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MacCool’s Proof of Napoleon’s Theorem
A sequel to The MacCool/West Point 1

M. R. F. SMYTH

I came across this incredibly short proof in one of MacCool’s note-
books. Napoleon’s Theorem is one of the most often proved results
in mathematics, but having scoured the World Wide Web at some
length I have yet to find a proof that comes near to matching this
particular one for either brevity or simplicity.

MacCool refers to equilateral triangles as e-triangles and he uses
κ to denote the distance from a vertex of an e-triangle with unit
side to its centroid. Naturally κ is a universal constant. He also
treats anti-clockwise rotations as positive and clockwise rotations as
negative.

Theorem 1. If exterior e-triangles are erected on the sides of any
triangle then their centroids form a fourth e-triangle.
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Proof. Let ABC be any triangle and construct the three exterior
e-triangles with centroids L,M,N as shown. Rotate LN by −30◦

about B to give L′N ′ and LM by +30◦ about C giving L′′M ′′. Since
all four marked angles are 30◦ it follows that L′, N ′, L′′,M ′′ will lie
on BP, BA,CP,CA respectively and κ = BL′ : BP = BN ′ : BA =
CL′′ : CP = CM ′′ : CA. Then by similarity L′N ′ = κAP = L′′M ′′

and L′N ′ ‖ AP ‖ L′′M ′′ so LN = LM and the angle between them
is 30◦ + 30◦ = 60◦. Hence ∆LMN is an e-triangle. ¤

Theorem 1 is the classical Napoleon theorem. MacCool refers to
the resultant e-triangle as the outer triangle to distinguish it from
the inner triangle whose vertices are the centroids of the internally
erected e-triangles.

The proof shows that each side of the outer triangle is equal to
κAP . Since it could equally well have used BQ or CR instead this
means AP = BQ = CR. The common length of these three lines is
central to the next result. Also required is the fact that the centroid
lies one third of the way along any median. This important prop-
erty is easily deduced by observing that the medians of any triangle
dissect it into six pieces of equal area.

Theorem 2. The centroids of the outer triangle and the original
triangle are coincident.
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Proof. Let D be the mid point of BC, O be the centroid of ∆ABC,
and L be the centroid of ∆BPC. Then DA = 3DO and DP = 3DL
so ∆DLO and ∆DPA are similar, giving AP ‖ OL and AP = 3 OL.
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Likewise BQ = 3 OM and CR = 3ON . Since AP = BQ = CR the
distances from O to the vertices of ∆LMN are equal. As ∆LMN
is equilateral O must be its centroid. ¤

Next MacCool fixes ∆BPC and allows A to vary continuously
throughout the plane. He notes that the proofs of these two theo-
rems still apply whenever A drops below the level of BC, in effect
making the angle at A reflexive and the angles at B and C negative.
Essentially this is because the three e-triangles always retain their
original orientation. For the orientation of an e-triangle to change
under continuous deformation its area must first become zero which
means that it must shrink to a point, but for the e-triangles in ques-
tion this can only happen at B or C. So long as A avoids those two
points no orientational changes to the e-triangles can occur.

However one subtle change does take place as A drops below BC
in that the orientation of ∆ABC itself changes. When that happens
the e-triangles become internal rather than external. This has the
following consequence.

Theorem 3. The inner triangle is an e-triangle whose centroid co-
incides with the centroid of the original triangle.

The next result gives an alternative proof that AP = BQ = CR.
Only the “external” proof is given since the “internal” case is handled
by exactly the same proof with the assumption that A lies below
rather than above BC.

Theorem 4. Suppose external (internal) e-triangles are erected on
the sides of a given triangle. Then the three lines joining each vertex
of the given triangle to the remote vertex of the opposite e-triangle
are equal in length, concurrent, and cut one another at angles of 60◦.
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Proof. Let ∆ABC be given and CBP , ACQ, BAR be the external
e-triangles. Clearly ∆ABQ is a +60◦ rotation of ∆ARC about A,
∆BCR is a +60◦ rotation of ∆BPA about B and ∆CAP is a +60◦

rotation of ∆CQB about C. It follows that AP = BQ = CR and
all angles of intersection are 60◦. To prove concurrency assume BQ
and CR cut at X and construct BX ′ by rotating BX through +60◦

about B as shown. Since ∠BXR = 60◦ and BX = BX ′ it follows
that X ′ must lie on CR. However a rotation of the line CX ′R
through −60◦ about B will map C 7→ P , R 7→ A, and X ′ 7→ X.
Therefore A, X, and P are collinear which means that AP , BQ, CR
must be concurrent. ¤

MacCool next studies the areas of the various triangles. He uses
(UV W ) to denote the algebraic area of ∆UV W . In other words
(UV W ) is equal to the area of ∆UV W when the orientation of
∆UV W is positive, and minus that value whenever the orientation
is negative.

Lemma 5. In the diagram below BPC, ACQ, and ARB are e-
triangles whose mean area is Ω, and Z is constructed so that AZBQ
is a parallelogram. Then AZP is also an e-triangle and 2(AZP ) =
3Ω + 3(ABC).
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Proof. As AZBQ is a parallelogram ∠ZAP is alternate to an angle
of 60◦ so it too is 60◦. Also AP = BQ = AZ so AZP must be an
e-triangle. Clearly
(AZP ) = (ABP ) + (BZP ) + (AZB) by tesselation

= (ABP ) + (APC) + (ABQ)
as (APC) = (BZP ) and (ABQ) = (AZB).
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Now (BCR) = (ABP ) and (BCQ) = (APC) and (ARC) =
(ABQ) therefore

2(AZP ) = (ABP )+(APC)+(ABQ)+(BCR)+(BCQ)+(ARC)
= 3Ω + 3(ABC). ¤

The diagram below shows two e-triangles, one with unit side and
the other with side κ. Although I have found no evidence that Mac-
Cool was familiar with Pythagoras, he inferred from this diagram
that 3κ2 = 1 and he deduced that the areas of the inner and outer
triangles were one third the area of an e-triangle of side AP .

3κ2 = 1

1

1

κ

κ
κ

The area of the smaller 
equilateral triangle is 
clearly κ2 that of the 
larger, from which it 
follows that κ must 
satisfy the equation :

Theorem 6. The mean area of the three e-triangles plus (minus)
the area of the original triangle equals twice the area of the outer
(inner) triangle.

Proof. Let ∆ be the area of the outer triangle. As explained on
the previous page (AZP ) = 3∆. Applying Lemma 5 now yields
2∆ = Ω+(ABC). Alternatively, if ∆ is the area of the inner triangle
this equation still holds, but there is a caveat. The orientations of
∆AZP and the inner triangle don’t change as long as A avoids the
point P where the latter shrinks to a point, but ∆ABC has changed
its orientation and so the value of (ABC) is now negative. Hence
rewriting the equation in positive terms, 2∆ = Ω− (ACB). ¤

Corollary 7. The area of the outer triangle is that of the inner
triangle plus that of the original one.

Finally MacCool presents a generalisation of Theorem 1.

Lemma 8. Let A, B,C be non-collinear and X any point between A
and C. Construct P and Q on BX such that ∠PAB = ∠XBC and
∠QCB = ∠XBA. Then the triangles PAB and QBC are directly
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similar, moreover P and Q coincide if and only if AX : XC = AB2 :
BC2.
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Proof. Clearly ∆PAB and ∆QBC are directly similar. Suppose
BC = λAB and XC = µAX. Then (QBC) = λ2(PAB) whereas
(PBC) = µ(PAB). If P and Q coincide then clearly µ = λ2. Con-
versely if µ = λ2 then (PBC) = (QBC) so (PQC) = 0 which implies
P = Q. ¤

Note that if AB and BC have equal length then ∆PAB and
∆PBC are similar (but not directly similar) for all points P on the
bisector of ∠ABC. Also the lines AB and BC (extended) divide the
plane into four zones, and if a point O exists such that ∆OAB and
∆OBC are directly similar then O must lie in the zone that includes
the line segment AC. This leads to a key result.

Corollary 9. If the points A, B,C are non-collinear then there exists
a unique point O such that the triangles OAB and OBC are directly
similar.

Theorem 10 (Generalised Napoleon). Let ABC and A′B′C ′ be di-
rectly similar triangles with a common vertex C = B′. Suppose A′′,
B′′, C ′′ are chosen such that the triangles AA′A′′, BB′B′′, CC ′C ′′

are directly similar. Then so too are the triangles A′′B′′C ′′ and
ABC.

Proof. There are 3 separate cases. First if B′ is midway between
B and C ′ then ABB′A′ is a parallelogram and the result follows
easily. Otherwise if B, B′, C ′ are collinear take O to be the point
where AA′ cuts BB′. Then ∆A′B′C ′ is a dilation of ∆ABC and it
is clear that ∆A′′B′′C ′′ may be obtained from ∆ABC by a rotation
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of ∠AOA′′(= ∠BOB′′ = ∠COC ′′) about O followed by a dilation
of size OA′′/OA. So once again the result holds. Finally if B,B′, C ′

aren’t collinear apply Corollary 9 to ∆BB′C ′ (aka BCC ′) giving
the point O such that OBB′ and OCC ′ are directly similar. Let
θ = ∠BOB′ = ∠COC ′ and λ = OB′ :OB = OC ′ :OC. Let τ be
the transformation that first rotates through the angle θ about O
and then dilates by the scaling factor λ. Clearly τ preserves directly
similar figures and maps B 7→ B′, C 7→ C ′ so as ABC and A′B′C ′

are directly similar it must also map A 7→ A′. Thus ∠AOA′ = θ and
OA′ :OA = λ from which it follows that ∆OAA′ is directly similar to
both ∆OBB′ and ∆OCC ′. Then OAA′′A′, OBB′′B′, OCC ′′C ′ are
directly similar quadrilaterals so OAA′′, OBB′′, OCC ′′ are directly
similar triangles. Thus OA′′ : OA = OB′′ : OB = OC ′′ : OC = µ
and ∠AOA′′ = ∠BOB′′ = ∠COC ′′ = φ for some µ and φ. That
means the quadrilateral OA′′B′′C ′′ may be obtained from OABC by
rotating it through φ about O and dilating the result by the scaling
factor µ. Therefore ∆A′′B′′C ′′ and ∆ABC are directly similar. ¤

The wheel has come full circle. To derive Napoleon’s Theorem
from this result take ∆ABC to be equilateral and choose A′′ so that
∆AA′A′′ is isosceles with base AA′ and base angles of 30◦.
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