance of unitaries on passage to
unitary isotopes of a JB*-algebra.

Theorem 2.5. For any unitary element u in the JB*-algebra J,
UI) = uIgt.
Proof. See Theorem 2.8 of [8]. O

Corollary 2.6. Let J be a JB*-algebra with unit e and let u, v €
U(T). Then

(i) g = g,
(ii) The relation of being unitary isotope is an equivalence rela-
tion in the class of unital JB*-algebras.

Proof. See Corollary 2.9 of [8]. O
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3. CENTRE OF UNITARY ISOTOPES

In this section, we identify the centre of unitary isotopes in terms
of the centre of the original JB*-algebra. We recall the following
definition from [14].

Definition 3.1. Let J be a unital JB*-algebra and let

C(J) = {x € Jsa : x operator commutes with every y € Jsq} .
Then the centre of J, denoted by Z(J), is defined by

Z(J) = C(J) +iC(T) .
Remark 3.2. Tt is known from [14] that Z(J) is a C*-algebra, and
if J is a JC*-algebra with J C B(H) for some Hilbert space H
then
Z(J)={zeJ: zy=yx YyeJ}.

To investigate further properties of the centre we need the follow-

ing lemma.

Lemma 3.3. Let J be a JB*-algebra and let © € Z(J). Then for
al ye J,

(i) 17,7, = T,Ty ;

(i) T,U, = U,T, ;

(i) U,U, = U,Uy;

(iv) if u e J is unitary then (vou*)ou=x.
Proof. Let * = a+ b and y = ¢+ id with a,b € C(J) and
¢,d € Jsa - Then

TCCTZJ = (Ta + in)(TC + de) =TT +iT, Ty + LT, — TyTy

=TT, +1TT, +iT. Ty, —TyT, = TyTw
as a,b € C(J) which proves (i).
(ii). Since U, = 2T — T2 , we have
T,U, = T,(2T, — T,2) = 2T, T, — T,T,2 = (2T, — T,2)T, = U,T,
by part (i) (note that the associativity of B(J) is used here).
(iii). Since z € Z(J), 2?> € Z(J) by Remark 3.2. Hence by
part (ii),
U Uy = (217 — Ty2)U, = 217U, — T,2U,
= 2U, T2 —U,T,2 = U,U,.

(iv). By part (i), (zouw*)ou=T,Tou* =T,Tyu*=Te=2z. O



42 AKHLAQ A. SIDDIQUI

Theorem 3.4. Let J be a JB*-algebra with unit e and let b €
Z(J). Then for any unitary uw € U(T) and for any z € J we have

(i) (u*ox)ou = u*o(xrowu);
(ii)) {(bou)u*z} = boux.

Proof. (). If J is special then

1
(u*ox)ou = Z(u(u*x + zu*) + (v x + zu™)u)

1
= —(2z + uzu* + uFzu
4

= i(u*(ux + zu) + (uz + zu)u*) = u* o (x ou).

Hence, by the Shirshov-Cohn theorem with inverses [5], we have in
the general case (u*ox)ou=u*o(zou).
(ii). Since b e Z(J) and u € U(T), we get by Lemma 3.3 (iv) that

(bou)ou™ =b. (1)
Again by Lemma 3.3 (i),
(u*ox)o (bou) = Tiyroz)Tor = TyT(yrogyu = bo (uo (zou")),
and
u*o((bou)ox) =TT, Tyu=TyTyTou=>bo (u* o(xzou)),
so by part (i)
(u"ox)o(bou)=u"o((bou)oux). (2)
Thus by (1) and (2),
{(bow)u*x} = ((bou)ou*)ox+(u" ox)o(bou)—((bou)ox)ou”
=box. 0
We now need a characterisation of the centre in terms of Hermitian
operators. These are defined in terms of the numerical range of
operators as follows (see [14], for example).

Definition 3.5. If J is a complex unital Banach Jordan algebra
with unit e and D(J) = {f € J* : f(e) = ||f|| = 1} then, for
a € J, the numerical range of a, denoted by W (a), is defined by
Wi(a) = {f(a) : f € D(J)}. The element a is called Hermitian if
W(a) € R. The set of all Hermitian elements of J is denoted by
HerJ.



THE CENTRE OF UNITARY ISOTOPES OF JB*-ALGEBRAS 43

The Hermitian elements in a unital JB*-algebra are exactly the
self-adjoint elements (see [13]) but we shall need the following char-
acterisation of the Hermitian operators on a JB*-algebra, given in
[14].

Theorem 3.6. Let J be a JB*-algebra with unit e. Then S €
Her B(J) if and only if S =T, + 3 where § is a *~derivation and
a = S(e) is self-adjoint.

We can now give a characterisation of the centre of a unitary
isotope.

Theorem 3.7. Let J be a JB*-algebra with unit e and let u €
U(T). Let A be a JC*-subalgebra of B(H) for some Hilbert space
H with unit e and let w € U(A).

(i) If x € Z(J) then uox € Z(JM).

) If a € Z(A™)) then (aow*)ow =a.
(iil) If z € Z(JM) then uo (u*o2) = 2.

) Define ¢ = Z(J) — Z(J™) by ¢¥(z) =wox. Then ¢ is
an isometric *-isomorphism of Z(J) onto Z(JM).

Proof. (1). Let x = a+ ib where a,b € Z(J)s,. Let S =T, €
Her B(J). Then

S(e)=Ty(e) =aoce=a and S(u)=uoa.

As S € HerB(J), S(u) € (J™),, by Theorem 3.6. By Theo-
rem 3.4 (ii),

S(y) =Tuly) =aoy={(acu)u™y} = (aou)o,y

for all y € J. Therefore, S(y) = L[;f(]u)(y) for all y € J, where

operator Lgl(]u) stands for the multiplication by S(u) in J [u] . More-

over, as a € Z(J) we get by [14, Theorem 14] that S? € Her B(J) =
Her B(J™) because B(J™) = B(J) (see Theorem 2.1). So again
by [14, Theorem 14], S(u) € Z(JM) as S = Lgf(]u) . There-
fore, uoa € Z(JM),,. Similarly, uob € Z(JM),,. Hence
wor=uoa+iuobec Z(JM).

(ii). By Remark 3.2,

ZA) ={z e A: xy =yz}. (3)
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By Theorem 2.3, the isotope Al*! is a JC*-algebra and
Z(AMY = {z e A: zw*y = yw*z}. (4)
Now, if a € Z(A™) then (by (4)) aw*y = yw*a for all y € A.
In particular,
aw* = w*a. (5)
By part (i), aow* = ey 0p0a € Z(A[w][CA]) = Z(A). So we have
by (4) that

1
(aow*)ow = (aow)w = i(aw* + w*a)w

hence by (5)
(aow*)ow = (aw™)w = a(w*w) = a,

as required .
(iii) Now, let v be any unitary in Z(J™) (the centre of the unitary
isotope J! of the JB*-algebra J ). Then v is a unitary in J by
Theorem 2.5. By [8, Corollary 1.14], J(e,u,u*,v,v*) is a JC*-
algebra and v € Z((J (e, u,u*,v,v*))). Hence, by (ii),

uo (u*ov) =v. (6)
If z € Z(J™), then by the Russo-Dye Theorem (cf. [11]) for C*-
algebras there exist unitaries v; € Z (7 [u]) and scalars 0 < A\; <1
with 377, A; = 1 for some n € N such that 7 = >0 Ajv;
because [|7ll <1 (recall that Z(JM) is a C*-algebra) . Hence,
by (6),

uo(u*oz)Zuo(u*o(HzH—i—l)Z)\jvj)

j=1

NE

= ([lz[l+1) p_ Aj(uo (u” 0v5))

<
Il
—

NE

=zl +1) ) Ajvj = 2.

<
Il
—

(iv). As ¢ =Ty |z(7), % is linear and continuous by Lemma 1.2 (i).
Let z € Z(JM). Applying part (i) to JM we get eo, 2z €
Z(j[“][e]). But J' = 7 by Lemma 2.4 and eo, » = {eu*z} =
u*oz. Hence u*oz € Z(J). Moreover, ¥(u*oz) =uo(u*oz) =2
by part (iii). Thus ¢ maps Z(J) onto Z(JM™).
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Further, [|9(2)| < |lu|| ||| while, by Lemmas 3.3 (i) and 1.2 (ii),

2]l = 1TeTuull = | TuToul| < [z o ull = [[¢(2)] -

Thus % is an isometry.
Finally, as ¢(e) = u and wu is the unit of JM™ it follows from
[12, Theorem 6] that 1 is an isometric *-isomorphism. O

Corollary 3.8. Let J be a unital JB*-algebra. Then, for all u,v €
UT), Z2(TM) s isometrically Jordan *-isomorphic to Z(JM).

Proof. By Theorem 2.5, v € U(J) . Hence, by Theorem 3.7, Z(7*)
is isometrically *-isomorphic to Z(J [“][U]). However, by Corollary
2.6 (i), ‘7[“][“] = J[ | This gives the required result. O

An alternative proof of above Corollary 3.8 can be obtained by
noting that Z(J[) is isometrically *-isommorphic to Z(J) and
Z(J) is isometrically *-isomorphic to Z(J) by Theorem 3.7 (ap-
plied twice). As the next example shows there need be no inclusion
between the centre of a unital JB*-algebra and the centre of its
isotopes. In the following discussion M3 (C) denotes the standard
complexification of the real Jordan algebra of all 2 x 2 symmetric
matrices.

Ezxample 3.9. If v € U(M2(C)) \ Z(M2(C)) then the unit e ¢
Z(Ms(C)1")

Indeed, M»(C)[" is a 4-dimensional C*-algebra by Theorem 2.3
with 1-dimensional centre by the above Theorem 3.7. As u does not
belong to Z(M2(C)), u & Sp(e) where Sp(e) denotes the linear
span of e, and hence e & Sp(u). This gives that e & Z(My(C)M).

As a final point on the relationships between the centres it should
be noted in the proof of Theorem 3.7 (i) that if a € Z(J) and S =
T, then S is left multiplication in any unitary isotope. In order to
study the *-derivations it might be hoped that if T € Her B(J) then
there exists a unitary isotope J such that T is left multiplication
operator in Her B(J") since as linear spaces B(J) = B(J™)
so Her B(J) = Her B(J™). Unfortunately, this fails even when
J = M2(C). As all *-derivations are inner in this case, it follows
that T € Her B(M2(C)) if and only if T = I, 4+ r, where a, b €
(M2(C))sq and ly(x) = ax and 7p(z) = xb.
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Corollary 3.10. If a,b € My(C) are given by a = ( (1) (2) );
b= ( g 203 ) and T € Her B(M2(C)) is defined by T =1, + 1,

then T is not left multiplication in any unitary isotope.

Proof. It was noted in Example 3.9 that if v € U(M3(C)) then
M (€)M is a four-dimensional C*-algebra with a one-dimensional
centre so is isomorphic to M2(C). By [4, Theorem 10], o(T) =
o(a) +o(b) ={7,8,24,25}.

On the other hand, if LI € Her B(M3(C)) with say op,(c)(c) =
{A1,A2} then U(L[Cu]) = {\, 21522 X} again by [4, Theorem 10],
SO J(L[Cu]) contains only three points. Hence o(T) # a(LLu]) for
any unitary u € U(Ms(C)). O
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