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Fibonacci Sequences in Groups

D. L. JOHNSON

1. INTRODUCTION

An ordered pair (z1,22) of elements of a group G determines a se-
quence in G by the rule

TnTntl = Tpta, N EN. (1)

When this sequence is periodic, its fundamental period is called the
Fibonacci length of (x1,22) in G. When G is a finite 2-generator
group, the minimum of these lengths over all generating pairs defines
an invariant A(G) of G.

After briefly listing some known results, we launch the quest for
infinite groups of finite Fibonacci length by giving three modest ex-
amples and conclude with a selection of open problems.

2. FINITE GROUPS

The cyclic case was covered by D.D. Wall in [7]. Since the classical
Fibonacci series of integers modulo 5 has fundamental period equal
to 20, it follows that this is the value of A(Z5 x Z5). It is a remarkable
fact [1] that the restricted Burnside group R(2,5) also has length 20.
Simple groups of order less than a million are considered in [3] and,
more recently, the binary polyhedral groups are studied in [2], which
contains a useful list of references.

It is a pleasure to acknowledge the generous hospitality of the Maths De-
partment at Galway during the conference and to have the opportunity to wish
Martie a long and successful tenure in his new role as University Contentment
Officer.
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3. INFINITE GROUPS

Many of the Fibonacci groups themselves, which are defined by
means of a presentation using the relations (1), are known to be
infinite. Here we seek examples that “occur in nature”.

To begin with a non-example, the Fibonacci length of the infinite
cyclic group Z is not defined. Indeed, it follows from a result in [6]
that for any non-zero r-tuple (z1,...,2,) € Z" with r € N, the
sequence defined by

Tn+Tpt1+ -+ Tpgr—1 = Tnyr, NE Na (2)

is non-periodic. Thus, a necessary condition for a group to have finite
Fibonacci length is that its derived group be of finite index.

Example 1. For the group

Zyx Zy = (a,b | a®> = b* = 1),
we obtain the sequence

a, b, ab, bab, b, ba, a, b, ...,

showing that the infinite dihedral group has Fibonacci length at
most 6. Since the Fibonacci group F(2,n) (see [6]) is finite for n < 5
this length is precisely 6.

Example 2. In the case of the right-angled Coxeter group
C={a,bc|a®>=0=c*=(bc)? =1),

we take (z1, 22, x3) = (a, b, ¢) and generalize (1) to the multiplicative
version of the equations (2) with » = 3 and so define A3 in analogy
with A = Ay above. The resulting sequence

a, b, ¢, abe, beabe, b, ¢, bea, a, b, c,...

shows that \3(C) < 8.

Note that this group is large in the sense of [4]: the subgroup
generated by x = ab and y = bc has index 2 and is given by the
presentation

Cr=(zy|y*=1),
and the subgroup of C" generated by = and yzry again has index 2

and is free on these generators.
Our final example is rather more ambitious.
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Definition. A permutation # € Sym(Z) is said to be n-periodic,
n € N if

(i+n)r=ir+n, VielZ,

and then n is a period of .

Remarks. 1. For such a 7, we have
i = j(modn) = im = jm(modn), (3)

so that 7 acts on the residue classes modulo n and thus defines a
member of the symmetric group Sym(n). Moreover, 7 is determined
by its values on the residues 0,1,...,n — 1:

m=1+a;, 0<1<n—1,

where a; € Z, and we call (ag,a1,...,a,—1) the signature of .

2. If o, B € Sym(Z) are m~, n-periodic respectively, then lem{m,n}
is a period of a3, whence the set of all n-periodic permutations forms
a group Sym,, (Z). The union of the Sym,,(Z) is the group Sym,(Z)
of periodic permutations.

3. Taking n = 1in (3), we see that Sym; (Z) is just the cyclic group
generated by the successor permutation o sending i to i+ 1 for all 4.
Since every cycle in every power of ¢ is periodic, we also see that
Sym, (Z) contains the group Cyc({o)) of all modular permutations
of Z (in the sense of [5]).

4. In the light of these remarks, a little thought shows that the
group Sym,,(Z) is naturally isomorphic to the wreath product Z
wr Sym(n).

Example 3. The periodic permutations with signatures
Q= (2> _2)3 6 = (33 _2> _1)

both belong to Symg(Z) and generate a subgroup H isomorphic to
an extension of Z® by the alternating group Ag. They determine the
following
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Fibonacci sequence (written as a column, with parentheses and com-
mas omitted).

2 =2 2 =2 2 =2
3 -2 -1 3 -2 -1
1 -3 0 -4 ) 1
-1 -1 -4 4 =2
0 -5 —4 0 9
-1 -1 5 -1 -6
-1 0 —-10 -1 8
3 =2 5 —11 2 3
2 -2 =8 4 11 -7
7 -9 3 0 4 =5
5 -7 -1 =5 11 -3
0 2 0 -5 3 0
5 =7 1 =2 6 -3
5 0 1 1 -4 -3
2 =2 2 =2 2 =2
3 -2 -1 3 -2 -1

We deduce that A(H) < 14.

4. SOME OPEN PROBLEMS

Problem 1. Re the last example, surely A(H) = 147
Problem 2. Is this group H torsion-free?

Problem 3. Can anything be said about the rate of growth of the
sequence A\(A,,), n > 4 where A, is the alternating group of degree n?
(It begins with 16, 12, 10.)

Problem 4. Is the containment Cyc({c)) < Sym,(Z) proper?

Problem 5. Does there exist a large group G = (1, x2) in which the
Fibonacci length of (x1,x2) is finite?
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