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Quaternion Algebras and the
Algebraic Legacy of Hamilton’s Quaternions

DAVID W. LEWIS

Abstract. We describe the basic definitions and fundamen-
tal properties of quaternion algebras over fields and proceed
to give an account of how Hamilton’s 1843 discovery of the
quaternions was a major turning point in the subject of al-
gebra. Noncommutative algebra started here! We will em-
phasize especially the theory of division algebras and other
kinds of algebras which emanated from this discovery.

The 16th of October 1843 was a momentous day in the history of
mathematics and in particular a major turning point in the subject
of algebra. On this day William Rowan Hamilton had a brain wave
and came up with the idea of the quaternions. He carved the mul-
tiplication formulae with his knife on the stone of Brougham Bridge
(nowadays known as Broomebridge) in Dublin,

i2 = j2 = −1, ij = −ji.

The story of this discovery has been told many times, and trans-
lated into many different languages. See [20] for this story and for a
full biography of Hamilton. Broomebridge may be regarded as the
birthplace of noncommutative algebra and it has been visited over
the years by many mathematicians from many different lands, es-
pecially by algebraists to some of whom it is regarded as a kind of
pilgrimage. Hamilton’s discovery was the precursor to a vast range of
new kinds of algebraic structures in which the basic assumptions of
properties such as commutativity and associativity were cast aside.
Something similar happened in the same century in the subject of
geometry where the old Euclidean geometry axioms were modified
leading to various kinds of noneuclidean geometry.

This article is an expanded version of a talk given at the Irish
Mathematical Society September Meeting at Dublin City University,
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1–2 September 2005. The plan of the talk and of this article is as
follows:

1. Basic results on quaternion algebras over fields.
2. The algebraic legacy.
Thanks are due to the referee who made some useful suggestions

for improving the first version of this article.

1. Quaternion Algebras

The theory of quaternion algebras is intimately related to the al-
gebraic theory of quadratic forms. The following books are a good
source for the basic definitions and results about quaternion algebras
over fields, [29], [30], [45], the last one also containing much mate-
rial about the associative algebras discussed later in the article. See
also [31].

We will write H for the real quaternions. The elements of H are
expressions of the form

α + βi + γj + δk,

where α, β, γ, δ ∈ R, the field of real numbers.
We can regard H as a 4-dimensional vector space over R with the

natural definitions of addition and scalar multiplication, i.e.,

(α + βi + γj + δk) + (α′ + β′i + γ′j + δ′k) =

(α + α′) + (β + β′)i + (γ + γ′)j + (δ + δ′)k,

λ(α + βi + γj + δk) = λα + λβi + λγj + λδk

for all λ, α, β, γ, δ, α′, β′, γ′, δ′ ∈ R. The set {1, i, j, k} is a natural
basis for this vector space.

The set H is made into a ring by defining multiplication via the
rules

i2 = j2 = −1, ij = −ji = k

together with the usual distributive law.
We identify R with the set of quaternions with β = γ = δ = 0

and in this way regard R as a subset of H.
In order to define the more general notion of a quaternion algebra

we will replace R by any field F . (We will assume for simplicity that
1+1 6= 0 in F , i.e. F does not have characteristic 2. A modification of
the definition is required in characteristic 2.) We choose two nonzero
elements a, b in F . A choice with a = b is not excluded. We define
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the quaternion algebra
(

a,b
F

)
to be the set of all expressions of the

form

α + βi + γj + δk,

where α, β, γ, δ ∈ F .
We can regard

(
a,b
F

)
as a 4-dimensional vector space over F with

the same definitions of addition and scalar multiplication as in H.
The multiplication rules are now

i2 = a, j2 = b, ij = −ji = k.

It easily follows that k2 = −ab and that i, j, k anti-commute just like
in H. We have then that

(
a,b
F

)
is a 4-dimensional algebra over F .

In this notation we can write H =
(−1,−1

R
)
.

Now H is a division algebra, i.e. an algebra which is also a division
ring, i.e., each nonzero element of H is invertible. In general

(
a,b
F

)

need not be a division algebra. It depends on the choice of F, a,
and b.

In fact there are only two possibilities:

(1)
(

a,b
F

)
is a division algebra,

(2)
(

a,b
F

)
is isomorphic to M2F , the algebra of all 2×2 matrices

with entries from F .

(If an F -algebra is isomorphic to a full matrix algebra over F we say
that the algebra is split, so (2) is the split case.)

The quick way to see this is to note that
(

a,b
F

)
is a central sim-

ple algebra, i.e., it has centre F and is simple in the sense that
it has no nontrivial two-sided ideals, and then appeal to a famous
1907 theorem of J. H. M. Wedderburn. This theorem says that
any central simple algebra, finite-dimensional over its centre, is iso-
morphic to an algebra MnD for some integer n and some division
algebra D over F . See [53], p. 282 for a proof of Wedderburn’s the-
orem. Considering dimensions over F we have dimF

(
a,b
F

)
= 4 and

dimF MnD = n2 dimF D. Hence the only possibilities are n = 1,(
a,b
F

)
= D or else n = 2, D = F .

This can also be proved, by longer arguments, without appealing
to Wedderburn’s theorem. See [29], theorem 2.7.
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How can we tell which of the two possibilities we have?

The answer is given by the norm form of a quaternion algebra,
which we will now define:

Let q ∈
(

a,b
F

)
, q = α + βi + γj + δk.

Define the conjugate of q, denoted q̄, by q̄ = α− βi− γj − δk.
Define the norm map N :

(
a,b
F

)
→ F by N(q) = q̄q for each

q ∈
(

a,b
F

)
. Note that

N(q) = q̄q = qq̄ = α2 − aβ2 − bγ2 + abδ2

so that N may be regarded as a quadratic form in four variables,
α, β, γ, δ.

(We recall that a quadratic form is a homogeneous polynomial of
degree two, or more conceptually it is a map Q : V → F, V being
an F -vector space with the following two properties:

(i) Q(αv) = α2Q(v) for all v ∈ V, and all α ∈ F ,
(ii) the map B : V × V → F, B(v, w) = Q(v + w)−Q(v)−Q(w),

is bilinear.)
The quadratic form N is known as the norm form of the quater-

nion algebra. In the standard notation of quadratic form theory,
cf. [29], this form is denoted < 1,−a,−b, ab >. This notation corre-
sponds to representing the quadratic form by a diagonal matrix with
1,−a,−b, ab as the diagonal entries.

(In the special case of Hamilton’s quaternions H the norm form
is α2 + β2 + γ2 + δ2, a sum of four squares, i.e. < 1, 1, 1, 1 >.)

It is clear that whenever N(q) 6= 0 the element q is invertible, its
inverse being ( 1

N(q) )q̄. Indeed q is invertible if and only if N(q) 6= 0
because N(q) = 0 implies that q is a zero divisor. Thus we have the
following:

Theorem 1. The quaternion algebra (a,b
F ) is a division algebra if

and only if its norm form does not represent zero nontrivially, (i.e.
N(q) = 0 ⇒ q = 0).

A note on terminology: A quadratic form Q : V → F on an F -
vector space V is said to be anisotropic if Q(v) = 0 ⇒ v = 0.

Hence, in the language of quadratic form theory, the above theo-
rem says that (a,b

F ) is a division algebra if and only if its norm form
is anisotropic.
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How can we tell when two quaternion algebras (a,b
F ) and (a′,b′

F )
are isomorphic as algebras?

The answer is again provided by the norm form. We first need
some more terminology from quadratic form theory.

Two quadratic forms Q1 : V1 → F and Q2 : V2 → F are said to
be isometric if there exists a vector space isomorphism γ : V1 → V2

such that Q2(γ(x)) = Q1(x) for all x ∈ V1. The map γ is called an
isometry.

Theorem 2. The quaternion algebras (a,b
F ) and (a′,b′

F ) are isomor-
phic as algebras if and only if their norm forms are isometric as
quadratic forms.

One way around this implication is clear since any isomorphism
of the algebras will give an isometry of the norm forms. For the
converse first observe that an isometry of norm forms is not in general
an isomorphism of the quaternion algebras, but it is an isomorphism
of the three-dimensional subalgebras of pure quaternions. (A pure
quaternion q is one satisfying q̄ = −q, i.e., q = βi + γj + δk for some
β, γ, δ ∈ F .) From this one can deduce that quaternion algebras are
isomorphic. See [29], theorem 2.5.

Examples 3. (i) (a,b
F ) is isomorphic to ( b,a

F ) because their norm forms,
< 1,−a,−b, ab > and < 1,−b,−a, ab >, are isometric.

(ii) (a,1
F ) is isomorphic to M2F for any a ∈ Ḟ because the norm

form <1,−a,−1, a > is isotropic.
(We write Ḟ for the set of nonzero elements of F .)
When a = −1 we can write down an explicit isomorphism from

(−1,1
F ) to M2F by mapping i to

(
0 1
−1 0

)
and j to

(
0 1
1 0

)
so

that α + βi + γj + δk is mapped to the matrix
(

α + δ β + γ
−β + γ α− δ

)
.

(iii) (a,1−a
F ) is isomorphic to M2F for any a ∈ Ḟ , a 6= 1, because

the norm form <1,−a, a− 1, a(a− 1) > is isotropic.

For some familiar fields we can easily describe what happens. We
should first remark that the isometry class of a quadratic form is
unchanged when any of the entries of a standard diagonal repre-
sentation of the form are multiplied by a square. Hence (a,b

F ) is
isomorphic to (ac2,bd2

F ) for any c, d ∈ Ḟ .
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(a) The complex numbers C:
(a,b
C ) is isomorphic to M2C for any nonzero a, b ∈ C because the

norm form <1,−a,−b, ab > is always isotropic. (Each element of C
is a square.) So (a,b

C ) is always split.
(b) The real numbers R:
(a,b
R ) is isomorphic to H whenever a < 0 and b < 0. Otherwise

(a,b
R ) is split. (Each positive element of R is a square.)
(c) The finite fields Fn with n elements:
(a,b
F ) is always split because of the 1905 Theorem of Wedder-

burn [61] that any finite division ring is commutative.
(d) The rational numbers Q:
There exist infinitely many non-isomorphic quaternion algebras

over Q.
(e) Algebraic number fields, i.e. finite extension fields of Q:
In general there can exist infinitely many non-isomorphic quater-

nion algebras over such a field.
(f) The p-adic fields Qp where p is a prime, i.e. the completion of

the field Q with respect to the p-adic absolute value on Q:
(Recall that the field of real numbers can be viewed as the com-

pletion of Q with respect to the usual absolute value on Q.)
For each prime p there is a unique quaternion division algebra

over Qp. This follows from the theory of quadratic forms over Qp.
Up to isometry there exists a unique anisotropic quadratic form of
dimension four and this is the norm form of a quaternion division
algebra. See chapter 6 of [29] for further details.

1.1. Characterization of quaternion algebras. We give two pos-
sible characterizations, one via central simple algebras, the other via
involutions. For a proof see p. 74 of [29].

Theorem 4. If A is a central simple algebra of dimension four over
a field F then A is a quaternion algebra.

For the second characterization we need the notion of involution
on an algebra, i.e. an anti-automorphism of period two, i.e. a map
σ : A → A which is F -linear and satisfies

(i) σ(x + y) = σ(x) + σ(y) for all x, y ∈ A,
(ii) σ(xy) = σ(y)σ(x) for all x, y ∈ A,
(iii) σ(σ(x)) = x for all x ∈ A.



Quaternion Algebras 47

Conjugation on a quaternion algebra is the standard example of
an involution. Involutions as defined above are known as involutions
of the first kind. (Involutions of the second kind are maps which
satisfy (i), (ii), (iii) above but which are not F -linear.)

Theorem 5 (E. H. Moore [37], Dieudonné [14]). Let A be a non-
commutative associative finite-dimensional division algebra over a
field F . If there exists an involution σ : A → A for which σ(x) + x
and σ(x)x belong to F for all x ∈ F , then A is a quaternion algebra.

For further discussion of this theorem see [56], also [29], p. 74–75.

1.2. Biquaternion algebras. Let A1 and A2 be quaternion alge-
bras over a field F . The tensor product A1 ⊗F A2 is called a bi-
quaternion algebra. It is a 16-dimensional algebra. Write A for this
algebra. Then, as a consequence of Wedderburn’s theorem on central
simple algebras there are exactly three possibilities:

(1) A is a division algebra.
(2) A is split, i.e. A is isomorphic to M4F .
(3) A is isomorphic to M2D for some quaternion division alge-

bra D.
Some more quadratic form theory enables us to distinguish between
the different possibilities.

The Albert quadratic form of the biquaternion algebra

A =
(

a1, b1

F

)
⊗F

(
a2, b2

F

)

is the six-dimensional form < a1, b1,−a1b1,−a2,−b2, a2b2 >. We
will write φA for this form. The way we have defined φA seems to
depend on the particular formulation of A1 =

(
a1,b1

F

)
and A2 =(

a2,b2
F

)
. However it can be shown that φA is uniquely determined

up to a multiple by a scalar from F .

Theorem 6. Let A be a biquaternion algebra. Then
(1) A is a division algebra if and only if φA is anisotropic.
(2) A is split, i.e. A is isomorphic to M4F , if and only if φA

is hyperbolic, i.e φA is isometric to < 1,−1, 1,−1, 1,−1, >.
Otherwise A is isomorphic to M2D for some quaternion di-
vision algebra D.

For a proof of this theorem of Albert, see [29], theorem 4.8.
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Remark 7. Possibility (1) does not occur for any of the fields of
types (a)–(f) listed earlier, i.e. biquaternion algebras are never divi-
sion algebras over these fields. For other kinds of fields, biquaternion
division algebras may certainly exist, e.g.

(
x1,x2

F

)⊗F

(
x3,x4

F

)
where

F = R(x1, x2, x3, x4), the field of rational functions in four indeter-
minates x1, x2, x3, x4 over R. Its Albert form is anisotropic.

1.3. A remark on involutions of the first kind. Much of the
pioneering work on the structure of algebras and of involutions on
algebras was done by Albert [1].

Another theorem of Albert says that a central simple algebra A
over F admits an F -linear involution, as defined above, if and only
if A is isomorphic as an F -algebra to its opposite algebra Aop. (We
recall that Aop is identical to A except that the multiplication in Aop

is the reverse of that in A.) See chapter 8 of [53] for a proof of this
theorem.

This property clearly holds for all quaternion algebras, and also is
easily seen to hold for all tensor products of quaternion algebras, i.e.
any tensor product of quaternion algebras always admits an F -linear
involution. Given quaternion algebras Ai, i = 1, 2, . . ., n equipped
with involutions σi, i = 1, 2, . . ., n, we have an involution of the first
kind σ1 ⊗ σ2 ⊗ . . .. ⊗ σn defined on the tensor product A1 ⊗ A2 ⊗
. . .⊗An.

For algebras of dimension 16 these are the only possible ones be-
cause of the following theorem of Albert [1]:

Theorem 8. If A is a central simple algebra of dimension sixteen
over a field F and if A admits an involution of the first kind then A
is a biquaternion algebra.

For three different proofs of this theorem see p. 233–234 of [27],
this book also containing an abundance of information on involu-
tions.

For a long time tensor products of quaternion algebras were the
only known examples of finite-dimensional division algebras with an
involution of the first kind. In 1978 Amitsur, Rowen, Tignol [4]
produced the first example of a division algebra admitting an F -
linear involution but which is not a tensor product of quaternion
algebras.

However, as a consequence of a celebrated theorem of Merkurjev in
1981, it turns out that any division algebra D admitting an F -linear
involution is similar to a tensor product of quaternion algebras in
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the sense that there exists an integer n such that the matrix algebra
MnD is isomorphic to a tensor product of quaternion algebras. We
can give a brief outline of Merkurjev’s Theorem, but a complete
proof is highly nontrivial and way beyond the scope of this article.
The theorem says that the quaternion symbol map α : k2F → Br2F
is an isomorphism where k2F, Br2F, and α are defined as follows:

k2F is the reduced Milnor K-theory group of the field F , a multi-
plicative group generated by the bimultiplicative symbols [a, b] with
a, b ∈ Ḟ satisfying the set of relations

[a, 1− a] = 1 (a ∈ Ḟ , a 6= 1)

[a, b] = [b, a] (a, b ∈ Ḟ )

[a, a] = [a,−1] (a ∈ Ḟ ).

Br2F is the subgroup of elements of order ≤ 2 in the Brauer group
BrF, where BrF is the group of similarity classes of central simple
F -algebras. The relation of similarity ∼ is defined by A ∼ B if and
only if there are integers r, s such that MrA and MsB are isomorphic
F -algebras. The group operation is tensor product, the identity
element is the class of MnF, the inverse of the class of A is the class
of Aop, the opposite algebra. Note that Br2F consists precisely of
the classes of central simple F -algebras which admit an F -linear
involution.

The map α : k2F → Br2F sends the symbol [a, b] to the class of
the quaternion algebra

(
a,b
F

)
. This map is well-defined because we

have seen earlier that quaternion algebras satisfy the same kind of
relations as the defining relations for the symbols in k2F .

The surjectivity of the map α implies that any central simple
F -algebra A admitting an F -linear involution is similar to a tensor
product of quaternion algebras.

See [29], chapter 5, section 6, for some more details and see [58]
for a full proof of Merkurjev’s theorem.

We finish this section with some remarks about solving equations
in H, and about quaternionic eigenvalues.

1.4. Equations in H. The subject of algebra originated in attempts
to solve equations, e.g. linear, quadratic, cubic, and higher order
polynomial equations, and it then naturally developed into the study
of more abstract algebraic structures.
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Any polynomial of degree n with coefficients from the field C of
complex numbers has at least one root in C. (The Fundamental
Theorem of Algebra, first proved by Gauss in 1799.) Moreover any
polynomial with coefficients in any field F can have at most n roots
in F . For polynomials with coefficients from H the situation is some-
what different.

Example 9. The equation x2 = −1 has infinitely many different
solutions in H. Any pure quaternion of norm one, i.e. βi + γj + δk
with β2 + γ2 + δ2 = 1, will satisfy this equation. There are infinitely
many such pure quaternions because they correspond to points on
the unit sphere in R3.

Example 10. The equation x2i−ix2 = 1 has no solutions in H. To see
this note that i(x2i− ix2)i = x2i− ix2 but i1i = −1. (Alternatively
observe that the left hand side has trace zero but right hand side has
trace two, where trace q = q + q̄.)

The notion of polynomial in H becomes more complicated due to
lack of commutativity. We may have several terms of a given degree.
In degree two we may have terms like ax2, xax, x2a, axbx, etc. The
above example has two terms of degree two.

Nevertheless there is a Fundamental Theorem of Algebra for H,
see [19], also [38], which says that if the polynomial has only one
term of highest degree then there exists a root in H. The proof is
topological, using a little homotopy theory.

There is also a Fundamental Theorem of Algebra for the octo-
nions, [25], proved in a similar manner.

In the context of solving polynomial equations we should mention
the Wedderburn Factorization Theorem for polynomials over division
algebras.

Theorem 11 (Wedderburn Factorization Theorem). Let D be a
division ring with centre F and let p(t) be an irreducible monic poly-
nomial of degree n with coefficients from the field F . If there exists
d ∈ D such that p(d) = 0 then we can write

p(t) = (t− d)(t− d2)(t− d3) · · · (t− dn)

and each di is conjugate to d, i.e. there exist nonzero elements si ∈
D, i = 2, 3, . . ., n, such that di = sids−1

i for each i = 2, 3, . . ., n.

This theorem says that if the polynomial has one root in D then
it factorizes completely as a product of linear factors over D. This
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is in stark contrast to the situation in field theory where there may
well exist just one root of a polynomial in a given field. See [48],
chapter 7, for a proof.

Wedderburn’s Theorem has proved to be a surprisingly powerful
tool, yielding neat proofs of certain results on division algebras. Here
are a few examples:

(i) This author’s criterion for zero being a nontrivial sum of squares
in a division algebra [35].

(ii) Wadsworth’s criterion for extending valuations to division al-
gebras [59].

(iii) Hazrat’s proof of Platonov’s congruence theorem in the re-
duced K-theory of division algebras [21].

(iv) The cyclicity of division algebras of degree three. (See the
section on cyclic algebras later in this paper.)

1.5. Quaternionic eigenvalues. Let A be an n × n matrix with
entries from H. Lack of commutativity means that we have two
possible notions of eigenvalue— left eigenvalue and right eigenvalue.

A left eigenvalue of A is an element λ ∈ H such that there exists
a column vector x ∈ Hn such that Ax = λx.

A right eigenvalue of A is an element λ ∈ H such that there exists
a column vector x ∈ Hn such that Ax = xλ.

Do left or right eigenvalues necessarily exist for a given matrix?
The existence of right eigenvalues has been shown via algebraic

methods in [7] and [34], and recently by a topological argument using
the Lefschetz fixed point theorem by Baker [6]. The algebraic meth-
ods rely on writing a quaternionic matrix A in the form A = B +Cj
where B and C are n × n matrices with complex entries. (Any el-
ement α + βi + γj + δk ∈ H may be written as α + βi + (γ + δi)j.
This viewpoint enables us to view quaternions as ordered pairs of
complex numbers in the same way that complex numbers are viewed
as ordered pairs of real numbers.)

The existence of left eigenvalues was first proved topologically by
R. Wood, [63], using homotopy theory, specifically using π3GLnH,
the third homotopy group of the group of invertible quaternionic
n×n matrices. The existence of a left eigenvalue λ for A amounts to
showing that the matrix λIn − A is not invertible. The assumption
that λIn−A is invertible for every λ leads to the construction of two
different elements of π3GLnH which can be shown to be homotopic
to each other, a contradiction.
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For a survey on quaternionic matrices, including material on equa-
tions in H and on quaternionic eigenvalues, see [64].

2. The Algebraic Legacy

The quaternions were the progenitor to a host of different algebraic
structures in which the traditional restrictive assumptions such as
commutativity and associativity were abandoned. In December 1843
John Graves discovered the octonions O, an 8-dimensional algebra
over R which is nonassociative as well as being noncommutative.
They have a basis {1, e0, e1, . . ., e6} with the multiplication rules as
follows:

e2
i = −1 for each i

en+1en+2 = en+4 = −en+2en+1

en+2en+4 = en+1 = −en+4en+2

en+4en+1 = en+2 = −en+1en+4,

where the subscripts run modulo 2; see [10]. These were rediscov-
ered by Cayley in 1845 and are also known sometimes as the Cayley
numbers. Each nonzero element of O still has an inverse so that O is
a division ring, albeit a nonassociative one. The octonions do retain
some vestige of associativity in that they are an alternative algebra,
i.e. they have the property x(xy) = (xx)y and (yx)x = y(xx) for all
x, y ∈ O. For a most comprehensive account of the octonions see [5].

The process of going from R to C, from C to H, and from H to O,
is in each case a kind of “doubling process”. At each stage something
is lost—from R to C we lose the property that R is ordered, from C to
H we lose commutativity and from H to O we lose associativity. This
process has been generalized to algebras over fields and indeed over
rings. It is called “Dickson doubling” or “Cayley–Dickson Doubling”.
See [10], [42]. If we apply the Cayley–Dickson doubling process to
the octonions we obtain a structure called the sedenions, which is
a 16-dimensional nonassociative algebra. The sedenions are not a
division ring and are not even an alternative algebra, so that they
seem to be of very limited use.

In 1844 Grassmann discovered exterior algebras, which subse-
quently became important in differential geometry. They have gen-
erators e1, e2, e3, . . ., en which anti-commute and satisfy e2

i = 0 for
all i and are associative algebras.
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In 1878 W. K. Clifford discovered Clifford algebras, defined to
have generators e1, e2, e3, . . ., en which anti-commute and satisfy e2

i =
ai for chosen elements a1, a2, a3, . . ., an of R. Choosing ai = 0 for all
i yields the exterior algebras as a special case, while choosing n = 2
and nonzero ai yields the quaternion algebras. In 1884 R. Lipschitz
showed how Clifford algebras are related to quadratic forms, the or-
thogonal group and the spin group. The physicist P. A. M. Dirac
rediscovered Clifford algebras in the 1920s and used them in connec-
tion with electron spin. Clifford algebras may be defined over fields
in general and are useful in various parts of algebra, analysis and
physics.

In 1878 Frobenius proved that the only associative finite-dimen-
sional real division algebras are R, C, and H. See [24], p. 430–431,
for a proof.

In 1881 there appeared a very long article [41] entitled “Linear As-
sociative Algebras” by the Harvard mathematician Benjamin Peirce,
the first such treatise on algebras per se.

In 1898 A. Hurwitz proved that the only real composition algebras
are R, C, H, and O. (A real composition algebra is an algebra A over
R, not necessarily associative or finite-dimensional, equipped with a
nonsingular quadratic form Q : A → F such that Q(ab) = Q(a)Q(b)
for all a, b ∈ A. The form Q is given by the norm. The multiplication
in R, C, H, and O also yield the 1, 2, 4, and 8-square identities. See
[10], [52] for more on all this.)

In 1899 D. Hilbert gave the first example of an associative division
algebra which is infinite-dimensional over its centre. It is an algebra
of twisted Laurent series. See [16] for details.

Also the late 19th century heralded the start of the study of Lie
algebras by Killing [26], and Cartan [8]. At that time they were called
“infinitesimal groups” and later were christened “Lie algebras” by
Hermann Weyl in 1930. These are nonassociative algebras that have
become of vital importance in mathematics and physics. (The 1888
paper of Killing has been described as the “greatest mathematical
paper of all time” [9]!)

Another important class of nonassociative algebras was intro-
duced in 1930 by the physicist P. Jordan. They were christened
“Jordan algebras” by Albert in the 1940s and were studied by Al-
bert and some other pure mathematicians. This was unbeknown
to Jordan who was surprised, on visiting the USA, to discover that
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these algebras had been named after him. See [40] for the history of
Jordan algebras.

For more on the basic theory of nonassociative algebras see [51].

2.1. Division algebras. We will now concentrate on associative
noncommutative finite-dimensional algebras, especially division al-
gebras, and the developments in the 20th century on this topic.

One natural generalization of quaternion algebras is the notion
of a symbol algebra, also sometimes known as a power norm residue
algebra. This is defined as follows:

Let F be a field of characteristic not two, and choose nonzero
elements a, b ∈ F . (A choice with a = b is not excluded.) Fix
a positive integer n ≥ 2 and assume that F contains an element
ω which is a primitive n-th root of unity. (Primitive means that
{1, ω, ω2, . . ..., ωn−1} is a full set of all n-th roots of unity.) We
introduce symbols i and j and consider the set of all expressions of
the form

n−1∑
r=0

n−1∑
s=0

arsi
rjs

where each ars ∈ F .
We make this set into an F -vector space of dimension n2 by defin-

ing addition in the obvious way (add corresponding coefficients) and
scalar multiplication in the obvious way (multiply each coefficient
by the scalar). A natural basis is {irjs} where r = 0, 1, . . . , n − 1
and s = 0, 1, . . ., n − 1. We make this set into a ring via the usual
distributive laws and the multiplication rules

in = a, jn = b, ij = ωji.

The elements of F are to commute with everything and the resulting
F -algebra is called a symbol algebra and we label it [a, b, F, n, ω].

It can be shown to be a central simple F -algebra and hence, by
Wedderburn’s Theorem, is isomorphic to MkD for some integer k
and division algebra D over F . For appropriate choices of a, b, F, n, ω
it may be a division algebra.

Note that [−1,−1,R, 2,−1] = H and [a, b, F, 2,−1] =
(

a,b
F

)
so

that quaternion algebras are special cases of symbol algebras.
These symbol algebras are very natural generalizations of quater-

nion algebras. In [36] Milnor calls them symbol algebras because of
their connection with Steinberg symbols and the K-theory of a field.
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Earlier authors, interested in algebras over number fields, had used
such algebras and referred to them as power norm residue algebras.

Another related kind of algebra is the cyclic algebra which was
introduced by L. E. Dickson in 1914.

Let F be a field and let L be a cyclic field extension of degree n
of F , i.e., the Galois group of L over F is a cyclic group of order n.
Choose a generator σ of this Galois group. Adjoin an element z to
the field L and consider the set of all expressions of the form

n−1∑

i=0

λiz
i

where each λi ∈ L. Make this set into an F -vector space by defining
addition in the obvious way (add corresponding coefficients) and

multiplication by scalars from F in the natural way, i.e. µ
n−1∑
i=0

λiz
i =

n−1∑
i=0

µλiz
i for µ ∈ F . Define multiplication by the usual distributive

law and the formulae

zn = δ, zλ = σ(λ)z for λ ∈ L,

where δ is some chosen nonzero element of F . The elements of F
commute with everything.

The resulting algebra will be labelled (L/F, σ, δ) and is called a
cyclic algebra. It can be shown to be a central simple F -algebra
of dimension n2. For appropriate choices of L,F, σ, δ it may be a
division algebra. Dickson in 1914 gave a specific example of a cyclic
division algebra of degree three.

Example 12. Let θ be a primitive 7-th root of unity in C. Let ω =
θ + θ2 + θ6, α = θ + θ6, β = θ2 + θ5, γ = θ3 + θ4. Let F = Q(ω)
and L = F (α) which is a cyclic extension of degree three of F . The
Galois group of L over F is generated by the automorphism σ which
cyclically permutes α, β, γ. Then the cyclic algebra (L/F, σ, δ) is a
division algebras for the choice of δ = ω̄/ω. (Here ω̄ is the complex
conjugate of ω.)

If we assume that the base field F contains a primitive n-th root
of unity then cyclic algebras and symbol algebras are more or less
the same thing. (In the symbol algebra as defined above we may
take L = F (a1/n) which will be a cyclic extension provided that L
is an extension of degree n.)
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Note that any quaternion division algebra
(

a,b
F

)
is necessarily a

cyclic algebra since we may take L = F (i), a quadratic extension, i.e.
a cyclic degree two extension field, and take z = j, δ = b, σ(i) = −i,
i.e. σ is the nontrivial automorphism of L.

2.2. The degree of a central simple algebra. It can be shown
that the dimension of any central simple F -algebra A, in particular
any F -division algebra with centre F , is a square. Thus dimF A = n2

for some integer n. We define the degree of A to equal this integer n,
i.e. degree A =

√
dimF A. See for example chapter 13 of [45].

Recall that the degree of a field extension E of a field F is defined
as the dimension of E as a vector space over F and is denoted [E : F ].

It can be shown that a central simple F -algebra A is a cyclic
algebra if and only if A contains a strictly maximal subfield E which
is a cyclic extension of F . Strictly maximal means that [E : F ] = n,
where n is the degree of A.

2.3. Division algebras of prime degree. Any division algebra of
degree two over a field F must be a quaternion division algebra, see
section 1 of this article, and thus is a cyclic algebra.

In 1921 Wedderburn proved that any division algebra of degree
three over a field F is necessarily a cyclic algebra [62]. See also the
elegant proof of Haile appearing in [27], p. 303–304. The Wedderburn
Factorization Theorem is used in these proofs.

Open Question: Let p be a prime. Is every division algebra of
degree p a cyclic algebra?

This is still open for all primes p ≥ 5.
For some familiar fields a lot more is known. For the real field

R we know by Frobenius’ Theorem that the only finite-dimensional
noncommutative division algebra is H, and for p-adic fields it is not
too hard to show that the only noncommutative finite-dimensional
division algebras are cyclic ones. A major accomplishment of the
early 1930s is the following result, a combination of the work of four
mathematicians:

Theorem 13 (The Albert–Brauer–Hasse–Noether Theorem). Every
finite-dimensional noncommutative division algebra over an algebraic
number field is a cyclic algebra.

See [47]. The proof uses localization and a local-global principle.
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The following is a natural question to ask.
Question: Is every finite-dimensional division algebra a cyclic al-

gebra?
The answer is no. In 1932 Albert gave the first example of a

noncyclic division algebra. His example is a biquaternion algebra.
Specifically we take F = R(x, y) and A =

(−1,x
F

) ⊗ (−x,y
F

)
. This

is a division algebra because the Albert form can be shown to be
anisotropic. On the other hand it can be shown that A does not
contain any cyclic subfield of degree 4 over F and hence is not a
cyclic algebra. See chapter 15 of [45].

We should remark that a biquaternion algebra may sometimes
have the structure of a cyclic algebra. For a discussion of when this
can happen see [32].

2.4. Crossed product algebras. Following ideas of Dickson the
notion of crossed product algebra was introduced in the 1920s by
Noether and Brauer. It is a generalization of the idea of a cyclic
algebra.

Let L be a Galois extension field of F and let G be the Galois
group of all F -automorphisms of L. We introduce a set of symbols
uσ indexed by the elements σ ∈ G, and we consider the set of all
expressions of the form ∑

σ∈G

aσuσ

where each aσ ∈ L.
We make this set into an F -algebra in a similar way to cyclic

algebras, but now using the multiplication formulae

uσa = σ(a)uσ for a ∈ L

uσuτ = kστuστ

where kστ ∈ L is a 2-cocycle. The set {kστ , σ ∈ G, τ ∈ G} must
satisfy the cocycle condition

ρ(kστ )kρ(στ) = kρσk(ρσ)τ

for all ρ, σ, τ ∈ G. This condition is needed in order that associativity
of multiplication is satisfied.

A set {kστ , σ ∈ G, τ ∈ G} satisfying this cocycle condition is
called a factor set. (These are known as Noether factor sets. A
variation of the definition yields Brauer factor sets. See [23].) We
will denote this factor set by k for short and the resulting algebra
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will be labelled (L/F, k) and called a crossed product algebra. It can
be shown that (L/F, k) is a central simple F -algebra.

Cyclic algebras are crossed products, the factor set for the cyclic
algebra (L/F, σ, δ) being given by

kσiσj = 1 if i + j < n

kσiσj = δ if i + j ≥ n

where [L : F ] = n.
It can be shown that a central simple F -algebra A is a crossed

product algebra if and only if A contains a strictly maximal subfield
E which is a Galois extension of F .

Albert’s example of a noncyclic division algebra can be shown to
be a crossed product. Indeed any biquaternion division algebra is a
crossed product [32] with group G being the Klein 4-group.

It is now natural to ask:
Question: Is every finite-dimensional division algebra a crossed

product algebra?
The question remained open until 1972 when Amitsur [3] pro-

duced examples of non-crossed product division algebras of certain
degrees n. These are the so-called universal division algebras of de-
gree n which he showed are not crossed products at least in the case
when n is either divisible by 8 or by p2 where p is an odd prime.
See [45].

This result says nothing about algebras of prime degree and so
does not answer our earlier question about whether or not they are
cyclic.

2.5. The Tannaka–Artin problem. In the context of division al-
gebras we should also mention the Tannaka–Artin problem.

Let D be a finite-dimensional division algebra over a field F .
There is a natural reduced norm map N : D → F .

Write KerN for the kernel of this map, i.e. KerN = {x ∈ D :
N(x) = 1}.

Write [Ḋ, Ḋ] for the subgroup of Ḋ generated by all of the mul-
tiplicative commutators xyx−1y−1 where x, y ∈ Ḋ. Then, since the
norm is multiplicative, the group [Ḋ, Ḋ] is contained in KerN .

The reduced Whitehead group SK1(D) is defined to be the quo-
tient group KerN/[Ḋ, Ḋ].

The problem of determining whether or not SK1(D) = 1 is known
as the Tannaka–Artin problem.
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It was believed for a long time that SK1(D) = 1 always. It is true
that SK1(D) = 1 for all local and global fields [60], but Platonov [44]
in 1975 showed that in general it can be nontrivial.

Some easy examples using biquaternion algebras are produced in
[16]. Specifically we take any field K containing a primitive 4-th
root of unity ω and consider the iterated Laurent series field F =
K((t1))((t2))((t3))((t4)).

Let D =
(

t1,t2
F

) ⊗ (
t3,t4

F

)
, a biquaternion division algebra. Then

SK1(D) 6= 1 because the element ω has norm 1 but can be shown
not to be a commutator.

2.6. Group theory. The quaternions have had an impact on group
theory and group representation theory.

The quaternion group of order 8 is the finite multiplicative sub-
group {±1,±i,±j,±k} of the multiplicative group Ḣ, and is the first
in the set of generalized quaternion groups of order 2n, n ≥ 3.

Quaternionic representations, that is, the representation of finite
groups by matrices of quaternions, play a role in group represen-
tation theory, with matrices over H and other quaternion algebras
appearing as components of the group algebra of certain groups. See
[12], also [47], p. 383.

In 1940 H. S. M. Coxeter, [11], classified the binary polyhedral
groups and other generalizations of the quaternion group, it being
related to his work on polytopes.

A recent breakthrough linking division algebras and group theory
is the following result of Rapinchuk, Segev, and Seitz, [46], that
finite quotients of division algebras are solvable. More precisely it
says that if D is a division ring, finite-dimensional over its centre,
and if N is a normal subgroup of the multiplicative group Ḋ such
that the quotient group Ḋ/N is a finite group then this group Ḋ/N
is a solvable group.

2.7. Other parts of the legacy. We summarize quickly some other
areas of mathematics in which the quaternions have had an influence.
A detailed study is outside the scope of this article (and this author!)

2.7.1. Number theory. Hurwitz introduced what he called the ring of
integral quaternions. This is the subring of H consisting of all quater-
nions of the form α+βi+γj + δk where either each of α, β, γ, δ ∈ Z,
or else each of α, β, γ, δ is congruent to 1/2 modulo Z. This turns
out to be a ring with a good division algorithm. If we just allowed
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quaternions with integer coefficients then the division property will
not work. See [10] for a discussion of factorization questions, and
[22], chapter 7, where the integral quaternions are used to prove the
famous Lagrange theorem that every positive integer is a sum of at
most four squares.

There has been a lot of work on orders (i.e. full lattices) in quater-
nion algebras, mainly over the local and global fields of number the-
ory. See [18], [57].

A discussion of “integral octonions” can be found in [10] and they
are used in constructing the E8 lattice, related to sphere packing
problems.

2.7.2. Analysis. Complex analysis, i.e. the theory of functions of a
complex variable, has been extended to quaternionic analysis. In-
deed there is a more general Clifford analysis, working with func-
tions taking values in a Clifford algebra, see for example [13]. Many
of the notions of complex analysis, e.g. contour integration, have
been extended to this context. The subject has some applications in
mathematical physics.

2.7.3. Geometry. The geometric legacy is at least as great as the
algebraic legacy. There is a wealth of interpretations, consequences
and applications of quaternions in a geometric context.

Quaternions can be used to describe rotations in 3-dimensional
and in 4-dimensional space. For example see [17], [10], [2].

Quaternions have been useful in topology. Topologists have uti-
lized quaternionic projective space (and also octonion projective
space), defined in similar fashion to real and complex projective
space. See [43]. In homotopy theory there are the Hopf maps be-
tween spheres, S3 → S2, S7 → S4, and S15 → S8. They are defined
using, respectively, complex numbers, quaternions, and octonions.
These were the first examples of homotopically nontrivial maps from
a sphere to a lower dimensional sphere and were discovered by H.
Hopf in the early 1930s. The quaternions and octonions also have
links with Bott periodicity, i.e. the periodic nature of the homotopy
groups of the classical groups. See [5] for more on this.

Geometers and topologists have studied quaternionic structures
on manifolds, these also being of considerable interest to physicists.
See [33].
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2.7.4. Physics. Quaternions have had applications in physics, al-
though they have never achieved what Hamilton had hoped for when
he made his discovery in 1843. In recent years the octonions have
turned out to be particularly important in string theory, the so-called
“theory of everything” which attempts to unify general relativity and
quantum theory. Many of the kinds of algebras mentioned earlier,
as well as some we did not mention, have been used in physics. See
Okubo [39], Dixon [15].

2.7.5. Other Applications. Quaternions have been used in inertial
navigation systems [28], in computer graphics for computer anima-
tion [55], in image processing [49], [50], and in coding theory [54].
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