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Convergence from Below Suffices

JOEL F. FEINSTEIN

Abstract. An elementary application of Fatou’s lemma

gives a strengthened version of the monotone convergence
theorem. We call this the convergence from below theorem.

We make the case that this result should be better known,
and deserves a place in any introductory course on measure

and integration.

1. The Convergence from Below Theorem

Three famous convergence-related results appear in most introduc-
tory courses on measure and integration: the monotone convergence
theorem, Fatou’s lemma and the dominated convergence theorem.
In teaching this material it is common to follow the approach taken
in, for example, [1, Chapter 1]. There Rudin begins by proving the
monotone convergence theorem and then deduces Fatou’s lemma.
Finally, he deduces the dominated convergence theorem from Fa-
tou’s lemma. The result which we call the convergence from below
theorem (Theorem 1.2 below) is essentially distilled from this proof
of the dominated convergence theorem ([1, pp. 26–27]). We do not
claim originality for this result, or for the related Theorem 1.3. They
are presumably known, although we know of no explicit references
for them. However, we wish to make a case that that they should
be better known than they are. In particular, we suggest that The-
orem 1.2 deserves a name and a place in the syllabus when this
material is taught.

Throughout we discuss results concerning pointwise convergence.
In the usual way, there are versions of all these results in terms of
almost-everywhere convergence instead.

For convenience, we shall use the following terminology. Let X
be a set, let (fn) be a sequence of functions from X to [0,∞] and let
f be another function from X to [0,∞]. We say that the functions
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fn converge to f from below on X if the functions fn tend to f
pointwise on X and fn(x) ≤ f(x) (n ∈ N, x ∈ X). We say that
the functions fn converge to f monotonely from below on X if the
functions fn tend to f pointwise on X and, for all x ∈ X, we have
f1(x) ≤ f2(x) ≤ f3(x) ≤ · · · .

We begin by recalling the statement of the monotone convergence
theorem.

Theorem 1.1. (Monotone convergence theorem) Let (X,F , µ)
be a measure space, and let f : X → [0,∞] be a measurable function.
Let (fn) be a sequence of measurable functions from X to [0,∞]
which converge to f monotonely from below on X. Then∫

X

f dµ = lim
n→∞

∫
X

fn dµ .

The measurability assumption on f is, of course, redundant here
as it follows from the pointwise convergence of fn to f . We now
observe that an elementary application of Fatou’s lemma shows that
we may weaken the monotone convergence assumption. We have not
found this result stated explicitly in the literature, and it does not
appear to have a name. We propose to call it the convergence from
below theorem.

The concepts involved in the statements and applications of the
monotone convergence theorem and the dominated convergence the-
orem are relatively simple. We suggest that convergence from below
is a similarly simple concept, which should appeal to all levels of stu-
dent. In particular, those students who find the concepts of lim inf
and lim sup difficult may be happier applying the convergence from
below theorem rather than Fatou’s lemma (where possible).

Theorem 1.2. (Convergence from below theorem) Let
(X,F , µ) be a measure space, and let f : X → [0,∞] be a measurable
function. Let (fn) be a sequence of measurable functions from X to
[0,∞] which converge to f from below on X. Then∫

X

f dµ = lim
n→∞

∫
X

fn dµ .

Proof. Clearly

lim sup
n→∞

∫
X

fn dµ ≤
∫

X

f dµ .
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However, by Fatou’s lemma,∫
X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ .

The result follows immediately. �

Remarks.

(1) The monotone convergence theorem is now a special case of
our stronger convergence from below theorem.

(2) In the case where
∫

X
f dµ < ∞, the convergence from be-

low theorem is an immediate consequence of the dominated
convergence theorem.

(3) In the case where
∫

X
f dµ = ∞, the result does not follow di-

rectly from either the monotone convergence theorem or the
dominated convergence theorem. The following elementary
result clarifies the situation in this case.

Theorem 1.3. Let (X,F , µ) be a measure space, and let f : X →
[0,∞] be a measurable function with

∫
X

f dµ = ∞. Let (fn) be a
sequence of measurable functions from X to [0,∞] which converge to
f pointwise on X. Then

lim
n→∞

∫
X

fn dµ = ∞.

Proof. By Fatou’s lemma,

∞ =
∫

X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ .

It follows immediately that limn→∞
∫

X
fn dµ = ∞, as required. �

We suggest that the convergence from below theorem deserves a
place between Fatou’s lemma and the dominated convergence theo-
rem: the dominated convergence theorem may be deduced from the
convergence from below theorem as follows. This proof is based on
the proof given in [1, pp. 26–27], but applying the convergence from
below theorem in the middle.

Theorem 1.4. (Dominated convergence theorem) Let
(X,F , µ) be a measure space, let g : X → [0,∞] be a measurable
function. with

∫
X

f dµ < ∞ and let f be a measurable function from
X to C. Let (fn) be a sequence of measurable functions from X to
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C which converge to f pointwise on X and such that |fn(x)| ≤ g(x)
(n ∈ N, x ∈ X). Then

lim
n→∞

∫
X

|fn − f |dµ = 0

and ∫
X

f dµ = lim
n→∞

∫
X

fn dµ .

Proof. The second equality follows quickly from the first. To prove
the first equality, observe that the non-negative, measurable func-
tions 2g−|fn− f | converge to the function 2g from below. Thus, by
the convergence from below theorem,

lim
n→∞

∫
X

(2g − |fn − f |) dµ =
∫

X

2g dµ .

The result now follows by subtracting
∫

X
2g dµ from both sides and

rearranging. �

As discussed above, the convergence from below theorem is more
than covered by a combination of the dominated convergence the-
orem and Theorem 1.3. Also, since the convergence from below
theorem is such an elementary consequence of Fatou’s lemma, any
applications may also be deduced from that lemma. However, the
monotone convergence theorem continues to be used in the litera-
ture, and any application of the monotone convergence theorem can
be replaced directly by an application of the convergence from be-
low theorem. Of course, we then only need to check the weaker
conditions of the latter theorem.

Also, the convergence from below theorem can be used to give
elegant solutions to simple problems where neither the monotone
convergence theorem nor the dominated convergence theorem apply
directly. Here is such an application (an elementary undergraduate
exercise).
Exercise. Let λ denote Lebesgue measure on R. Prove that, for
every Lebesgue measurable subset E of R, we have∫

E

x2 dλ(x) = lim
n→∞

∫
E

(
x2 − 1

n
|x sinnx|

)
dλ(x) .

Solution. Since |x sinnx| ≤ nx2 (n ∈ N, x ∈ R), the result is an
immediate consequence of the convergence from below theorem.



Convergence from Below Suffices 69

We may, instead, apply Fatou’s lemma directly. This does, of
course, lead to a quick solution which essentially proves the conver-
gence from below theorem again along the way.

We may also consider separately the cases where
∫

E
x2 dλ(x) < ∞

and where
∫

E
x2 dλ(x) = ∞. In the first case we may apply the

dominated convergence theorem, and in the second case we may
use Theorem 1.3. However the use of the convergence from below
theorem renders this splitting into two cases unnecessary.

2. Proving the Convergence from Below Theorem
Directly

Above we suggested following the usual development of the theory,
but inserting the convergence from below theorem between Fatou’s
lemma and the dominated convergence theorem. There are several
alternatives, however. For example, we can prove Fatou’s lemma
directly first and then deduce the convergence from below theorem.
The monotone convergence theorem and the dominated convergence
theorem then follow easily.

Another approach is to modify the standard proof of the monotone
convergence theorem ([1, 1.26]) in order to give a direct proof of
the convergence from below theorem. The monotone convergence
theorem, dominated convergence theorem and Fatou’s lemma are
then corollaries of this. We conclude with such a direct proof.

In this proof we avoid explicit reference to lim inf and lim sup
in order to make the proof more accessible to students who have
difficulty with these concepts. However, only minor changes are
needed to give a direct proof of Fatou’s lemma instead.

Direct proof of Theorem 1.2. First note that we have
∫

X
fn dµ ≤∫

X
f dµ (n ∈ N). Thus it is sufficient to prove that, for all α <∫

X
f dµ,

∫
X

fn dµ is eventually greater than α, i.e., there is an N ∈ N
such that, for all n ≥ N , we have

∫
X

fn dµ > α. Given such an α,
the definition of the integral tells us that there is a nonnegative,
simple measurable function s with s(x) ≤ f(x) (x ∈ X) and such
that

∫
X

sdµ > α. Choose c ∈ (0, 1) large enough that
∫

X
csdµ > α.

Set An = {x ∈ X : cs(x) ≤ fn(x)} and, for each k ∈ N, set

Bk =
⋂
n≥k

An = {x ∈ X : cs(x) ≤ fn(x) for all n ≥ k}.
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Clearly, B1 ⊆ B2 ⊆ · · · . We claim that
⋃∞

k=1 Bk = X. Let x ∈ X.
If s(x) > 0, then cs(x) < f(x), and so x ∈ Bk provided that k is
large enough. On the other hand, if s(x) = 0, then x ∈ Bk for all
k ∈ N. This proves our claim. By standard continuity properties of
measures, we have ∫

X

csdµ = lim
k→∞

∫
Bk

csdµ .

Choose N ∈ N such that
∫

BN
csdµ > α. For all n ≥ N and x ∈ BN

we have cs(x) ≤ fn(x). Thus, for n ≥ N , we have∫
X

fn dµ ≥
∫

BN

fn dµ ≥
∫

BN

csdµ > α,

as required. �
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