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The Cyclizer Function on Permutation Groups

C. C. FIDDES AND G. C. SMITH

Abstract. Let G be a transitive permutation group acting
on a finite set Ω. A cycle c is involved in a permutation g
if and only if gc−1 fixes all points of Supp(c). We define a
function Cyc(G) which takes the permutation group G to the
group generated by the cycles involved in its elements. Let
Cyc1(G) = Cyc(G) and Cyci+1(G) = Cyc(Cyci(G))). It is
known that Cyc3(G) = Cyc4(G) for all such groups. We in-
vestigate and characterize those groups for which Cyc2(G) 6=
Cyc3(G).

Introduction

In a permutation group each element is a product of disjoint cycles.
We say that a cycle c is involved in a permutation g if and only
if gc−1 fixes all points of Supp(c). The cyclizer Cyc(G) of a finite
permutation group G is the group generated by the cycles involved
in G. It is clear that to understand Cyc(G), it suffices to assume
that G is a transitive group of degree n. We make this assumption.
Let Cyci(G) denote the result of performing the cyclizing operation
i times, so we have the cyclizer sequence

G = Cyc0(G) ≤ Cyc1(G) ≤ · · · .

When Cyck−1(G) 6= Cyck(G) = Cyck+1(G) we say that G has cy-
clizer length k. This sequence of groups was investigated by Cameron
[1] who showed that every finite permutation group has cyclizer
length at most 3. If Cyc(G) = G, we say that G is cycle-closed.
He showed that the non-trivial cycle closed groups are precisely the
cyclic groups of prime order and the symmetric groups, both in their
natural representations. Cameron posed various problems, includ-
ing the determination of the (finite transitive permutation) groups
G such that Cyc2(G) 6= Cyc3(G). We solve this problem.
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1. Cameron’s Results and Some New Observations

We begin with some general observations. If G is a cycle-closed
transitive permutation group of degree n containing a transposition,
then G is a symmetric group. Thus any transitive cycle-closed group
of even degree is a symmetric group. If a permutation group G is
transitive and cycle-closed, then it is prime cyclic or symmetric. For
a primitive transitive permutation group G of degree n exactly one
of the following applies:

(1) G is prime cyclic,
(2) Cyc(G) = Sn,
(3) Cyc(G) = An.

Note Williamson’s lemma:

Lemma 1 (Williamson). A primitive subgroup of Sn is Sn or An

whenever it contains an m-cycle for some m satisfying the bound

1 < m ≤ (n−m)!

In any cyclizer sequence at most three primitive groups can ap-
pear. In particular any primitive group will have a cyclizer sequence
of length less than three. If a group G is such that Cyc(G) is im-
primitive, then G is a p-group. If G is a transitive, imprimitive per-
mutation group such that Cyc(G) is primitive, then Cyc2(G) is the
full symmetric group. For all finite groups G, Cyc3(G) = Cyc4(G).
If G is a transitive, imprimitive permutation group such that Cyc(G)
is imprimitive, then Cyc2(G) is primitive and moreover contains An.
Thus if Cyc(G) is imprimitive and G is a 2-group, then Cyc2(G)
is Sn.

Some of this information can be found in Cameron’s article [1], or
can be easily deduced from his proofs. However, one of these facts is
not immediate from Cameron’s work, and we supply a justification.

Theorem 2. If a group G is such that Cyc(G) is imprimitive, then
G is a p-group.

Proof. The group G must be imprimitive, all its blocks be of p-power
size for some prime p and blocks only be moved by p-power cycles.
Let g be a pn-cycle involved in an element of G that moves a block
∆1 (we can assume that |∆1| = p(n−1)) and let Supp(g) = Ω. We
will first consider the setwise stabilizer of Ω in G acting on Ω; let this
group be H. The set Ω is partitioned into blocks ∆1, ∆2, . . . , ∆p, any
element of H that moves these blocks will be known as a threading
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element, and elements that fix the blocks setwise will be known as
null elements. Assume, for contradiction, that H contains an element
of order q for some prime q 6= p, then this element must be a null
element. Let K ≤ H be the set of null elements and let Q be a
Sylow q-subgroup of H, hence Q ≤ K. The Frattini argument tells
us that H = NH(Q) · K. The group Q is not transitive on Ω and
therefore partitions it into more than one Q-orbit. At least one of
these orbits is of size one, as q does not divide |Ω| = pn and at least
one is larger than this as Q is a non-trivial group. Let h ∈ H be
an element of NH(Q) but not of K. The element h normalizes Q
and therefore acts on the Q-orbits, as we have seen these orbits are
not of a uniform size and so the group generated by h cannot act
transitively on them. This contradicts h being a threading element
and therefore no elements of order q can exist. The same argument
follows for any g ∈ G that moves blocks and as G is transitive we
can conclude that G does not contain any elements of prime order
for primes other than p. ¤

2. Groups of Degree p2

We seek finite transitive permutation groups of degree p2 which have
cyclizer length 3. We have already seen that such groups are p-
groups, and transitivity gives us that they must be permutation
groups of prime power degree. We will begin by looking at p-groups
of degree p2.

Theorem 3. If G is a transitive p-group of degree p2 and exponent
p, then Cyc(G) is primitive.

Proof. Let G be such a group. Blocks of Cyc(G) are also blocks
of G. Let ∆ be a nontrivial block of the group G and α, β ∈ Ω be
such that α ∈ ∆, β 6∈ ∆. Then, by transitivity, there exists a p-cycle
c, involved in an element of G, such that (α)c = β; this cycle is an
element of the group Cyc(G). As c moves p points and |∆| is at
least p, the set ∆ must contain at least one fixed point of c. Call
this point γ. We have that γ ∈ ∆ ∩ (∆)c so ∆ ∩ (∆)c 6= ∅ and also
β 6∈ ∆ so ∆ 6= (∆)c, hence ∆ is not a block of Cyc(G). The group
Cyc(G) can have no nontrivial blocks and so is primitive. ¤

We can say more than just that Cyc(G) is primitive. Lemma 1
tells us that Cyc(G) is in fact Ap2 . So we have the following corollary.
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Corollary 4. If G is a transitive p-group of degree p2 and expo-
nent p, then Cyc2(G) = Sp2 .

It is a routine matter to verify that the cyclizer of a cyclic group
generated by a p2-cycle is isomorphic to the group Cp Wr Cp.

The group Cyc2(〈g〉) (where g is a p2 cycle as above) is a primitive
group and is therefore by Lemma 1 either alternating or symmetric.
However all cycles involved in Cyc(〈g〉) are cycles of odd length,
therefore Cyc2(〈g〉) = Ap2 and Cyc3(〈g〉) = Sp2 .

Theorem 5. If G is a transitive p-group of degree p2 and expo-
nent p2, then either G = Cp Wr Cp or Cyc(G) = Cp Wr Cp (and
hence Cyc2(G) = Ap2 and Cyc3(G) = Sp2).

Before proving we will look in more detail at the group Cp Wr Cp.
The group W := Cp Wr Cp is a Sylow p-subgroup of Sp2 and hence
contains copies of all p-groups of degree p2. The base group of this
wreath product is B := Cp × · · · × Cp︸ ︷︷ ︸

p times

. The complement group of the

wreath product is W/B and is isomorphic to Cp, an abelian group
of exponent p. Therefore W ′ 6 B and W p 6 B. By Burnside’s
basis theorem the Frattini subgroup of W is W ′W p which is also a
subgroup of B. As Φ(W ) ≤ B we have that Cyc(Φ(W )) 6 Cyc(B) =
B 6 W . The group W is not cyclic and can be generated by a p2-
cycle and a p-cycle, hence W is a 2-generator group. Therefore the
basis theorem also tells us that any two independent elements (i.e.,
one is not a power of the other modulo Φ(W )) of W − Φ(W ) will
generate W .

As before let g be the p2-cycle (0, 1, 2, . . . , p2 − 2, p2 − 1), g0 be
the p-cycle (0, p, 2p, . . . , (p− 1)p) and let W := Cyc(〈g〉) = 〈g, g0〉 ∼=
Cp Wr Cp. Recall that gp was the product of p-cycles g0g1 · · · gd

where d = p− 1. The cycles g0, . . . , gd are all disjoint and therefore
commute, the cycle g commutes with the other cycles as follows

[gi, g] = gd
i gg

i = gd
i gj where j ≡ i + 1 mod p.

Lemma 6. All elements of the group W can be written uniquely in
the form

gεg gε0
0 · · · gεd

d

where each ε is from the set {0, . . . , d}.
Proof. There are pp+1 elements of this form and pp+1 elements of the
group W . It therefore suffices to show that any two elements of this
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form are indeed distinct elements of W . The supports of the cycles
g0, . . . , gd form a block system for our group. The identity element
fixes these blocks and therefore if we write the identity element in the
form gεg gε0

0 · · · gεd

d we must have that εg = 0. The cycles g0, . . . , gd

are disjoint and so we also have that ε0 = · · · = εd = 0, thus the
identity element can only be written in this form as g0g0

0 · · · g0
d.

Assume that gεg gε0
0 · · · gεd

d = gδg gδ0
0 · · · gδd

d , with each ε and δ in
{0, . . . , d}.

Id = gεg gε0
0 · · · gεd

d g−δd

d · · · g−δ0
0 g−δg

= gεg g−δg gδg gε0−δ0
0 · · · gεd−δd

d g−δg

= gεg−δg gε0−δ0
−δg

· · · gεd−δd

d−δg

(here the subscripts and powers are taken modulo p) and hence εg =
δg and εi = δi for all i ∈ {0, . . . , d}. ¤

Lemma 7. The Frattini subgroup of W is the set of elements of the
form gε0

0 · · · gεd

d such that
∑d

i=0 εi ≡ 0 mod p.

Proof.

W ′ = 〈[gi, g] = gd
i gi+1|i ∈ {0, . . . , d}〉

=
{

gε0
0 gε1

1 · · · gεd

d

∣∣∣ ∑d
i=0 εi ≡ 0 mod p

}

W p = {wp|w ∈ W}
=

{
gpε0
0 gσ

1 · · · gσ
d

∣∣∣σ =
∑d

i=0 εi, εi ∈ {0, . . . , d}
}

≤ W ′

Hence Φ(W ) (the Frattini subgroup of W ) is

W ′W p =

{
gε0
0 gε1

1 · · · gεd

d

∣∣∣
d∑

i=0

εi ≡ 0 mod p

}
.

¤

Now we will consider the group generated by the p2-cycle g and
the non-generators of the group W

〈g, Φ(W )〉 = 〈g〉Φ(W ) =

{
gεggε0

0 gε1
1 · · · gεd

d

∣∣∣
d∑

i=0

εi ≡ 0 mod p

}
.
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Lemma 8. Elements of 〈g〉 · Φ(W ) of the form

gεg gε0
0 · · · gεd

d

with εg 6= 0 are p2-cycles.

Proof. The group 〈g〉 · Φ(W ) has order pp. The centralizer of a p2-
cycle in 〈g〉·Φ(W ) is the group generated by that cycle and so has or-
der p2. There are therefore pp−2 conjugacy classes of p2-cycles inside
〈g〉 ·Φ(W ). There are (p−1)pp−1 elements of the form gεg gε0

0 · · · gεd

d

in 〈g〉 · Φ(W ) (as we have p − 1 choices of εg and p choices each of
ε0, . . . , εd−1 whence εd is fixed). It therefore suffices to show that
〈g〉 · Φ(W ) has (p− 1)p conjugacy classes of p2-cycles.

We will show that the (p − 1)p elements of the form g−ε0
0 gεggε0

0

(0 ≤ ε0 ≤ d, 1 ≤ εg ≤ d) are all in different conjugacy classes of
〈g〉 · Φ(W ).

First note that g−ε0
0 gεggε0

0 = gεgg−ε0
εg

gε0
0 and so these elements are

all in the group 〈g〉 · Φ(W ). Now assume that α := g−ε0
0 gεggε0

0 and
β := g−δ0

0 gδggδ0
0 are conjugate in 〈g〉 · Φ(W ). So there exists some

γ ∈ 〈g〉 · Φ(W ) such that γ−1αγβ−1 = Id. Let γ := gζg gζ0
0 · · · gζd

d

with
∑d

i=0 ζi ≡ 0 mod p.

Id = γ−1αγβ−1

= g−ζg gεg gζg g−δgϕ

for some ϕ ∈ Φ(W ). Hence εg = δg.
Now we have

γ−1g−ε0
0 gεggε0

0 γ = g−δ0
0 gεggδ0

0 and
gδ0
0 γ−1g−ε0

0 gεggε0
0 γg−δ0

0 = gεg .

Therefore gε0
0 γg−δ0

0 ∈ 〈g〉 ≤ 〈g〉 · Φ(W ). Rearranging gives

gε0
0 γg−δ0

0 = gζg gζ0
0 · · · gζd

d gε0
ζg

g−δ0
0

and as
∑d

i=0 ζi ≡ 0 mod p we must have that ε0 = δ0. Hence α and
β are equal. ¤
Proof of Theorem 5. Let G be a transitive p-group of degree and
exponent p2 such that G 6= Cp Wr Cp. The group G contains a p2-
cycle, g. As before let gp = g0 · · · gd. We have Cyc(G) ≥ Cyc(〈g〉) ∼=
Cp Wr Cp. Once again we will let W := 〈g, g0〉 ∼= Cp Wr Cp. As
G 6= W and W is a 2-generator group, it must be the case that
G ≤ 〈g, Φ(W )〉 = 〈g〉.Φ(W ). Now if x is an element of G, then x
must satisfy at least one of the following conditions:
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• x ∈ 〈g〉,
• x ∈ Φ(W ),
• x = gεg .ϕ where ϕ ∈ Φ(W ) and 1 ≤ εg ≤ d.

If x falls in to the first or second categories, then we have seen
above that all cycles involved in x will be elements of W . If x is in
the third category, then x is a p2-cycle and this cycle is an element
of W . Hence Cyc(G) = W . ¤

Corollary 9. A transitive p-group G of degree p2 is such that
Cyc2(G) 6= Cyc3(G) if and only if the exponent of G is p2.

3. p-Groups of Degree pn

Let P(p,n) be the group Cp Wr Cp Wr · · · Wr Cp of degree pn. When
the prime p is unimportant we shall refer to this group as Pn. Sim-
ilarly we will later define a group Mn which will be denoted as
M(p,n) if referring to a particular prime. Then Pn is a Sylow p-
subgroup of Spn and hence contains copies of all transitive p-groups
of degree pn, in particular it contains copies of all G such that
Cyc2(G) 6= Cyc3(G). As in the previous example we will define
a normal form for elements of this group. Let Pn act on pn points
numbered in base p, so for example C3 Wr C3 Wr C3 acts on the
points

Ω = {000, 001, 002, 010, 011, . . . , 220, 221, 222}.
Let g be a pn-cycle from Pp,n and without loss of generality let it
cycle the points in numerical order. In the following let p − 1 = d.
The element gp will involve p cycles of length pn−1. Call these cycles
g0, g1, . . . gd and label them so that the point 0 is in the support of
g0, the point 1 is in the support of g1 and so on. In our example
these cycles are

g0 = (000, 010, 020, 100, 110, 120, 200, 210, 220)
g1 = (001, 011, 021, 101, 111, 121, 201, 211, 221)
g2 = (002, 012, 022, 102, 112, 122, 202, 212, 222).

Now consider the pth power of the cycle gi. It involves p cycles
of length pn−2. Call these g0i, g1i, . . . , gdi and again label them so
that each contains the number by which it is indexed. Returning
to the example g01 = (001, 101, 201), g11 = (011, 111, 211) and g21 =
(021, 121, 221). This process can be continued until we have pn p-
cycles; each labelled by an n− 1 digit number. In C3 Wr C3 Wr C3
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this process gives one 27-cycle g, three 9-cycles g0, g1 and g2 and
nine 3-cycles g00, . . . , g22.

Call a cycle a level k cycle if it is indexed by a k digit number (the
cycle g is the level 0 cycle). The level n− 1 cycles generate the base
group of Pn = Cp Wr (Cp Wr Cp Wr · · · Wr Cp). The support of
each of these cycles is therefore a Pn-block. The level n − 2 cycles
act on the set of level n − 1 blocks as a cyclic group of order p and
therefore the level n− 1 and n− 2 cycles together generate the base
group of Pn = (Cp Wr Cp) Wr (Cp Wr · · · Wr Cp). Inductively we
can see that the level 0 to level n − 1 cycles generate Pn and that
the support of each cycle is a block under the action of Pn. Let the
support of a level k cycle be called a level k block, then the set of level
k blocks forms a complete block system for each k ∈ {0, 1, . . . , d}
(where the level 0 block system consists of a single block containing
all points). The set of level k blocks will be labelled by Ωk, so
Ω0 = Ω and define Ωn to be the set of singletons {{ω}|ω ∈ Ω}. Let
∆j = Supp(gj) for all j ∈ {0, 1, 2, . . . , 00, 01, 02, . . . , d · · · d} so for
example the level 1 block system consists of the blocks ∆0, ∆1, . . .
and ∆d.

Theorem 10. The level 1 to level d block systems are the only non-
trivial block systems of the action of Pn on the pn points.

Proof. Let Γ ⊆ Ω be a block of Pn. Since Pn is a transitive p-group
|Γ| = pk for some k 6 n. The blocks in the set Ωn−k partition
Ω into blocks of size pk. Choose i such that there exists a point
α ∈ Γ ∩∆i, where ∆i ∈ Ωn−k. The cycle gi is in the group Pn and
therefore Γ is either fixed set-wise or displaced to a disjoint set by
this cycle. It can not be the case that (Γ)gi ∩ Γ = ∅ (as this would
require |Supp(gi)| ≥ 2|Γ|, but we know |Supp(gi)| = |Γ|) hence gi is
a permutation of the points of Γ and Γ = ∆i. ¤

Later we will need to consider the set-wise stabiliser of ∆0 acting
on ∆0 written

Pn
∆0
{∆0}.

The set-wise stabilizer for each of the level 1 blocks is

(Cp Wr · · · Wr Cp)× · · · × (Cp Wr · · · Wr Cp)︸ ︷︷ ︸
p copies

,
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hence Pn
∆0
{∆0} is isomorphic to Pn−1. We will also be considering the

action of Pn on Ωn−1, written

PΩn−1
n .

This is the complement group of the wreath product

Pn = Cp Wr (Cp Wr · · · Wr Cp),

and hence is also Pn−1.
It is necessary to know the commutation relations between these

cycles as we will then use this information to construct a normal form
and to define subgroups of Pn. Distinct cycles from the same level
commute as their supports are disjoint. We will begin by looking at
commutators in C3 Wr C3 Wr C3 as an example.

[g0, g] = g−1
0 g1 = g2

0 g1 g2
00 g2

10 g2
20, ( as g−1

0 = g2
0 g2

00 g2
10 g2

20)
[g1, g] = g−1

1 g2 = g2
1 g2 g2

01 g2
11 g2

21,

[g00, g0] = g−1
00 gg0

00 = g2
00 g10 and

[g00, g] = g−1
00 gg

00 = g2
00 g01.

Now let ga and gb be two of the specified cycles from Pn (a and
b are numbers in base p). The commutator will be trivial unless ga

and gb have supports that intersect. This only happens when a and
b are in different levels (so without loss of generality assume that a is
an r digit number and b is an s digit number with r > s) and when
the number b occurs as the last s digits of the number a. When this
happens

[ga, gb] = g−1
a ggb

a =
{

gd
a gc : when r = n− 1

gd
a gc gd

1a gd
2a · · · gd

da : when r < n− 1.
(1)

If the number a is a1 a2 · · · as as+1 · · · ar (each ai representing
a single digit), then c is the number a1 a2 · · · as ãs+1 · · · ar where
ãs+1 ≡ as+1 + 1 mod p.

Theorem 11. Each element of Pn can be written in the normal
form

gεg gε0
0 gε1

1 · · · gεd

d gε00
00 · · · · · · gεdd···d

dd···d (2)

where all ε’s are from the set {0, 1 . . . , d}.
Proof. The proof is by induction. We have already seen that this
holds for P2, now assume that it also holds for Pn−1. The group Pn

has order p1+p+p2+···+pn−1
. This is the also the number of elements
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of the form 2. It therefore suffices to show that two elements of this
form written differently really are distinct. Let

a := gεg gε0
0 gε1

1 · · · gεd

d gε00
00 · · · · · · gεdd···d

dd···d
with each ε ∈ {0, 1 . . . , d}

b := gδg gδ0
0 gδ1

1 · · · gδd

d gδ00
00 · · · · · · gδdd···d

dd···d
with each δ ∈ {0, 1 . . . , d}

and assume that ab−1 = Id. Note that if an element of this form
(2) is the identity element, then the exponent of every cycle must
be zero. Using the commutator from above (1) we can rewrite ab−1

so that it starts gεgg−δg . . . and no other occurrences of the cycle g
appear in the word. Hence εg = δg and we are left with a word in
the cycles gi such that the exponent of g is zero. This word is an
element of the base group Pn−1×Pn−1×· · ·×Pn−1. Now considering
the element ab−1 restricted to each transitive constituent and using
the inductive hypothesis we get that εi = δi for all i. ¤

Let Dn be the subgroup of Pn generated by the commutators of
the cycles g, g1, . . . gd···d. Through similar analysis to the case for
Cp Wr Cp we can show that Dn is the set of elements which when
written in normal form satisfy the following conditions:

εg = 0 and

∑d
i=0 εi ≡ 0 mod p∑dd

i=00 εi ≡ 0 mod p
...∑d···d

i=0···0 εi ≡ 0 mod p.

The commutator of any two elements from Pn also satisfies these
conditions when written in normal form, hence Dn is the derived
subgroup. It is also possible to show that the pth power of any
element from Pn is in this group, so in fact Dn = Φ(Pn).

We can use this normal form to define another subgroup of Pn in
the following way. Form a subset Mn of Pn by taking all elements
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which when written in normal form satisfy the following conditions:
∑d

i=0
εi ≡ 0 mod p

∑d

i=0
εij ≡ 0 mod p ∀j ∈ {0, . . . , d}

∑d

i=0
εij ≡ 0 mod p ∀j ∈ {00, . . . , dd}

...
∑d

i=0
εij ≡ 0 mod p ∀j ∈ {0 · · · 0, . . . , d · · · d}.

(Here ij means the digits of i followed by the digits of j.)
The set Mn is a subgroup of Pn. We can see this by induction

on n. Let m1 := gεg gε0
0 · · · gεd

d ,m2 := gδg gδ0
0 · · · gδd

d be elements of
the set M2, then m1.m

−1
2 = gεg gε0

0 · · · gεd

d g−δd

d · · · g−δ0
0 g−δg . Using

the commutator data (1 top line only) and the fact that
∑d

i=0 εi ≡
0 mod p and

∑d
i=0 δi ≡ 0 mod p we can see that m1.m

−1
2 when

rearranged to be in normal form satisfies the conditions above and
hence M2 is a group. Now assume that Mn is a group for all n 6
k − 1 and the elements m1 := gεg gε0

0 · · · gεd

d · · · gεd···d
d···d and m2 :=

gδg gδ0
0 · · · gδd

d · · · gδd···d
d···d are in Mk. Now g−εgm1 and g−δgm2 are

(by induction) elements of the group Mk−1 × Mk−1 × · · · × Mk−1

and hence the element m1.m
−1
2 = gεg g−εgm1g

δg g−δgm2 is in the
set Mk.

Pn acts on weighted trees. We can associate the elements of Pn

in normal form with weighted regular trees with each vertex corre-
sponding to a cycle from the normal form. An element of Pn written
in normal form corresponds to a weighted tree, where the weight
of each vertex is the power of the cycle that it represents. Let the
root of the tree correspond to the pn-cycle g. The vertices directly
beneath g correspond to the level 1 cycles, beneath those the level 2
cycles and so on, arranged so that the support of a cycle is a subset
of the support of the cycles occurring above it. The leaf vertices
have weights corresponding to powers of the level n− 1 cycles.

Example. Elements of the group C3 Wr C3 Wr C3 can be repre-
sented by weighted regular trees of height three. An element in nor-
mal form from this group is represented by the tree shown below.
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εg

ε0

ε00 ε10 ε20

ε1

ε01 ε11 ε21

ε2

ε02 ε12 ε22

We will be considering the action of Pn on its set of associated
trees. If α, β ∈ Pn and Tα is the tree associated with the element
α, then (Tα)β = Tαβ . It is enough to understand how a single cycle
acts on the set of trees, as the action of other elements is equivalent
to repeated action of single cycles (the action of the element g g1 is
obviously equivalent to the action of g followed by the action of g1).
The cycle gi acts on a tree by rotating the subtree that is rooted at
the vertex corresponding to the cycle gi and increasing the weight
of that vertex by one. This rotation is actually a cyclic permutation
of the subtrees with root vertices immediately beneath the vertex
corresponding to the cycle gi. Figure 1 shows pictorially the element
gg2

0g2g00g01g11 ∈ C3 Wr C3 Wr C3 (left) and its image under the
action of the cycle g1 (right). The calculation is given below.

gg2
0(g2g00g01g11) ∗ g1 = gg2

0 g1g
−1
1 (g2g00g01g11)g1

= gg2
0g1g2g00 g−1

1 (g01g11)g1

= gg2
0g1g2g00g11g21

For a tree Tα, let wα(gi) be the weight of the vertex that corre-
sponds to the cycle gi. To multiply α by another element β of Pn

we can consider the multiplication one cycle at a time starting from
level 0 and working down to level n− 1. This gives the result that

wαβ(g) ≡ wα(g) + wβ(g) mod p

and if i is a k digit number with the digits i1, i2, · · · ik, then

wαβ(gi) ≡ wα(gr) + wβ(gi) mod p

where r is the k digit number r1r2 · · · rk and rk ≡ ik + wβ(g) mod p
and rj ≡ ij + wβ(gij+1ij+2···ik

)mod p for all other j.
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1

2

1 0 0

0

1 1 0

1

0 0 0

1

2

1 2 0

1

0 1 1

1

0 0 0

Figure 1

Using this formula and noticing that the identity is associated
with the tree where all vertices have zero weight, we get that

wα−1(g) ≡ −wα(g) mod p

and for i as above

wα−1(gi) ≡ −wα(gr) mod p

where as before r is the k digit number r1r2 · · · rk and rk ≡ ik+wβ(g)
and rj ≡ ij + wβ(gij+1ij+2···ik

) for all other j.
Figure 2 shows the associated trees of an element and its inverse

as calculated with the above formula.
Define the value of a vertex to be the sum modulo p of the weights

of the vertices immediately beneath it, with the stipulation that if a
vertex has no branches coming from it (i.e., it is a level n−1 vertex),
then it has zero value. For an element α ∈ Pn let vα(gi) be the value
of the vertex corresponding the cycle gi in the associated tree Tα.
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1

2

1 0 0

0

1 1 0

1

0 0 0

2

0

2 0 0

2

2 0 2

1

0 0 0

Figure 2

Then
vαβ(g) ≡ vα(g) + vβ(g) mod p

and
vαβ(gi) ≡ vα(gr) + vβ(gi) mod p

where as above i = i1 · · · ik and r is the k digit number r1r2 · · · rk

and rk ≡ ik + wβ(g) and rj ≡ ij + wβ(gij+1ij+2···ik
) for all other j.

From this we get
vα−1(g) ≡ −vα(g) mod p

and
vα−1(gi) ≡ −vα(gr) mod p

for i and r as before. With this definition the elements of the group
Mn are precisely those elements where every vertex has value zero.
It can be seen from the above that multiplication and taking inverses
preserves this property.
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Theorem 12. If H 6 Pn such that Cyc(H) = Pn, then H 6 Mn.

Proof. This is by induction on n. We have already seen that this
is the case for groups of degree p2 so it suffices to show that the
inductive step holds. Assume that H 6 Pk and Cyc(H) = Pk implies
that H 6 Mk for all k 6 n − 1. Now let H 6 Pn be such that
Cyc(H) = Pn hence

Cyc(H∆0
{∆0}) = Pn

∆0
{∆0}

∼= Pn−1

but we know from our assumption that this means

H∆0
{∆0} 6 Mn−1.

The group H∆0
{∆0} is in fact the group generated by the cycles ga,

where a represents a k digit number (1 6 k 6 n − 1) in base p
with the last digit being 0. By considering this and the fact that
H∆i

{∆i} 6 Mn−1 for all i ∈ {0, 1, . . . , d} we obtain that elements of H

written in normal form must satisfy the following conditions:
∑d

i=0 εij ≡ 0 (mod p) ∀j ∈ {0, . . . , d}∑d
i=0 εij ≡ 0 (mod p) ∀j ∈ {00, . . . , dd}

...∑d
i=0 εij ≡ 0 (mod p) ∀j ∈ {0 · · · 0, . . . , d · · · d}.

Finally if we consider HΩn−1 , then we know that

Cyc(HΩn−1) = PΩn−1
n

∼= Pn−1,

hence HΩn−1 6 Mn−1 and we have the final condition.

d∑

i=0

εi ≡ 0 (mod p).

¤
Theorem 13. If H 6 Mn is transitive, then Cyc(H) = Pn.

Before proving this we will first need to show that if an element
h ∈ Mn (when written in normal form) has εg 6= 0, then h is a
pn-cycle. Looking at the element

h := gεg gε0
0 gε1

1 · · · gεd

d gε00
00 · · · · · · gεdd···d

dd···d
from Mn we see that if εg = 0, then h will fix the blocks in Ω1

set-wise, and therefore cannot be a pn-cycle. By considering the
possible choices for εi we can see that the group Mn has order
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p1+(p−1)+(p2−p)+···+(pn−1−pn−2) = ppn−1
and the number of elements

h with εg 6= 0 is (
p− 1

p

)
ppn−1

.

It now suffices to show that the group Mn contains this many pn-
cycles. Let c be a pn-cycle then the centralizer of c in Mn is 〈c〉
(we have seen above that commutators of pn cycles with other el-
ements are non trivial). If we consider the group Mn acting on
itself by conjugation, then the centralizer of c is the stabilizer under
this action and the orbit is a conjugacy class. The orbit-stabilizer
theorem gives us that the conjugacy classes containing c will be of
size ppn−1−n. Similarly this will be the size of all conjugacy classes
containing pn-cycles.

Lemma 14. The elements g, g2, · · · gp−1 are in distinct conjugacy
classes of Mn.

Proof. Assume for contradiction that gα = gr where α ∈ Mn and
r ∈ {2, 3, . . . , p− 1}. Then

g(αn) = grn

.

Let k be the least integer such that rk ≡ 1(mod pn) (such a k does
exist as the Fermat-Euler Theorem [3] gives rϕ(pn) ≡ 1(mod p) where
ϕ(n) is the Euler phi function, counting numbers less than and prime
to n. On prime powers ϕ(pn) = pn − pn−1). Now we have

g(αk) = grk

= g

and hence αk is in the centralizer of g in Mn which is 〈g〉, but α 6∈ 〈g〉.
If αk1 = g for k1 < k, then this would contradict our choice of k as
minimal such that rk ≡ 1(mod pn), hence αk = g. The element α
must therefore be a power of g and this contradicts the assumption
that r 6= 1. ¤

There are (p− 1)pn−1 elements of the form

λ−1gεgλ (3)

where λ := gε0
0 gε00

00 gε00
01 · · · gε00

0d · · · · · gε00···0
00···0 gε00···0

00···1 · · · gε00···0
00···d

for εg ∈ {1, 2, . . . , p− 1} and all other ε ∈ {0, 1, 2, . . . , p− 1}.



The Cyclizer Function on Permutation Groups 69

Lemma 15. Elements of the form (3) are members of the group Mn.

Proof. The element g−ε0
0 gεg gε0

0 when written in normal form is
gεg g−ε0

εg
gε0
0 which is an element of M2. Assume for induction that

the lemma holds for the group Mn for n 6 k− 1. Consider λ−1gεgλ
with λ as above, by induction this is equal to

g−ε00···0
00···0 g−ε00···0

00···1 · · · g−ε00···0
00···d gεgγ gε00···0

00···0 gε00···0
00···1 · · · gε00···0

00···d

with gεgγ ∈ Mk−1. Rearranging this we get

gεgg−ε00···0
εg0···0 g−ε00···0

εg0···1 · · · g−ε00···0
εg0···d γ gε00···0

00···0 gε00···0
00···1 · · · gε00···0

00···d

= gεgγg−ε00···0
εg0···0 g−ε00···0

εg0···1 · · · g−ε00···0
εg0···d gε00···0

00···0 gε00···0
00···1 · · · gε00···0

00···d
which is in the group Mk. ¤

We will now see that any two elements of this form are not conju-
gate in Mn. Assume that two elements α−1gaα, β−1gbβ of the form
(3) are in the same conjugacy class, where

α := gε0
0 gε00

00 gε00
01 · · · gε00

0d · · · · · gε00···0
00···0 gε00···0

00···1 · · · gε00···0
00···d and

β := gδ0
0 gδ00

00 gδ00
01 · · · gδ00

0d · · · · · gδ00···0
00···0 gδ00···0

00···1 · · · gδ00···0
00···d .

Then there exists some γ ∈ Mn such that

βγ−1α−1gaαγβ−1 = gb.

The proof of Lemma 14 gives us that a = b and αγβ−1 ∈ 〈g〉 and
hence γ = α−1gcβ for some c 6 pn.

The element γ is in the group Mn and hence all vertices of its
associated tree have zero value. From above we have that

0 = vγ(g) = vα−1 gcβ(g)
≡ vα−1(g) + vgc(g) + vβ(g) ( mod p)
≡ −ε0 + 0 + δ0 ( mod p)

and hence ε0 = δ0.
Now let i be a k − 1 digit number

vα−1 gc(gi) ≡ vα−1(gr) + vgc(gi) (mod p) ∀i
≡ − ε0···0︸︷︷︸

k zeros

+ 0 (mod p)

(here r is as defined just after Figure 1, however in the tree corre-
sponding to α−1, the value of all level k − 1 vertices is the same)
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therefore
0 = vγ(gi) = vα−1 gcβ(gi)

≡ vα−1 gc(gr) + vβ(gi) (mod p)
≡ − ε0···0︸︷︷︸

k zeros

+ δ0···0︸︷︷︸
k zeros

(mod p)

and hence ε0···0︸︷︷︸
k zeros

= δ0···0︸︷︷︸
k zeros

for all k ∈ {1, . . . , n}. So we have α = β.

We have now shown that all elements of the form 3 are in distinct
conjugacy classes, hence there are at least pn−1(p − 1) conjugacy
classes. This gives at least

pn−1(p− 1)ppn−1−n =
(

p− 1
p

)
ppn−1

pn-cycles in Mn and therefore all h with εg 6= 0 must be pn-cycles.

Lemma 16. Cyc(Mn) = Pn.

Proof. The pn-cycle g is an element of Mn and we therefore have
Pn ≤ Cyc(Mn). It suffices to prove that if α is an element of Mn,
then all cycles involved in α are elements of Pn. Let

Id 6= α = gεg gε0
0 gε1

1 · · · gεd

d gε00
00 · · · · · · gεdd···d

dd···d ∈ Mn.

If εg 6= 0, then the above argument tells us that α is a pn-cycle,
which is clearly in Pn as α is. Let Tα be the tree associated with α.
If wα(g)(:= εg) = 0, then remove the top vertex and all adjacent
edges from Tα. Next look at the level 1 vertices and again remove
any that have weight zero along with their adjacent edges. Any level
1 vertices with non zero weight are now roots of subtrees of Tα, all
vertices beneath these cannot now be removed. Continue to remove
vertices of weight zero until Tα has been partitioned into subtrees
each of which has a root of non-zero weight.

0

1

0 0 0

0

1 1 1

2

1 2 0

The tree shown, Tα, is
composed of five subtrees,
two of height 1 and three
of height 0. The element
α is the product of the
elements associated with
these subtrees.
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As these subtrees are disjoint and each have a root of non-zero
weight they correspond to disjoint single cycles in Mn. Now the
element α is the product of these disjoint cycles, as each one is an
element of Mn they are also elements of Pn and we are done. ¤

Proof of Theorem 13. If H is transitive, then there is some h ∈ H
such that when h is written in normal form, the power of g is non
zero. Other cycles in the normal form fix the blocks of Ω1. By the
above argument this element h is then a pn-cycle. The cyclizer of
the cyclic group 〈h〉 is Pn hence Cyc(H) > Pn. We have already
seen that Cyc(H) 6 Pn and so they must be equal. ¤

Theorem 17. If H is a transitive p-group of degree pn and Cyc(H) 6=
Pn, then |Cyc(H)| is even. This means that Cyc2(H) is a primitive
group containing a transposition and is therefore Spn .

Before proving this it will be useful to note the following. If G
is a transitive group with a non-trivial block system consisting of
blocks ∆1,∆2, . . . , ∆n, then let G∆ denote the action of G on the
set {∆i|1 6 i 6 n}. There is an obvious surjective homomorphism
from G onto G∆ and hence |G∆|

∣∣ |G|. It is well known that the
order of a stabilizer divides the order of the group. Also note that
Cyc(G∆) = Cyc(G)∆. Similarly if a group G acts on Ω and Γ ⊂ Ω,
then Cyc(G{Γ}) = Cyc(G){Γ}.

Proof. Assume that H 6 Pn but Cyc(H) 6= Pn, then H contains
some element involving a cycle c which is not an element of Pn. If
a cycle c is involved in an element of Pn, then it is a pk-cycle for
some k. If it also does not break any of the block systems on Pn,
then in particular it does not break the blocks of size pk in the the
block system Ωn−k. Therefore Supp(c) = ∆i for some n − k digit i
and c must be a power of the cycle gi and is therefore an element of
the group Pn. It follows from this that our cycle c which is involved
in an element of Pn but not itself in the group Pn, must break at
least one of the block systems Ω1, . . . , Ωn−1.

Choose r to be the least number such that Ω0,Ω1, . . . , Ωr are all
block systems of Cyc(H) but Ωr+1 is not, and let r + s be the least
number greater than r such that Ωr+s is a block system of Cyc(H)
(note that r and s do exist as Ω0 and Ωn are trivially block systems).
Now we consider the group Cyc(H)Ωr+s|∆i

{∆i} for a fixed ∆i ∈ Ωr, where
Ωr+s|∆i is the set of ∆j ∈ Ωr+s such that ∆j ⊂ ∆i.
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Note. This group is the set-wise stabiliser of a level r block ∆i, acting
the set of level r + s blocks that are subsets of ∆i. Hence it has
degree ps. The only non-trivial blocks this group could have, would
correspond to non-trivial Pn-blocks from levels r+1 to r+s−1, but we
have chosen r and s so that this cannot happen, hence this group is
primitive. The group H is a p-group, therefore the subgroup H

Ωr+s|∆i

{∆i}
is also a p-group and hence contains an element which involves a p-
cycle. This p-cycle is in Cyc(HΩr+s|∆i

{∆i} ) = Cyc(H)Ωr+s|∆i

{∆i} .

By Lemma 1 primitive groups of degree ps with s > 2 which
contain a p-cycle are either alternating or symmetric. The group
Cyc(H)Ωr+s|∆i

{∆i} is the cyclizer of a p-group, it is primitive and con-
tains a p-cycle, therefore

Cyc(H)Ωr+s|∆i

{∆i}
∼= Aps

The important point is that the order of this group is even. Now we
can see that

2
∣∣ |Aps | = |Cyc(H)Ωr+s|∆i

{∆i} |
∣∣ |Cyc(H){∆i}|

∣∣ |Cyc(H)|
and we are done. ¤

If H 6 C3 Wr C3 Wr C3 and Cyc(H) 6= C3 Wr C3 Wr C3, then
there are three cases. Either Ω1 is not a block system in Cyc(H)
or Ω2 is not a block system of Cyc(H) or neither of them are. In
the first case Cyc(H) = A9 Wr C3, second Cyc(H) = C3 Wr A9 and
third Cyc(H) = A27. Obviously in all cases Cyc2(H) = S27.

Corollary 18. Up to isomorphism of permutation groups, the finite
groups G for which Cyc2(G) 6= Cyc3(G) are precisely the transitive
subgroups of the groups Mn for n ∈ N, n > 2.

4. Classification of Finite Groups

We are now in a position to classify finite transitive groups, other
than 2-groups, according to the length of their cyclizer sequence. We
will also see why the classification of 2-groups is an open problem.

Primitive groups. From §1 we have that the cyclizer of a primitive
group that is not prime cyclic is Sn or An. A primitive group of even
order must contain an element that involves a transposition hence
its cyclizer is Sn. A non-prime cyclic primitive group, G, of odd
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order will only involve cycles of odd length and hence Cyc(G) = An,
it follows that Cyc2(G) = Sn.

We have shown that a primitive group has a cyclizer sequence of
length 1 if it has even order and length 2 if it has odd order.

Imprimitive groups (other than p-groups). By Theorem 2 if G is im-
primitive but not a p-group, then Cyc(G) is primitive. Hence if |G|
is even, then Cyc(G) contains a transposition and is Sn by Lemma 1.
If |G| is odd, then Cyc(G) ≤ An and by §1, Cyc2(G) = Sn.

So an imprimitive group, which is not a p-group has a cyclizer
sequence of length 1 if it has even order and of length 2 if it has odd
order (as with primitive groups).

p-groups (for p an odd prime). §2 gives us that a p-group G has a
cyclizer sequence of length 3 if and only if it is a transitive subgroup
of the group Mn. If G 6≤ Mn then it has a cyclizer sequence of length
two as Cyc(G) ≤ Apn .

So a p-group G of degree pn (with p odd) has a cyclizer sequence
of length 3 if it is a transitive subgroup of the group M(p,n) and of
length 2 otherwise.

2-groups. If G is a 2-group, then either Cyc(G) = Sn or Cyc(G)
is imprimitive and Cyc2(G) = Sn as it is primitive and contains
a transposition. We are now required to determine when Cyc(G)
is imprimitive. Through a similar argument to that in §2 we can
see that Cyc(G) = C2 Wr C2 · · · Wr C2 when G is a subgroup of
M(2,n) for some n. However these are not the only groups to have
Cyc(G) imprimitive. For example the group of quarternions in its
right regular representation has the following cyclizer sequence.

Q 7→ C2 Wr S4 7→ S8.

In order to complete this classification we need to answer the
following question.

For which imprimitive groups G is Cyc(G) also imprimitive?

In other words we want to know which imprimitive G have a sys-
tem of non-trivial blocks that is respected by all cycles involved in
elements of the group. We leave this as an open question and hence
the classification is not quite complete.

We summarize the classification information in Figure 3.
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Cyclizer length Groups

• Cp for p prime
0 • Sn

• Primitive groups of even order
1 • Imprimitive groups of even order

(except certain 2-groups)
• Primitive groups of odd order
• Imprimitive groups of odd order except those specified

2
in §2
• 2-groups G such that Cyc(G) 6= Sn

3 • p-groups (p 6= 2) as specified in §2

Figure 3. A partial classification of groups accord-
ing to the length of their cyclizer sequence
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