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On the Quadratic Irrationals, Quadratic Ideals and
Indefinite Quadratic Forms

AHMET TEKCAN AND HACER OZDEN

ABSTRACT. Let P and @Q be two rational integers, D # 1 be
a positive non-square integer, and let § = v/ D or % be a
real quadratic irrational with trace t = §+6 and norm n = 5.
Given any quadratic irrational v = PTH, there exist a qua-
dratic ideal I, = [Q, § + P] and an indefinite quadratic form
2

Fy(z,y) = Qo2 —(t+2P)xy+ (%) y? of discriminant
A = t2 — 4n which correspond to . In this paper, we obtain
some properties of quadratic irrationals v, quadratic ideals
I and indefinite quadratic forms F,.

1. INTRODUCTION

A real quadratic form (or just a form) F is a polynomial in two
variables x,y of the type

F = F(z,y) = az® + bxy + cy?

with real coefficients a, b, c. The discriminant of F' is defined by the
formula b? — 4ac and is denoted by A. Moreover F is an integral
form iff a,b,c € Z and F is indefinite iff A > 0.
Let T be the modular group PSL(2,7Z), i.e., the set of the trans-
formations
rzZ+ S
tz+u

Z— , s, t,u €7, ru—st=1.
I is generated by the transformations T'(z) = =* and V(z) = z + 1.

Let U =T -V. Then U(z) = erll. Then I' has a representation
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F:<T,U:T2:U3:I>. Note that

I'=<g= "os crys,t,u € Zand ru—st=1,.
t u

We denote the symmetry with respect to the imaginary axis with
R, that is R(z) = —Zz. Then the group I' = T' U RI" is gener-
ated by the transformations R,T,U and has a representation I' =
<R7 T.U:R?=T?=U3= I>, and is called the extended modular

group. Similarly,

IT'=<g= re iy s, t,u € Zand ru— st =41, .
t u

There is a strong connection between the extended modular group
and binary quadratic forms (for further details see [5]). Most prop-
erties of binary quadratic forms can be given by the aid of the ex-
tended modular group. The most is equivalence of forms which is
given by Gauss as follows: Let F' = (a, b, ¢) be a quadratic form and

let g = ( : Z > € T. Then the form gF is defined by

gF(z,y) = (ar® + brs + cs?) 2% + (2art + bru + bts + 2csu) zy

+ (at2 + btu + cu2) v
(1.1)

This definition of gF is a group action of T' on the set of binary
quadratic forms. Two forms F' and G are said to be equivalent iff
there exists a g € T such that gF = G. If detg = 1, then F and G are
called properly equivalent. If detg = —1, then F' and G are called
improperly equivalent. A quadratic form F is said to be ambiguous
if it is improperly equivalent to itself.

An indefinite quadratic form F of discriminant A is said to be
reduced if

‘\/Z—2|a\‘ <b<VA. (1.2)

Mollin considers the arithmetic of ideals in his book (see [1]). Let
D # 1 be a square free integer and let A = 47?, where
- { 2 D =1(mod4)

1 otherwise . (1.3)

If we set K = Q(v/D), then K is called a quadratic number field of

discriminant A = %). A complex number is an algebraic integer
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if it is the root of a monic polynomial with coefficients in Z. The
set of all algebraic integers in the complex field C is a ring which
we denote by A. Therefore ANK = Oy is the ring of integers of
the quadratic field K of discriminant A. Set wa = ﬂ for r
defined in (1.3). Then wa is called principal surd. We restate the
ring of integers of K as Oa = [1,wa] = Z[wa]. In this case {1,wa}
is called an integral basis for K.

I =[a, b+ cwa] is a non-zero (quadratic) ideal of Oa if and only

if

clb, cla and ac|N(b+ cwa). (1.4)
Furthermore for a given ideal I the integers a and ¢ are unique and
a is the least positive rational integer in I which we will denote as
L(I). The norm of an ideal I is defined as N(I) = |ac|. If I is an
ideal of Oa with L(I) = N(I), i.e., ¢ = 1, then [ is called primitive
which means that I has no rational integer factors other than +1.
Every primitive ideal can be uniquely given by I = [a,b+ wa]. The
conjugate of an ideal I = [a, b+ cwa] is defined as I = [a,b + cwa].
If I =1, then I is called ambiguous (see also [4], [2] and [3]).

Let 6 denotes a real quadratic irrational integer with trace t = §+6
and norm n = 6. Thus ¢ denotes its algebraic conjugate. Evidently
given a real quadratic irrational v € Q(0), there are rational integers
P and @Q such that v = PT*‘S with Q|(6 + P)(6 + P). Hence for each
v = £4% there is a corresponding Z—module I, = [Q, P + 6]. In
fact this module is an ideal by (1.4).

Two real numbers « and (§ are said to be equivalent if there exists

ag:<: Z)eruchthatga:ﬂ,thatis

ra—+ s
ta+u

= 3. (1.5)

Given any quadratic irrational v = %, there exists an indefinite

quadratic form

Fy(z,y) = Q(z — dy)(x — oy)
n 2 1.6
=Qz? — (t +2P)wy + <+PCZ+P) y° (16)

of discriminant A = t?—4n. Hence one associates with -y an indefinite
quadratic form F, defined as above. Therefore if § = VD, then

t=0and n = —D. SoA:4D,andif6:%,thentzland
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n = %. So A = D. The connection among v, I, and F), is given
by the following diagram:

’7:% — 1L, =1[Q, P+

l

Fy(z,y) = Q(z — 6y)(z — dy)

The opposite of F, defined in (1.6) is

n—|—Pt—|—P2) 9
— A Y

5 (1.7)

Foy(z,y) = Qz? + (t + 2P)xy + (
of discriminant A.

We know that a quadratic form F is said to be ambiguous if it is
improperly equivalent to itself. Of course the surprising equivalence
must interchange the numbers v = 2L and its conjugate 7 = 9£L.
Thus if all is well the form F, is ambiguous iff the number v is
equivalent to its conjugate 7. Therefore one sees that an ideal I, is
ambiguous if it is equal to its conjugate I.,. Hence the ideal I, is

ambiguous iff it contains both % and EJFTP that is so iff
5+P+5+P _t+42P
Q Q Q
Therefore the condition Q|(t+ 2P) is the condition for a form F., to
be properly equivalent to its opposite F’y-

€Z. (1.8)

2. QUADRATIC IRRATIONALS, QUADRATIC IDEALS AND
INDEFINITE QUADRATIC FORMS

In this section we obtain some properties of quadratic irrationals v =

% quadratic ideals I, = [@, § + P] and indefinite quadratic forms

F.(z,y) = Q2* — (t + 2P)zy + <%+P2> y? which are obtained
from . We consider the problem in two cases: § = v/D and § =
% for a positive non-square integer D.

First let assume that § = v/D and Q = 1. Then t = 0 and
n = —D. Set P = = for prime p such that p = 1,3 (mod 4). Then

o+ P D+
’yl: + :\/> 2 :\/5—%

Q 1
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and hence

b= [

2_ 4D
Fy(z,y) = a®+pzy+ (p4> 2.

Now we can give some properties of q, I, and F,, by the follow-

ing theorems.

1

Theorem 2.1. v is equivalent to its conjugate 7, for every prime
p=1,3(mod 4).

Proof. Recall that v, = /D — £. Then the conjugate of v1 is 7, =
—/D — 121 A straightforward calculations shows that

~ 1(-VD-8)+(» yD-2
97 = = =m

0(-vD-8)+1 1

for g = < 81 1—p > € T. Therefore by definition 71 is equivalent
to its conjugate 7. ]

Theorem 2.2. I, is ambiguous for every prime p =1,3 (mod 4).

Proof. We know that an ideal I, is ambiguous if it is equal to its
conjugate TA,, or in other words iff ‘S"‘TP + MTP = t+5P € Z. For

5:\/ﬁwehavet:0,andhence%:2(_7{7/2):—1762.

Therefore I, is ambiguous. (]

From Theorems 2.1 and 2.2 we can give the following result.

Corollary 2.3. F,, is properly equivalent to its opposite F’n and is
ambiguous for every prime p = 1,3 (mod 4).

Proof. 1t is clear that F.,, is properly equivalent to its opposite F%
by (1.8) since % = —p € Z. We know as above that an indefi-
nite quadratic form F, is ambiguous iff the quadratic irrational + is
equivalent to its conjugate 7. Therefore F,, is ambiguous since v; is
equivalent to its conjugate 7; by Theorem 2.1. U

Now let p = 1,3 (mod 4), i.e., p = 144k or p = 3+4k for a positive
integer k, respectively. Then we have the following theorem.
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Theorem 2.4. If F, is reduced, then
D € [Ak* + 2k + 1, 4k* 4+ 6k + 2] — {4k + 4k + 1}
for p=1 (mod 4), and if F,, is reduced, then
D € [4k® + 6k + 3, 4k* + 10k + 6] — {4k* + 8k + 4}
for p =3 (mod 4). In both cases the number of these reduced forms
s p.
Proof. Let F., (z,y) = z? + pry + (”27#) y? be reduced and let
p =1 (mod 4). Then by definition, we have from (1.2)
‘\/Z—2|a|‘ <b<+vA

— ‘\/4D—2|1|‘ <p<ViAD & 2D —1| <p < 2VD.

Hence we get D > 4k? 4+ 2k + 1, since

2 2 2
P2 (1+4k)?  1+8k+16k2 1 )
> 1 1 1 4—|- +

and D < 4k? 4 6k + 2, since
(p+2)?  (3+4K)2  9+24k+16k> 9

_ J 2
D < 1 = 1 1 —4+6k+4k.

Consequently we have

4k% + 2k +1 < D < 4k? + 6k + 2.

Note that there exist p + 1 indefinite reduced quadratic forms F, ,
since

A% +6k+2 — (4> +2k+ 1) +1 =244k =p+ 1.

But D = 4k% + 4k + 1 = (ZH)7 € [4k? + 2k + 1, 4k2 + 6k + 2] is
a square. So we have to omit it (D must be a square-free positive
integer). Therefore there exist p indefinite reduced quadratic forms
F,, for D € [4k? + 2k + 1, 4k? + 6k + 2] — {4k? + 4k + 1}.

Similarly, let F,, (z,y) = 2% + pzy + (”2_#) y? be reduced and
let p = 3 (mod 4). Then by definition, we have from (1.2)

’\/K—2|a|‘<b<\/3

— ‘\/4D—2|1|‘ <p<VAD & 2D —1| <p < 2vVD.
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Hence we get D > 4k? + 6k + 3, since
p? (34 4k)? 9424k + 16k 9

D>2 = = 4 6k + 4k?
> 1 T 1 6kt
and D < 4k? 4 10k + 6, since
2)2  (5+4k)2 25+ 40k + 16k 25
p< P27 (GAAR)T 25440k 16K 25 0 e

4 4 4 4
Consequently we have

4k? + 6k +3 < D < 4k? + 10k + 6.

Note that there exist p + 1 indefinite reduced quadratic forms F, ,
since

Ak* + 10k +6 — (4k> + 6k +3) + 1 =4k +4=p+ L.
But D = 4k2 + 8k + 4 = (251)? € [4k2 4 6k + 3, 4k2 + 10k + 6] s

a square. So we have to omit it. Therefore there exist p indefinite
reduced quadratic forms F,, for D € [4k? + 6k + 3, 4k? + 10k + 6] —

{4k? + 8k + 4}. O
Ezample 2.1. Let p = 29 = 1 (mod 4). Then 4 = VD — % is
equivalent to its conjugate 7; for g = < 81 1_29 ) e I. Also
I, = {1,\/>— 2—29} is ambiguous, and
841 — 4D
Fy, (z,y) = 2® + 292y + <4) y?

is reduced for D € [211,240]. But D = 225 = 152 € [211,240]
is a square. Therefore F,, is reduced for D € [211,240] — {225}.
The number of these reduced forms is 29. Further F,, is properly
equivalent to its opposite Fﬂn and is ambiguous.

Ezample 2.2. Let p = 43 = 3 (mod 4). Then v, = VD — £ is

equivalent to its conjugate 7, for g = ( 81 1_43 ) € I. Also
L, = {1, VD — 4—23} is ambiguous, and
1849 — 4D
Fy (z,y) = 2 + 432y + <4> Y

is reduced for D € [421,462]. But D = 441 = 212 € [421,462]
is a square. Therefore F,, is reduced for D € [421,462] — {441}.
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The number of these reduced forms is 43. Further F,, is properly
equivalent to its opposite F% and is ambiguous.

Now we consider the case § = % and = 1. Thent =1 and

n = %. Set P = w for prime p such that p = 1,3 (mod 4).
Then
L PFi ) 1Dyt VD

9] 1 2

and hence
- D
L, = [LW
2
2_D
Fy(zy) = o +pry+ <p 1 )92-

Theorem 2.5. vy is equivalent to its conjugate 7o for every prime
p=1,3(mod 4).

Proof. Recall that v, = #. The conjugate of 7o is F, =
%. Applying (1.5), we get

1 (#) +(=p) _p4+VD
972 = 0(71772\/5)_’_1 = 9 =72

0
to its conjugate 7. O

for g = < —1 1—p > € I'. Therefore by definition 7, is equivalent

Theorem 2.6. I, is ambiguous for every prime p = 1,3 (mod 4).

Proof. We know that an ideal I, is ambiguous if it is equal to its
conjugate Tw or in other words iff ‘”TP + HTP = % € Z. For

0= % we have t = 1, and hence t+Q2P = 1+2((_f_1)/2) =—-pel’.

Therefore I, is ambiguous. O

From Theorems 2.5 and 2.6 we can give the following corollary.

Corollary 2.7. F,, is properly equivalent to its opposite F., and is
ambiguous for every prime p = 1,3 (mod 4).
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Proof. It is clear that F, is properly equivalent to its opposite F,m

by (1.8) since % = —p € Z, and is ambiguous since 7, is equivalent
to its conjugate 7, by Theorem 2.5. ]

Theorem 2.8. If F,, is reduced, then
D € [16k* + 8k + 2, 16k? + 24k + 8] — {16k* + 16k + 4}
for p=1 (mod 4), and if F,, is reduced, then
D € [16k* + 24k + 10, 16k* + 40k + 24] — {16k* + 32k + 16}
forp =3 (mod4). In both cases the number of these forms is 4p+2.

Proof. Let F,,(z,y) = x* + pry + (pZZD) y? be reduced and let
p =1 (mod 4). Then by definition we have from (1.2),

‘\/Z_2|a|‘<b<\/ﬁ
— ‘\/5—2\1|’<p<\/5<:)‘\/5—2‘<p<\/5.

Hence we get D > 16k? + 8k + 2, since
D > p* = (1+4k)? =1+ 8k + 16k>
and D < 16k? + 24k + 8, since
D < (p+2)* = (3 +4k)* = 9+ 24k + 16k>.
Consequently we have
16k% + 8k +2 < D < 16k* + 24k + 8.

Note that there exist 4p + 3 indefinite reduced quadratic forms F,,,
since

16k>+24k+8— (16k* 4 8k + 2)+1 = 16k+7 = 4(1+4k)+3 = 4p+3.
But D = 16k*+16k+4 = (p+1)? € [16k*>+8k+2, 16k?+24k+8] is a
square. So we have to omit it. Therefore there exist 4p+ 2 indefinite
reduced quadratic forms F,, for D € [16k? + 8k + 2, 16k* + 24k +
8] — {16k? + 16k + 4}.

Similarly, let F.,(x,y) = 2? + pry + (’F%D) y? be reduced and
let p = 3 (mod 4). Then by definition we have from (1.2),

’\/572|a|‘<b<\/5
— ‘\/5—2\1|’<p<\/5(:>’\/5—2‘<p<\/5.
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Hence we get D > 16k? + 24k + 10, since
D > p* = (34 4k)? = 9 + 24k + 16k>
and D < 16k? 4 40k + 24, since
D < (p+2)* = (5+4k)? = 25 + 40k + 16k>.
Consequently, we have
16k? + 24k + 10 < D < 16k? + 40k + 24.

Note that there exist 4p + 3 indefinite reduced quadratic forms F,
since

29

16k* 4 40k + 24 — (16k* 4 24k +10) + 1
=16k + 15 =4(3 +4k)+3 =4p+ 3.
But D = 16k? + 32k + 16 = (p + 1) € [16k? + 24k + 10, 16k> +
40k + 24] is a square. So we have to omit it. Therefore there exist

4p + 2 indefinite reduced quadratic forms F,, for D € [16k* + 24k +
10, 16k% + 40k + 24] — {16k> + 32k + 16}. O

Ezample 2.3. Let p = 73 = 1 (mod 4). Then v, = 773%5 is

equivalent to its conjugate 7, for g = < 81 1_73 ) € I. Also

L, = [1, M} is ambiguous, and

4

is reduced for D € [5330,5624]. But D = 5476 = 742 € [5330, 5624]
is a square. Therefore F., is reduced for D € [5330,5624] — {5476}.
The number of these reduced forms is 294. Further F,, is properly
equivalent to its opposite F.,, and is ambiguous.

5329 — D
Fy,(z,y) = o° + T3zy + () y?

Ezample 2.4. Let p = 83 = 3 (mod 4). Then v, = M is

equivalent to its conjugate 7, for g = < 81 1_83 ) e I. Also
L,= {1, ’8532&} is ambiguous, and
6889 — D
F,(z,y) = x? + 83zy + (4> y?

is reduced for D € [6890,7224]. But D = 7056 = 84% € [6890, 7224]
is a square. Therefore F,, is reduced for D € [6890, 7224] — {7056}.
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The number of these reduced forms is 334. Further F,, is properly
equivalent to its opposite Fw and is ambiguous.
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