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On the Least Number of Cell Orbits
of a Hadamard Matrix of Order n

WARWICK DE LAUNEY AND RICHARD STAFFORD

Abstract. The automorphism group of any Hadamard ma-
trix of order n acts on the set of cell co-ordinates {(i, j) | i, j =
1, 2, . . . , n}. Let f(n) denote the least number of cell orbits
amongst all the Hadamard matrices of order n. This paper
describes Hadamard matrices with a small number of cellwise
orbits, and in particular proves some results about the func-
tion f . We show that, except possibly for t = 23, f(4t) ≤ 2
for t = 1, 2, . . . , 25.

1. Introduction

The automorphism group of any Hadamard matrix of order n acts on
several sets. It acts on the set of row indexes {i = 1, 2, . . . , n}, the set
of column indexes {i = 1, 2, . . . , n}, and the set of cell co-ordinates
{(i, j) | i, j = 1, 2, . . . , n}. Each such action divides its domain into
orbits. Let f(n) denote the least number of cell orbits amongst all
the Hadamard matrices of order n. This paper shows that, at least
initially, f grows very slowly. Indeed, the first order n for which f(n)
could be greater than 2 is n = 92.

In this paragraph, we explain why we think the behavior of f(n)
is important. First, notice that the cellwise-action of the automor-
phism group of a Hadamard matrix implies constraints on the con-
tents of the matrix. Suppose φ ∈ Aut (H) moves entry xij to entry
xst. Then xij = xst or xij = −xst, depending on whether φ negated
xij . Therefore, if one knows the automorphism group of a Hadamard
matrix and how it acts, then the number of trials needed to find all
such Hadamard matrices is at most 2m where m is the number of
cell orbits. In this paper, we show how certain important classes
of Hadamard matrices with classical automorphism groups have a
small number of cell orbits. Thus f(n) is small for many orders n.
It is natural to ask whether there are other orders of n for which
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f(n) is small, and, if so, what are the corresponding group actions.
If f(n) grows slowly, say logarithmically with n, and there is some
simply-described class of automorphism groups for Hadamard ma-
trices with a small number of cell-orbits, then we could at the very
least easily construct even large Hadamard matrices by guessing one
±1 value for each of a small number of cell-orbits.

In this paper, we begin the investigation of f , by computing the
number of cell orbits for three important classes of Hadamard ma-
trices. We will show that the Sylvester matrices have one cell orbit,
and, excepting the matrices of orders 4,8, and 12, the two families
of Paley Hadamard matrices have just two cell orbits. We also show
that f(mn) ≤ f(n)f(m). Thus one can show that f(n) ≤ 2 for many
orders n.

2. Examples of Hadamard Matrices with Small Number
of Orbits

We begin with the smallest possible example of cellwise action.

2.1. Sylvester Hadamard Matrices.

Example 2.1. Let

K1 =
[

1 1
1 −1

]
.

Consider the following identities wherein
• we have used the numbers 1, 2, 3 and 4 to keep track of the

cells, and
• assigned signs to coincide with those in K1.

We have [
0 1
1 0

] [
1 2
3 −4

] [
1 0
0 −1

]
=

[
3 4
1 −2

]

and [
1 0
0 −1

] [
1 2
3 −4

] [
0 1
1 0

]
=

[
2 1
4 −3

]

Thus there are automorphisms of K1 which permute the cells as fol-
lows:

• interchange cells 1 and 3 and interchange cells 2 and 4, and
• interchange cells 1 and 2 and interchange cells 3 and 4.

Thus Aut (K1) acts transitively on the cells of K1.
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Now the Sylvester Hadamard matrix Km of order 2m is the Kro-
necker product of m copies of K1. The following lemma will allow
us to determine the number of cell orbits of Km.

Lemma 2.2. Suppose the matrices A and B have a and b cell orbits
respectively. Then A⊗B has at most ab cell orbits.

Proof. The element (σ, τ) ∈ Aut (A) × Aut (B) acts on the cells
(a, b) in A ⊗ B so that (σ, τ)(a, b) = (σ(a), τ(b)). (Here a and b are
themselves ordered pairs.) Therefore the cell orbits of the action of
Aut (A)×Aut (B) each are direct products of a cell orbit of Aut (A)
on A and a cell orbit of Aut (B) on B. Since Aut (A ⊗ B) contains
Aut (A) × Aut (B), each cell orbit of Aut (A ⊗ B) is a union of cell
orbits of Aut (A)× Aut (B). Moreover, each cell orbit of Aut (A)×
Aut (B) lies in at most one cell orbit of Aut (A⊗ B); so A⊗ B has
at most ab cell orbits. ¤

Theorem 2.3. The Sylvester Hadamard matrices have just one cell
orbit.

Proof. Every Sylvester Hadamard matrix is the Kronecker product
of order 2 Sylvester Hadamard matrices. Now apply Lemma 2.2. ¤

Theorem 2.4. If there is an Hadamard matrix of order n, then, for
all nonnegative integers t, we have f(2tn) ≤ f(n).

Proof. Let H be an Hadamard matrix of order n with f(n) cell or-
bits. Then the Kronecker product of H with the Sylvester Hadamard
matrix of order 2t has at most f(n) cell orbits. ¤

In general we have

Theorem 2.5. If there are Hadamard matrices of orders m and n,
then f(mn) ≤ f(m)f(n).

2.2. Paley Hadamard Matrices. In this section, we show that the
Paley Hadamard matrices have two cell orbits except in small orders
where they have just one orbit. First we define the matrices and
identify key features of their automorphism groups. Then we prove
our result. The full automorphism groups of the Paley matrices are
discussed in detail in [1] and [2].

Gilman [3] and Paley [5] gave a construction for a conference
matrix C of order q + 1, which is symmetric if q ≡ 1 (mod 4) and
antisymmetric if q ≡ 3 (mod 4). In both cases, we may define C
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as follows. Let V denote the 2-dimensional vector space over GF(q)
with basis {b1, b2}. Let S = {b1 + λb2 |λ ∈ GF(q)} ∪ {b2}. So S
is a complete set of distinct representatives for the 1-dimensional
subspaces of V . Now fix a field multiplication on V by identifying V
with GF(q2) so that the field addition coincides with the vector space
addition. Let det denote any alternating bilinear form on V , and let
χ denote the quadratic character on GF(q2). Then the matrix

C = [ χdet(x, y) ]x,y∈S

is a Paley conference matrix of order q+1. Without loss of generality
we may take

det(x, y) = x1y2 − x2y1 =
∣∣∣∣

x1 y1

x2 y2

∣∣∣∣ ,

where x = x1b1 + x2b2 and y = y1b1 + y2b2.
The entire automorphism group for C is generated by two kinds

of elements. Firstly, there are the automorphisms which correspond
to elements of GL(2, q). For all A ∈ GL(2, q) we have

det(Ax,Ay) = det(A) det(x, y),

and

χ(det((Ax, det(A)Ay))) = χ((det(A))2 det(x, y)) = χdet(x, y).

Therefore A induces an automorphism φA on C where

(x, y)
φA7−→ (Ax, det(A)Ay). (1)

Next let p be the prime dividing q, and define σ on V so that σ(x1b1+
x2b2) = xp

1b1 + xp
2b2. Then the mapping

(x, y)
φσ7−→ (σ(x), σ(y))

is an automorphism of C. These automorphisms generate Aut (C).
So Aut (C) is a homomorphic image of GΓL(2, q), the group of semi-
linear permutations on V over GF(q).

For q ≡ 3 (mod 4), Paley’s Type I Hadamard matrix H1 is defined
to be I + C. We may write this matrix as

[ h(x, y) ]x,y∈S ,

where

h(x, y) =
{

χ(x/y) if x/y ∈ GF(q),
χ(det(x, y)) if x/y 6∈ GF(q).
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Notice that if A ∈ GL(2, q) satisfies χdet(A) = 1 then φA is in
Aut (H1). However, if χ det(A) = −1, then A does not induce an
automorphism on H1, since when x/y ∈ GF(q), we have

χ(Ax/ det(A)Ay) = −χ(x/y).

Let GS(2, q) denote the set of elements A of GL(2, q) such that
χdet(A) = 1, and let GΓS(2, q) denote the subgroup of GΓL(2, q)
obtained by adjoining σ to GS(2, q). Then except for q = 3, 7 and
11, the elements φg where g ∈ GΓS(2, q) generate Aut (H1). Notice
that for all g ∈ GΓS(2, q), the automorphism φg moves diagonal cells
to diagonal cells.

For q ≡ 1 mod 4, Paley’s Type II Hadamard matrix H2 is defined
to be the matrix

H2 =
[

I + C −I + C
−I + C −I − C

]
.

This matrix divides naturally into four quadrants of order q + 1.
Within each quadrant one has diagonal entries and off-diagonal en-
tries. We will be interested in how Aut (H2) acts on these eight
pieces.

We describe Aut (H2). Firstly, H2 has a special automorphism ξ.
Let

U =
[

0 I
−I 0

]

Then H2 = UH2U
>, so ξ = (U,U) is an automorphism H2. ξ has

order 4, and its square (−I,−I) generates the center of Aut (H2). It
interchanges the upper right quadrant with the lower left quadrant,
and interchanges the upper left quadrant with the lower right.

Next one obtains a (non-faithful) action of GΓL(2, q) on H2. No-
tice that if one allows φg (where g ∈ GΓS(2, q)) to act on each
quadrant of H2, then one obtains an automorphism πg of H2. More-
over, if A ∈ GL(2, q) has nonsquare determinant, then the analogous
action of A produces the matrix

HA
2 =

[ −I + C I + C
I + C I − C

]
. (2)

But if we put

P =
[

0 I
I 0

]
and

[
I 0
0 −I

]
.
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then
H2 = PHA

2 Q> and H2 = QHA
2 P> (3)

So the combined operation αA on H2 of φA on the quadrants fol-
lowed by premultiplying by P and postmultiplying by Q is an au-
tomorphism of H2. Notice that αA interchanges each cell in the
bottom half of H2 with its corresponding cell in the top half of H2.
Similarly, using the second identity in (3), one obtains another au-
tomorphism βA which interchanges each cell in the left half of H2

with its corresponding cell in the right half of H2. The elements πg

(where g ∈ GΓS(2, q)), αA, βA (where A ∈ GL(2, q) \ GS(2, q)) and
ξ generate Aut (H2).

Theorem 2.6. The Paley Type I and Type II Hadamard matrices
have two cell orbits except when the order is 4,8 or 12. In those
cases, there is just one cell orbit.

Proof. We consider the Type I matrices first. Let K be the group of
automorphisms φA of H1 where A ∈ GS(2, q). Then K

• fixes the diagonal,
• moves the rows and columns of H1 in lock step (i.e. identi-

cally), and
• acts doubly transitively on the rows and columns.

The first two assertions are immediate from (1). To see the third
assertion holds, note that the matrix

Aµ,λ =
[

1 µ− λ
0 1

]

in GS(2, q) fixes the row labeled (0, 1) and moves the row labelled
(1, λ) to the row labelled (1, µ). Moreover, the matrix

Aλ =
[

0 −1
1 λ

]

moves the row labeled (0, 1) to the row labeled (1, λ). So K acts
transitively on the rows and the stabilizer of row (0, 1) acts transi-
tively on the rest of the rows. Therefore K acts doubly transitively
on the rows.

Now the three assertions imply that the action of K on the cells is
permutation isomorphic to the diagonal action of a doubly transitive
group on q + 1 points. Therefore K moves any off-diagonal cell to
any other off-diagonal cell. Consequently, H1 can have at most two
orbits: the set of off-diagonal cells and the set of diagonal cells. Now,
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if q > 11, then all the automorphisms of H1 have the form φg where
g ∈ GΓS(2, q). As noted above, φg moves diagonal cells to diagonal
cells. Therefore for q > 11, H1 has two cell orbits. For orders 4 and
8, the Paley matrix is equivalent to a Sylvester matrix. The order
12 Paley matrix has a large automorphism group which does not fix
the diagonal [4]. Therefore the Paley matrices of orders 4, 8 and 12
have just one cell orbit.

Next we consider the Type II matrix. Firstly, the Type II matrix
with q = 5 is equivalent to the Type I matrix with q = 11. So we
may suppose that q > 5. The group GS(2, q) acts on the individual
quadrants of the Type II matrix. So by the argument for the Type
I matrix, there can be at most 8 cell orbits: one diagonal and one
off-diagonal for each quadrant. However, the automorphism α moves
the cells in the bottom quadrants to the corresponding cells in the
quadrants above. This merges the four upper orbits with their cor-
responding lower orbits. Moreover, the automorphism β moves the
cells in the lefthand quadrants to the corresponding cells in the quad-
rants to the immediate right. Thus the four diagonal orbits become
one, and the four off-diagonal orbits become one. In particular, there
are just two cell orbits. By inspection, the automorphisms ξ, αA, βA

(where A ∈ GΓL(2, q) \ GΓS(2, q)) and φg (where g ∈ GΓS(2, q))
all map diagonal cells to diagonal cells. Since these automorphisms
generate the entire automorphism group for q > 5, one sees that
there are exactly two cell orbits. ¤

It follows that f(n) ≤ 2 on a rather dense set of integers. It is
interesting to note that for the Paley matrices (and trivially for the
Sylvester matrices) any assignment of values to cell orbit represen-
tatives, and subsequent development via the automorphism group,
yields an Hadamard matrix.

3. Concluding Remarks

In this paper, we have exhibited three classes of Hadamard matrices
whose automorphism groups divide their cells into one or two orbits.
Moreover, we have shown that the minimal number f(n) of cell orbits
obtained by an Hadamard matrix is often much less than its order
n. Indeed, our results imply the following corollary.

Corollary 3.1. For n ≡ 0 (mod 4) up to 100, we have f(n) ≤ 2
except possibly for n = 92.
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Proof. Every number 4t (where t = 1, 2, . . . , 25) except 92 is of the
form 2s(q + 1) where either s ≥ 0 and q is a prime power congruent
to 3 modulo 4, or s > 0 and q is a prime power congruent to 1
mod 4. ¤

For many orders, there are several inequivalent Hadamard matri-
ces with just one or two cell orbits. It would be interesting to classify
the Hadamard matrices with transitive cellwise action. Theorem 2.5
and Theorem 2.6 imply that there are many Hadamard matrices of
large order which have a small number of cell orbits. One would like
to know whether f(n) grows slowly, perhaps logarithmically, with n.
One would also like to know what automorphism groups arise for
Hadamard matrices with a small number of cell orbits.
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