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Another Proof of
Hadamard’s Determinantal Inequality

FINBARR HOLLAND

Abstract. We offer a new proof of Hadamard’s celebrated
inequality for determinants of positive matrices that is based

on a simple identity, which may be of independent interest.

A hermitian n × n matrix A is said to be positive, if, for all
n× 1 vectors x, x∗Ax > 0 unless x is the zero vector. Thus, if A is
positive, all of its principal sub-matrices are also positive. Moreover,
A is positive if and only if the determinants of all these sub-matrices
are positive. In particular, if A = [aij ] is positive, then all of its
diagonal entries, a11, a22, . . . , ann, and its determinant, det A, are
positive. These are well-known facts about positive matrices that
can be found in most textbooks on Matrix Analysis, such as, for
instance, [1] and [3].

In 1893, Hadamard [2] discovered a fundamental fact about posi-
tive matrices, viz., that, for such A = [aij ],

detA ≤ a11a22 · · · ann.

Our purpose here is to present another proof of Hadamard’s in-
equality which is based on the following identity.

Lemma 1. Suppose A is an n× n matrix, Ã is its cofactor matrix,
and x, y are n× 1 vectors. Then

det A− det
[

A x
yt 1

]
= xtÃy.

Proof. Identify Cn with the space of n × 1 vectors with complex
entries, and consider the bilinear form

B(x, y) = det A− det
[

A x
yt 1

]
, x, y ∈ Cn.
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Denoting the usual orthonormal basis of Cn by e1, e2, . . . , en, it’s
easy to see that

B(ei, ej) = Ai,j ,

the ijth element in Ã. Hence, if

x =
n∑

i=1

xiei, y =
n∑

i=1

yiei ∈ Cn,

then, by bilinearity,

B(x, y) =
n∑

i,j=1

xiyjB(ei, ej) =
n∑

i,j=1

xiyjAij

=
n∑

i=1

xi

n∑
j=1

Aijyj = xtÃy,

as stated. �

As an easy consequence, we have:

Theorem 1. Suppose A is an n× n positive matrix. Then

det
[

A x
x∗ 1

]
≤ det A (x ∈ Cn),

with equality if and only if x = 0.

Proof. Since A is invertible, and its inverse is also positive, it follows
from the lemma that

detA− det
[

A x
x∗ 1

]
= x∗Ãx = detAx∗A−1x ≥ 0,

and the inequality is strict unless x is the zero vector. The result
follows. �

Corollary 1. Denoting by Ak the sub-matrix of A of order k × k
that occupies the top left-hand corner of A = [aij ], then

detA ≤ ann det An−1,

and the inequality is strict unless all the entries in the last column
of A, save the last one, are zero.
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Hadamard’s classical inequality is an immediate consequence of
this, viz.,

Theorem 2 (Hadamard). If A = [aij ] is an n × n positive matrix,
then

det A ≤
n∏

i=1

aii,

with equality if and only if A is a diagonal matrix.

Coupling this with the fact that the determinant of A is the prod-
uct of its eigenvalues, λ1, λ2, . . . , λn, say, we can affirm that

n∏
i=1

λi ≤
n∏

i=1

aii,

with equality if and only if A is a diagonal matrix. But, also, the
sum of the eigenvalues of A is its trace, i.e.,

n∑
i=1

λi =
n∑

i=1

aii.

In other words, denoting by σr(x1, x2, . . . , xn) the rth symmetric
function of n variables, x1, x2, . . . , xn, we have that

σr(λ1, λ2, . . . , λn) ≤ σr(a11, a22, . . . , ann),

if r = 1 or r = n. It’s of interest to observe that this remains true if
1 < r < n. For completeness, we sketch a proof of this statement

Indeed, σr(λ1, λ2, . . . , λn) is the coefficient ar of tn−r in the poly-
nomial

n∏
i=1

(t + λi) = det(A + tI).

But ar is equal to the sum of the determinants of all the r × r
principal sub-matrices of A, which are also positive. Hence, ap-
plying Hadamard’s result to each of them, we deduce that ar ≤
σr(a11, a22, . . . , ann) as claimed.
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