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Locally Nilpotent Linear Groups
A. S. DETINKO AND D. L. FLANNERY

Dedicated to Martin L. Newell

ABSTRACT. This article examines aspects of the theory of
locally nilpotent linear groups. We also present a new clas-
sification result for locally nilpotent linear groups over an
arbitrary field F.

1. WHY LocALLy NILPOTENT LINEAR GROUPS?

Linear (matrix) groups are a commonly used concrete representation
of groups. The first investigations of linear groups were undertaken
in the second half of the 19th century, and currently linear group
theory is a highly developed branch of group theory. In the past few
decades interest in matrix groups has revived and increased, driven
partly by the rapid development of computational group theory.
Locally nilpotent groups are a generalization of nilpotent groups.
Over the years, many structural and classification results for locally
nilpotent linear groups have been obtained. Further progress in the
study of these groups is possible using computational techniques.
Group theoretical algorithms take as input a finite generating set
for a group. The celebrated ‘Tits alternative’ states that a finitely
generated linear group G either is solvable-by-finite (that is, G con-
tains a normal solvable subgroup of finite index), or G contains a
nonabelian free subgroup. For linear groups of the latter type, some
basic computational problems, such as membership testing and the
conjugacy problem, are undecidable in general. Nilpotent linear
groups on the other hand are solvable-by-finite and so are more suit-
able for computation (note that the class of nilpotent-by-finite linear
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groups—which includes all locally nilpotent linear groups—forms an
important subclass of

This point is underlined by Gromov’s result [5], which implies that
a finitely generated group has polynomial growth if and only if it
is nilpotent-by-finite: hence, as explained in [1], certain algorithmic
efficiency problems can be successfully overcome for locally nilpotent
linear groups.

Another motivation for further study of locally nilpotent linear
groups lies in possible application to abstract group theory con-
cerns. Here an example is recent work [11] on the Carter conjecture
for finite groups. Another example is the almost crystallographic
groups, which are nilpotent-by-finite and arise naturally as linear
groups over Q (see [4, §5.3]). Note that a finitely generated nilpo-
tent group is polycyclic and so isomorphic to a subgroup of GL(n, Z)
for some n; hence algorithms for nilpotent subgroups of GL(n,Q)
serve as a key step toward algorithms for abstract finitely generated
nilpotent groups.

2. STRUCTURE OF LocALLY NILPOTENT LINEAR GROUPS

Research into locally nilpotent linear groups relies heavily on knowl-
edge of the structure of such groups. Systematic study of the struc-
ture of locally nilpotent linear groups was carried out by D. A. Supru-
nenko, beginning in the late 1940s [14]. Among other things, Supru-
nenko classified the maximal locally nilpotent subgroups of GL(n, )
when [ is algebraically closed. Various authors extended some of
Suprunenko’s results to other fields. In particular, criteria for finite-
ness of the number of conjugacy classes of maximal locally nilpotent
subgroups of GL(n,TF), as well as classification of such groups in
some partial cases, have been obtained from a detailed description
of the structure of locally nilpotent linear groups over an arbitrary
field (see e.g. [8]).

In the rest of this section we outline some of the most important
structural results for locally nilpotent linear groups. A natural point
of focus is the maximals, because each locally nilpotent subgroup of
GL(n,F) is contained in a maximal locally nilpotent subgroup (by
way of contrast, note that a nilpotent subgroup of GL(n,F) may not
be contained in a maximal nilpotent subgroup).

We proceed via a standard reduction scheme: reducible — com-
pletely reducible — irreducible — absolutely irreducible — primitive.



LocAaLLy NILPOTENT LINEAR GROUPS 39

2.1. Reducible Locally Nilpotent Linear Groups. We use stan-
dard terminology for linear groups, as in [14, 15]. A reducible sub-
group G of GL(n, F) is conjugate to a group of block upper triangular
matrices, where the diagonal blocks form the irreducible parts of G,
which are irreducible representations of G over F in smaller degree.
If G is indecomposable locally nilpotent then a stronger statement
holds: the irreducible parts of G are pairwise equivalent ([15, p.223,
Theorem 2]), so that G is conjugate to a group of block upper tri-
angular matrices

a(og) ai2(g) -+ aix(g)
: a(;q) azk:(g) R
0 0 - al

where a(G) = {alg) | ¢ € G} < GL(m,F) is irreducible locally
nilpotent for some m dividing n, and a;;(g) € Mat(m,F). If F is a
perfect field then a;;(g) = ci5(g)a(g) where ¢;;(9) € Cytat(m,r) (a(G));
that is, G is contained in the direct product of a completely reducible
group over F with equivalent irreducible parts, and a unitriangular
group over a division algebra. This reduces study of locally nilpotent
linear groups to the irreducible case.

Another way to obtain a reduction to the completely reducible
case is to use the Jordan decomposition. For each g € GL(n,F)
there is a unique unipotent matrix g, € GL(n,F) and a unique
diagonalizable matrix g4 € GL(n,F) such that ¢ = g49. = guga
(here T is the algebraic closure of F); see [16, p. 91, 7.2]. If F is
perfect then g, and g4 are both in GL(n,F).

Theorem 2.1. ([16, p.97, 7.11] and [15, p.240, Theorem 6]) Let G <
GL(n,F) be locally nilpotent, and define G, = {g € G | g unipotent},
Gq = {g € G | g diagonalizable}. Then G, and G4 are normal
subgroups of G, and (G, Gg) = Gy X Gg.

The theorem implies that if G is a completely reducible locally
nilpotent subgroup of GL(n,F) then every subgroup of G is com-
pletely reducible, and in particular every element of G is diagonaliz-
able ([16, p.98, 7.12] and [15, p.239, Theorem 5]).

Corollary 2.2. ([16, p98, 7.13]) If G < GL(n,F) is locally nilpotent,
and if for each g € G we have gy, g4 € G, then G = G, x Gyq.
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The hypothesis gy, g4 € G for all g € G is satisfied if F is finite.
This is a partial case of the following.

Theorem 2.3. ([12, p.136, Proposition 3]) Let F be perfect and G
be milpotent. Define Gu=1{9u] g€ G} and Gy = {gq | g € G}
Then G, Gq are subgroups of GL(n,F), and G < Gy x Gq.

The group G, defined in Theorem 2.3 is completely reducible
over F.

2.2. Irreducible locally nilpotent linear groups. Each irreduc-
ible maximal locally nilpotent subgroup of GL(n,F) can be thought
of as an absolutely irreducible maximal locally nilpotent subgroup
of GL(m, E) for some m dividing n and field E D F (see [15, p.217,
Theorem 4]). This affords a reduction to the absolutely irreducible
case, particularly in the classification of irreducible maximal locally
nilpotent linear groups. Further investigation is possible in two di-
rections, which are not mutually exclusive: reduction to p-subgroups
of PGL(n, F), and reduction to primitive groups. The former is based
on the following theorem.

Theorem 2.4. ([15 pp.220-221, Theorems 8, 9])

(i) Letn = -~ ppk be the prime factorisation of n, where the
p; are pazrwzse distinct primes. If G is a mazimal absolutely
irreducible locally nilpotent subgroup of GL(n,F) then G =
G1® - ® Gy, where G; < GL(p}",F) is mazimal absolutely
wrreducible locally nilpotent, 1 < i < k.

(ii) Let p be a prime. An absolutely irreducible subgroup G of
GL(p®,F) containing F*1,. is a mazimal absolutely irre-
ducible locally nilpotent subgroup of GL(p*,F) if and only
if G/F*1,a is a Sylow p-subgroup of PGL(p®,F).

Irreducible locally nilpotent linear groups are center-by-periodic;
in fact, the central quotient of each is a direct product of p-groups
(see [13, Corollary 3.2.4]).

Except when F is finite or algebraically closed, the description of
Sylow p-subgroups of PGL(n,F) is quite different to the description
of Sylow p-subgroups of GL(n, F).

Sylow p-subgroups of PGL(n, F) were considered in [6], mainly for
p > 2. Classifying the Sylow 2-subgroups of PGL(n,F) is difficult.
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In [6], p-subgroups of PGL(n,F) are handled using the same tech-
niques as for locally nilpotent linear groups, including the reduction
to primitives.

The reduction to primitives is not so straightforward for locally
nilpotent linear groups as it is for some other classes of linear groups,
such as solvable groups. To appreciate this disparity, note that an
irreducible imprimitive solvable subgroup of GL(n, F) is conjugate to
a subgroup of G'T where G is a primitive solvable linear group and T’
is a transitive solvable permutation group ([15, p.129, Theorem 5]);
however, the wreath product of a locally nilpotent linear group and
a nilpotent permutation group need not even be (locally) nilpotent.

A discussion of techniques for studying nilpotent primitive sub-
groups G of GL(n,F) can be found in [8, Section 2]. One technique is
to use the series G > H > K > 1 where K = [G,G] and H = Cg(K).

A basic result here is as follows.

Theorem 2.5. ([8, Theorem 2|) Let G < GL(p®,F) be primitive
absolutely irreducible locally nilpotent, p # charF. Then K is an
abelian p-group, ¥ = (K)p is a field, G/H = Gal(X/F), [H,H] <
F*1,a, and H is an absolutely irreducible primitive class 2 nilpotent
subgroup of GL(m,X), m = p®/|X : F|.

The primitive nilpotent subgroups of GL(n,F) for finite fields F
have been completely classified, in [3].

The paper [8] also summarizes results and methods for classifying
maximal locally nilpotent subgroups of GL(n,F) over an arbitrary
field F.

Considerable attention has been paid to the problem of deter-
mining when the number of GL(n,F)-conjugacy classes of maximal
locally nilpotent subgroups of GL(n,F) is finite. Finiteness of that
number depends on finiteness of the groups F* /(F*)™, for m divid-
ing n.

Groups over an algebraically closed field have been the most in-
tensively studied.

Theorem 2.6. ([14, Chapter III] and [15, Chapter VII]) Let F be
algebraically closed.

(i) Irreducible locally nilpotent subgroups of GL(n, F) exist if and
only if char F = 0 or char F does not divide n, in which cases
there exists an irreducible nilpotent subgroup of GL(n,F) of
nilpotency class 1, for each and every nilpotency class 1 > 1.
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(ii) Irreducible mazimal locally nilpotent subgroups of GL(n,F)
are monomial and pairwise conjugate.

The matrix form of the groups in (ii) is given in [14, Chapter
ITI, §7]. Note that (ii) implies that a completely reducible locally
nilpotent linear group over an algebraically closed field is monomial.

In summary, locally nilpotent linear groups constitute a well-
studied class of groups, for which a lot of structural information
and efficient methods of investigation are known. However the the-
ory still has significant gaps. Most results deal only with absolutely
irreducible maximal locally nilpotent subgroups of GL(n,F). Those
results do not readily yield analogous results for locally nilpotent
linear groups that are not maximal or are not absolutely irreducible
(cf. [3]). Complete classifications of locally nilpotent subgroups of
GL(n,F) are feasible only by placing restrictions on the field F or
the degree n. In the sequel we allow arbitrary fields but restrict the
degree.

3. PRIME DEGREE LOoCALLY NILPOTENT LINEAR GROUPS

We now give an illustration of how techniques in the theory of locally
nilpotent linear groups may be applied to obtain a full classification
in that theory. Specifically, in this section we classify the irreducible
maximal locally nilpotent subgroups of GL(g,F), where ¢ is prime
and F is any field. This classification is in the form of a complete list
of GL(q, F)-conjugacy class representatives of the groups, with each
listed group defined by a generating set of matrices. Also we pro-
vide criteria to decide conjugacy between listed groups. Restricting
to prime degree has several advantages: an irreducible subgroup G
of GL(g,F) is either abelian or absolutely irreducible, and is either
primitive or monomial. Additionally, if G is absolutely irreducible
locally nilpotent then lies in a Sylow g-subgroup of PGL(q,F), and
Sylow g-subgroups of PGL(q,F) have a simpler description than do
Sylow subgroups of PGL(n,F) for composite degree n.

Certainly, a partial classification of the irreducible maximal locally
nilpotent subgroups of GL(¢,F) can be derived from a description
of the absolutely irreducible maximal locally nilpotent subgroups
of GL(¢* F). However, here we propose other methods and give
a complete, self-contained result, which can be extended to get a
complete classification in prime power degrees ¢®. In particular we
give an exact description of the Sylow 2-subgroups of PGL(2,TF),
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omitted by other authors. This is of special importance because
(for example) classification of the Sylow 2-subgroups of PGL(n,F)
in arbitrary degree n depends on classification in degree 2 (cf. the
case of 2-subgroups of GL(n,F) in [7, 10]).

The methods used in this section were originally developed to
classify the maximal irreducible periodic subgroups of PGL(q,TF),
in [2]. We begin by considering absolutely irreducible groups; abelian
groups will be treated at the end.

By [15, Theorem 6, p. 217], GL(q,F) contains absolutely irre-
ducible locally nilpotent subgroups if and only if F* has an element
¢ of order ¢ (of course charF # ¢). Let D = {diag(8/1,...,0808;) |
Bi € Syl (F*), B € F*}. For o € F*, define

_ 0 1q—1
Ia—(a 0 )GGL(q,F)

and write I in place of I;. For H < GL(q,F) let Det(H) = {det(h) |
he H}.

Assuming ¢ € F* we define H, = (D, 1,). The subgroup H, of
GL(g, F) is monomial and absolutely irreducible. Since H,/F*1,is a
g-subgroup of PGL(¢q,F), H,, is locally nilpotent. If Syl (F*) is finite
then H, is nilpotent with nilpotency class 1+ (¢ — 1) log, [Syl, (F*)|.

Denote by 7 the natural homomorphism from the group of all
monomial matrices in GL(g, F) onto the group Sym(q) of ¢ x ¢ permu-
tation matrices. The kernel of 7 is the group D(g, F) of all diagonal
matrices in GL(q, F).

Lemma 3.1. (Cf. [2, Lemma 20]) Let a,b € D(q,F). The following
statements are equivalent.

(i) Ia, Ib are GL(q,TF)-conjugate.

(ii) Ia, Ib are D(q,F)-conjugate.

(iii) det(a) = det(d).
Lemma 3.2. Let H be an irreducible monomial locally nilpotent
subgroup of GL(q,F). Then H is conjugate in GL(q,F) to a subgroup
of H, for some a € F*.

Proof. If H is abelian then 7(H) < Sym(q) is a transitive abelian
group i.e. a cycle of order ¢, and H ND(q,F) <F*1,. On the other
hand if H is absolutely irreducible then HF* /F*1, is a g-group, so
that HND(q,F) < D, and 7(H) is again a cycle of order ¢q. Hence up
to conjugacy H < (D, Ia) for some a € D(q,F). Then H is conjugate
to a subgroup of Hye(q) by Lemma 3.1. ]
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Denote the set Det(D) = Syl (F*)(F*)? by S.

Lemma 3.3. If « € S then H, is D(q,F)-conjugate to Hy. If
ay, a0 € S then H,, and H,, are GL(q,F)-conjugate if and only if
Det(H,,) = Det(H,,) i.e. (a1 S) and (a2S) are identical subgroups
of F%/S of order q.

Proof. Suppose a = 3,37 for some 3; € Syl (F*) and 3 € F*. Then
det(I,) = det(Ib) where b = diag(13,0,...,3) € D. Therefore H,
is D(gq, F)-conjugate to (Ib, D) = H; by Lemma 3.1.

Now suppose aj, a2 ¢ S and a3 € (@g2,S). Then det(l,,) =
det(I},c) for some ¢ € D and 1 < r < g — 1. Also there exists
x € Sym(q) such that xI), cx~' = Ib for some b € D(¢,F). Hence
by Lemma 3.1 once more, H,, and H,, are conjugate (this time by
a monomial matrix). O

Corollary 3.4. Define H = {H, | « € F*\ S}. The GL(¢,F)-
conjugacy classes of the groups in H are in one-to-one correspon-
dence with the distinct subgroups of F* /S of order q. Consequently
the number of such classes is finite if and only if F*/S is finite.

Remark 3.5. If IF is algebraically closed or finite then H is empty: a
maximal absolutely irreducible monomial locally nilpotent subgroup
of GL(q,F) is conjugate to Hj.

We turn next to primitive groups.

Lemma 3.6. Let H be a primitive locally nilpotent subgroup of
GL(q,F). Then H has an irreducible abelian normal subgroup.

Proof. First we show that H has an abelian noncentral normal sub-
group. As H is locally nilpotent, it is solvable, and thus has an
abelian normal subgroup A of finite index (see e.g. [15, p.135, Theo-
rem 6]). If A < Z(H) then H/Z(H) is finite and thus H is nilpotent.
But a nonabelian nilpotent group certainly contains an abelian non-
central normal subgroup.

Any abelian noncentral normal subgroup A of H must be irre-
ducible. For if A were reducible then it would be diagonalizable
with inequivalent irreducible parts, which contradicts primitivity
of H. ([

Lemma 3.6 implies that a primitive locally nilpotent subgroup of
GL(q,F) is contained in the GL(g,F)-normalizer of the multiplica-
tive group of a field extension A of F1, of degree ¢g. Since this
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degree is prime, A is a cyclic extension of I, with Galois group of or-
der q. Aslong as F* has an element £ of order ¢, A = (h)p for some
h € GL(q,F) such that h? = 51, € F*1, by [9, p. 289, Theorem 6.2].
As 8 € (F*)? implies that h is scalar, we have § = a"~? for some
a,y €F*and 1 <7 < g—1. Then y~h and I”, have the same char-
acteristic (minimal) polynomial X7 — a"1,, and because X? — a1,
is F-irreducible, y~'h and I’ are conjugate. Hence A is conjugate
to Ay = (Io)r, a € (F*)9, and Ngr(qr(AX) = (AX,d) where
d = diag(1,¢,...,£771). Denote by G(a,b) the subgroup (A, db)
of (AX,d), where A, O F*1,, A,/F*1, is the Sylow g-subgroup
of AX/F*1,, and b € AX. Since A, is a noncentral irreducible
subgroup, G(a,b) is absolutely irreducible.

Lemma 3.7. An absolutely irreducible primitive locally nilpotent
subgroup H of GL(q,TF) is conjugate to a subgroup of some G(a,b).

Proof. Up to conjugacy H = (H N AX,db) for some o € F* \ (F*)?
and b € AX. Then H N A, < A, by Theorem 2.4. O

We use the notation € to stand for an element of multiplicative
order 2% in the algebraic closure of F. If k = 2 then we drop the
subscript; that is, € is a square root of —1.

Lemma 3.8. Suppose F does not have characteristic 2, and € ¢ F.
Let E =F(e), and let o be the F-involution of E. If Syly(E*) = (e
is cyclic then Syl,(E* /F*) is cyclic. Explicitly, one of the following
must be true:
(i) o(em) = —&,,}, and Syly(EX/F*) = (¢,,F*) of order 2m~1;
or
(i) o(em) = e&,,}, and Syly(EX /FX) = ((1+¢&,)F*) of order 2™.

Proof. We make some preliminary observations. First, either o(e,,) =

el or o(ey) = —e;,!. Suppose o(ex) = ¢, ' Then

2k
o((14er)?) = o(1+e)? = (141> = (1 +k> = (1421)”".

Thus (1 + ek)zk € IF and so
(14 e,)F* € Syl,(E* /F*) (1)

if k> 2. Also, if k > 2thene, ' (ep_1+1) = ¢}, (2 +1) = e +e, ' €
F>* and so
1+ ep—1 € (ex)F~. (2)
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Now let zF* be a nontrivial element of Syl,(E* /F*) of order 2/,
meaning that z2 € F* \ (F¥)2.

Suppose [ = 1. Write x = a+¢b, a,b € F. Then 2abe € F implies
a =0 ie.

x € (eF*) < (g,,F™). (3)

Suppose Il > 2. We have o(x) = yx for some y € Syl,(E*),
se y = —1 implies [2F*| = 2 < 2.
o(y)yx and so

= 1. Then y # —1, becaus
Further r=0%(z) = J(yw)

oly) =y " (4)
Astr(z) = (1+y)z €F,
v € (1+y) 'F* = (1+oy)F* =0+y HF* (5)

At last we are ready to complete the proof that either (i) or (ii)
must be true. Let o(g,,) = —¢;,)}; then m > 2. By (3), we may take
[ > 2, in which event 4 < |y| < 2™~! by (4). Then (1 +y~1)F* C
(em)F* by (2), and by (5), (i) is proved.

If o(em) = €, then by (1), ((1+ ,)F*) C Syl,(E*/F*). Also
emF* € ((1 + £,)F*)?, since o fixes e,,1(1 + &,,,)%. Part (ii) now
follows from (2), (3), and (5). O

Corollary 3.9. If Syl,(E*) is quasicyclic then Syl,(E* /F*) is also
quasicyclic, and Syl,(E*/F*) = {{e,F*) | e € Syl,(E*)}.

Proof. For each e, € Syl,(EX), o(ex) = ¢! ie. a(eg) = —g; ' is
impossible. The corollary is then a consequence of Lemma 3.8 (ii)
and (2) in the proof of the lemma. O

Lemma 3.10. Let |E : F| = ¢ and E = F(a), where a? € F. Suppose
§ €F*, and E #F(e) if g=2. Then Syl (E*/F*) = (aF*).

Proof. If ¢ > 2, or ¢ = 2 and ¢ € F, then the lemma follows from [8,
Lemma 2].

Let ¢ = 2 and zF* € EX/F* be of order 2™, m > 1, so that
" —ozforbomeozEIFX\(]FX). If o = 474, ’yEIFX then
22" /24% is a square root of —1, contradicting E # F(e).

Suppose a ¢ —4(F*)*. The polynomial X* — « is F-irreducible,
so that if m > 2 then |E : F| > 4. Therefore m = 1, a = /3 for some
B € F* and z = y/a. For some x1, 2 € F we have /a = z1 +22/0.
Then o = 2% + B23 + 22172y/B implies 1 = 0 or 2o = 0; as the
latter is impossible we get z € (aF*15) as required. O
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Lemma 3.11. If ¢ > 2 or a ¢ —(F*)? then A, is the monomial
group (1o, F*1,); otherwise, A, is primitive.

Proof. In Lemma 3.10 put E = A, and a = I,. Then A, =
(Io,F*1,) unless ¢ = 2 and A, = F(e) ie. « € —(F*)2 If A_.2
were monomial then AQ_AY2 would be in F*14; however A_.2 /F*1,
contains the element (1 +~~11_,2) F*1, of order 4. O

We refer to the set of hypotheses ¢ = 2 and o € —(F*)? as case
(*). Lemma 3.8 and Corollary 3.9 give an explicit description of
the A, in case (). Actually, a group G(—~2,b) in this case is con-
jugate to some G(—1,0), since I_,2 is D(q,[F)-conjugate to vI_;
by Lemma 3.1. In all but case (x), |G(a,b)/F*1,| = ¢ (because
(db)? = det(b)1, and [I,,d] is scalar) and so G(«, b) is class 2 nilpo-
tent. The group G(—1,b) is locally nilpotent, and it is nilpotent only
if Syl,(AX,) is cyclic; then G(—1,b)/F*1, is a dihedral 2-group, and
G(—1,b) has nilpotency class log, [Syly(AX,)/F*1,].

Lemma 3.12. In case (x), G(a,b) is primitive. In all other cases,
G(a,b) is primitive if and only if det(b) ¢ ((—=1)7 ta, (FX)9) =
Det(Ay).

Proof. By Lemma 3.11, assume we are in a case other than (x).
Then [8, Lemma 1] yields that G(a,b) is primitive if and only if all
elements of G(a, b) of order ¢ are scalar. Suppose det(b) & Det(Ay)
and let h € G(a,b), |h| =q. If h ¢ A, i.e. h = dbby, by € A,, then
h? = det(bby)1, implies that det(b) € Det(A,). Thus h € A,, and
h is scalar by Lemma 3.11. Conversely, if det(b) € Det(A,) then for
some = € A,, dbx is a nonscalar element of G(«,b) of order q. O

Remark 3.13. Except in case (x), if F is finite then G(a,b) is mono-
mial.

Lemma 3.14. For i = 1, 2, let g; = db; where b; € A,. The
following statements are equivalent.
(i) g1 and g2 are GL(q,TF)-conjugate.
(ii) g1 and g2 are A,-conjugate.
(iii) det(bl) = det(bg).
Proof. See [2, Lemma 21]. O

Corollary 3.15. Apart from case (x), primitive groups G(«,by),
G(a, b2) are conjugate if and only if Det(G(ca, b)) = Det(G(e, ba))
and det(by) = det(bac) for some c € A,.
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Proof. Suppose tG(a,by)t~! = G(a, bg). Since t normalizes A, as a
consequence of Lemma 3.12, so ¢t € (d, AX). Then it can be checked
that tdb1t~! € dbyA,. The other direction is clear by Lemma, 3.14.

(]

Denote by G the set of all groups G(«,b) that are primitive, sub-
ject to the proviso that the only groups in case (*) included in G are
the G(—1,b).

Remark 3.16. Note that G is empty if F is algebraically closed, for
then G(a,b) is not defined. When F is finite, G is nonempty if and
only if ¢ = 2 and |F| = 3 mod 4.

Lemma 3.17. If nonempty, the subset G of G consisting of the
groups not in case (x) splits up into finitely many GL(q,F)-conjugacy
classes if and only if F* /(F*)9 is finite.

Proof. If G has only finitely many non-conjugate elements then
F*/(F*)? is finitely generated and so finite. Conversely, if F* /(IF*)?
is finite then there are only finitely many subsets of F* that are pos-
sibilities for Det(G(«, b)); hence the number of GL(g, F)-conjugacy
classes in G is finite by Corollary 3.15. O

The next theorem is our main classification result.

Theorem 3.18. Suppose £ € F*. A subgroup G of GL(q,F) is an
absolutely irreducible mazimal locally nilpotent subgroup of GL(g,TF)
if and only if G is conjugate to a group in N = {H1} UH UG, with
the following exceptions when q =2 and e € F :
(i) Hi is a proper subgroup of G(—1,1) € G;
(i) if « ¢ —(F*)? and either det(b) € —(F*)? or det(b) €
a(F*)2, then G(a,b) is conjugate to a proper subgroup of
G(—1,¢) where det(c) = a.

Proof. We have observed previously that all of the groups in N are
absolutely irreducible locally nilpotent. By Lemmas 3.2, 3.3, and
3.7, and remarks after Lemma 3.11, an absolutely irreducible locally
nilpotent subgroup of GL(q, F) is conjugate to a subgroup of a group
in AV. Therefore it remains to show that the H, and G(a, b) € G are
really maximal locally nilpotent, apart from the stated exceptions.
Let G be a maximal locally nilpotent subgroup of GL(g,F) con-
taining H,. If G is monomial then tGt~! = Hpg for some Hy and
t € GL(q,F). If tDt~! # D then tDt~' N D is scalar of index ¢ in D,
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so |Hg/F*1,| = ¢% but Hg/F*1, has cardinality at least ¢?**. Thus
tDt™! = D, and then ¢ = |Hg : D| > |tH,t™' : D| = |H, : D| = q.
Therefore tH,t™! = Hg i.e. H, = G. Now suppose G is primitive,
hence conjugate to some G(aq,b). In a case other than (%) we have
|G /F*1,| = ¢?, which is less than the cardinality of H, /F*1,. Hence
qg=2,e¢F* G is conjugate to G(—1,b), and H, = (d, I,,F*15).
Either I, or I_, = dI, is conjugate to nonscalar h € A_; such that
h? € F*1,. Now h has the form vI_;, v € FX, and by comparing
determinants we get o = +v2. Thus if H, € H then H, is maximal.
However Hy = (d,I_1,F*15) is a proper subgroup of G(—1,1).

Let G be a maximal locally nilpotent subgroup of GL(g,F) con-
taining G(a,b) € G. For some t € GL(q, F),

th_l = G(Oél,b1) €q.
Apart from when ¢ =2, ¢ € F*, and a; = —1, we have
|G(,0)/F*1y| = |G, b1) /F*1,| = |G/F*1,| = ¢*,

and thus G(a,b) = G. Suppose now that ¢ =2, ¢ F, and oy = —1.
If a € —(F*)? then G(a,b) is conjugate to some G(—1,bz), so that
G(a,b) = G. Therefore if G(a,b) is not maximal then o ¢ —(F*)2.
For the rest of the proof a ¢ —(F*)?2, which means that G(«,b) =
(I, db,JF*15). One of the following must occur: tI,t~' ¢ A_; and
tdbt=1 € A_q,or tl,t ' ¢ A_j and tdbt—t ¢ A_;.

In the first case, det(b) € —(F*)2. In the second case, the condi-
tion that [I,,db] is scalar forces tdbt=t € I_1tI,t71F*, so det(b) €
a(F*)2. Suppose det(b) € —(F*)2. Then det(db) = det(yI_;)
for some v € F*. Since also tr(db) = 0 = tr(yl_1), there exists
s € GL(2,FF) such that sdbs™! = yI_;.

Since I,dbI;' = —db, we have that sl,s~! normalizes A*.
Hence sl,s~! = de, where ¢ € A*; and det(c) = a. It follows
that G(a, b) is conjugate to a proper subgroup of G(—1,c). The rea-
soning that leads to this same conclusion in the case det(b) € a(F*)?
is entirely similar. O

With the next lemma we complete our classification of the irre-
ducible maximal locally nilpotent subgroups of GL(g, F).

Lemma 3.19. Suppose GL(q,F) has irreducible abelian subgroups,
and let H be an irreducible mazimal abelian subgroup of GL(q,F).
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(i) If € € F* then H is a mazimal locally nilpotent subgroup of
GL(q,F), and moreover any mazimal locally nilpotent sub-
group of GL(q,F) is abelian.

(ii) Let & € F*. Then H is a mazimal locally nilpotent subgroup
of GL(¢,F) unless q=2 and e €F. If g=2 and e € F then
H is a mazimal locally nilpotent subgroup of GL(q,F) if and
only if H/F*1y is not a 2-group.

Proof. so that if H is not maximal locally nilpotent then ¢ = 2,
e¢F and H= A, <G(q, ) € G, by Lemma 3.11. O

One situation in which all irreducible maximal locally nilpotent
subgroups of GL(¢,F) are nonabelian is when ¢ = 2 and |F| is a
Mersenne prime.
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