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A Characterisation of Injectors of

Finite Soluble Groups

REX DARK

We aim to describe the result indicated in the title, which was ob-
tained in collaboration with Arnold Feldman. Most of the article
is devoted to a description of part of the theory of injectors, with
references to the book by Doerk and Hawkes [2], which gives a com-
prehensive exposition of the topic (though they arrange the proofs
in an order different from ours).

All the groups considered will be assumed finite, and after this
paragraph they will also be soluble. One of the most fundamental
and useful results about finite groups G is Sylow’s theorem, which
given a prime number p, guarantees the existence and conjugacy
of subgroups P (called Sylow p-subgroups) such that the order |P |
is a power of p but the index |G : P | is not divisible by p. It is
therefore interesting to investigate situations in which this result
can, or cannot, be generalised. For example, instead of a single
prime number p, consider a set π of prime numbers, and recall that
P is a π-group if all the prime factors of |P | are in π. Then a Hall
π-subgroup of G is a π-subgroup P such that |G : P | is not divisible
by any prime number in π. We also recall that a finite group G
is soluble if every non-trivial quotient group G/K has a non-trivial
abelian normal subgroup A/K. It was proved by P. Hall [2, I (3.3)]
that Hall π-subgroups exist and are conjugate in every finite soluble
group. He also showed [2, I (3.6)] that a finite group G is soluble if
and only if it has Hall π-subgroups for all sets of primes π, so giving
a remarkable connection between solubility (involving abelian factor
groups A/K) and the existence of subgroups with given orders.

The theory of Hall subgroups can be used to illuminate the struc-
ture of soluble groups, and it was generalised by W. Gaschütz [2,
III §3] to prove the existence and conjugacy of covering subgroups
and projectors. We shall not define these concepts, but we note that
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they helped to inspire the ‘dual’ theory of Fischer subgroups and in-
jectors, which is discussed below. However we shall briefly describe
the striking special case of Carter subgroups, which were discovered
before the general theory was developed. We recall that a finite
group G is nilpotent if every non-trivial quotient group G/K has a
non-trivial centre Z/K. It was proved by W. Burnside [2, A (8.3)]
that every finite nilpotent group is the direct product of its Sylow
subgroups, which means that for each prime number p, the Sylow
p-subgroup is normal and unique. As an example of Hall’s theorem,
we note that a nilpotent group has a unique Hall π-subgroup, got
by taking the direct product of the Sylow p-subgroups with p ∈ π.
Moreover a finite group is nilpotent if and only if all its Sylow sub-
groups are normal, so giving another remarkable connection between
nilpotency (involving central factor groups Z/K) and the existence
of normal subgroups with given orders. Finally we recall that a sub-
group H ≤ G is self-normalising if there is no subgroup N 6= H
such that H C N ≤ G, and we remark that a nilpotent group has
no proper self-normalising subgroups.

Definition. A Carter subgroup is a subgroup which is nilpotent
and self-normalising (and must therefore be a maximal nilpotent
subgroup, because it cannot be contained in a bigger nilpotent sub-
group, by the last remark).

Theorem. (Carter [2, III (4.6)]) Carter subgroups exist and are
conjugate in every finite soluble group.

If P is a Hall π-subgroup of G, and N is another π-subgroup such
that P normalises N , then PN is a subgroup of G, and its order is

|PN | = |PN/N | · |N | = |P/P ∩N | · |N |,
which has all its prime factors in π; thus PN is a π-subgroup. But
the Hall subgroup P is a maximal π-subgroup, and therefore N ≤ P .
This proves a Hall π-subgroup contains every π-subgroup which it
normalises, and it can be shown that this property characterises Hall
π-subgroups. The following definition and theorem are suggested by
this characterisation.

Definition. A nilpotent Fischer subgroup of G is a nilpotent sub-
group H which contains every nilpotent subgroup of G which it nor-
malises (and must therefore be a maximal nilpotent subgroup).
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Theorem. (Fischer [2, VIII (4.8)]) Nilpotent Fischer subgroups
exist and are conjugate in every finite soluble group.

Thus in every finite soluble group, the Carter subgroups and the
nilpotent Fischer subgroups form conjugacy classes of maximal nilpo-
tent subgroups. For example, in the symmetric group S3, the Sylow
2-subgroups are the Carter subgroups, and the (normal) Sylow 3-
subgroup is the unique nilpotent Fischer subgroup. On the other
hand, in S4 the Carter subgroups and the nilpotent Fischer sub-
groups are both the same as the Sylow 2-subgroups. In bigger sol-
uble examples, we can get subgroups different from the Sylow (or
Hall) subgroups.

Now if P is a Hall π-subgroup of G and P ≤ K ≤ G, then P is
clearly a Hall π-subgroup of K; this property is called persistence.
If further g ∈ G then the conjugate P g is also a Hall π-subgroup
of G, and the persistence implies that P and P g are both Hall π-
subgroups of the subgroup 〈P, P g〉 which they generate (and which
we call their join). Finally it follows from the conjugacy property
that P g = Ph for some element h ∈ 〈P, P g〉. Thus Hall π-subgroups
satisfy the following condition.

Definition. A subgroup H of G is pronormal if any 2 conjugates of
H are conjugate in their join.

The argument used in the last paragraph proves that conjugacy
plus persistence implies pronormality. But Carter subgroups and
nilpotent Fischer subgroups both form conjugacy classes. We can
also show that they are both persistent: for when H ≤ K ≤ G, the
definitions imply that if H is a Carter subgroup of G then H is self-
normalising in K, while if H is a nilpotent Fischer subgroup of G,
then H contains every nilpotent subgroup of K which it normalises.
Thus the following result is a consequence of the above theorems.

Corollary. The Carter subgroups and nilpotent Fischer subgroups
of a finite soluble group are both pronormal.

We next define the injectors, which generalise a different property
of Hall subgroups. If P is a Hall π-subgroup of G and X C G, then
P ∩X ≤ P so P ∩X is a π-subgroup, but |X : P ∩X| = |PX : P | is a
factor of |G : P |, so |X : P ∩X| is not divisible by any prime number
in π. This proves that P ∩ X is a Hall π-subgoup of X. More
generally, we say that X is a subnormal subgroup, and we write
X sn G, if there is a chain X = Xk C . . . C X1 C X0 = G. Then
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the above argument can be used inductively to show that for each
of the subgroups Xi in the chain, P ∩Xi is a Hall π-subgroup of Xi.
We deduce that if P is a Hall π-subgroup of G and X sn G, then
P ∩X is a Hall π-subgroup of X. This property, which can be shown
to characterise Hall subgroups, suggests the following definition and
theorem.

Definition. A nilpotent injector of G is a subgroup H such that
H ∩X is a maximal nilpotent subgroup of X whenever X sn G (and
in particular H = H ∩G is a maximal nilpotent subgroup of G).

Theorem. (Fischer [2, VIII (4.8)]) In a finite soluble group, the
nilpotent injectors are the same as the nilpotent Fischer subgroups.

This means that if H is a nilpotent injector, then it enjoys the
same properties as a nilpotent Fischer subgroup. If also X sn G
and Y sn X, then it follows from the definition of subnormality that
Y sn G, and so (H∩X)∩Y = H∩Y is a maximal nilpotent subgroup
of Y . This shows that H ∩ X is a nilpotent injector of X, and we
get the following result.

Corollary. Nilpotent injectors exist and are conjugate in every fi-
nite soluble group; they are also persistent, and therefore pronormal.
Moreover if H is a nilpotent injector of G and X sn G, then H ∩X
is a nilpotent injector of X.

To give the definition of injectors, we must replace the nilpotent
subgroups of G by a more general set, as in the definition below.
When F is a set of subgroups of G, then the members of F will be
called F-subgroups, and if X ≤ G then FX will denote the set of
F-subgroups which are contained in X.

Definition. A Fitting set in G is a set F of subgroups which satisfies
the following 3 conditions.

(i) Whenever F ∈ F and g ∈ G, then F g ∈ F (conjugacy clo-
sure).

(ii) Whenever F ∈ F and E C F , then E ∈ F (normal subgroup
closure).

(iii) Whenever E and F are F-subgroups which normalise each
other, then EF ∈ F (normal product closure).

An F-injector of G is a subgroup H such that H ∩X is a maximal
F-subgroup of X whenever X sn G. As before it follows immediately
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that H is a maximal F-subgroup of G, and H ∩X is an FX -injector
of X.

Theorem. (Fischer, Gaschütz & Hartley [2, VIII (2.9) &
(2.13)]) If F is a Fitting set in a finite soluble group G, then F-
injectors exist and are conjugate in G; they are also persistent, and
therefore pronormal. Moreover if H is an F-injector of G and X sn
G, then H ∩X is an FX-injector of X.

It is easy to check that the π-subgroups of G form a Fitting set,
so this result generalises the properties of Hall subgroups. Moreover
the nilpotent subgroups of G also form a Fitting set, so we have a
generalisation of the above Corollary. We note that Doerk & Hawkes
[2, p. 536] speak of the proof as ‘short and elegant’, so the generali-
sation is satisfying and worthwhile. [We remark that in order to get
a similar generalisation of nilpotent Fischer subgroups we must use
the Fischer sets, which may form a proper subfamily of the family
of Fitting sets.]

As our title suggests, we wish to characterise the injectors of a
given finite soluble group G; by this we mean the subgroups H such
that there is a Fitting set F for which H is an F-injector of G.

Question. (Doerk & Hawkes [2, p. 553]) Which subgroups of a
given finite soluble group are injectors?

As well as posing this question, Doerk and Hawkes gave a partial
answer, which we now describe. It is plausible, and also true, that if
H is an injector, then it should be an F-injector where F is the set of
conjugates of subnormal subgroups of H. Now this set F is clearly
closed under conjugacy and normal subgroups, so F is a Fitting set
if and only if it is closed under normal products. In this way, we get
the following result.

Theorem. (Doerk & Hawkes [2, VIII (3.3)]) If G is a finite sol-
uble group and H ≤ G, then the following statements are equivalent.

(i) The subgroup H is an injector of G.
(ii) The set {Sg : S sn H, g ∈ G} is a Fitting set in G.
(iii) Whenever S and T are subnormal subgroups of H and g ∈ G,

such that S and T g normalise each other, then ST g is a
subnormal subgroup of some conjugate of H.

This may be regarded as analogous to the original definition of
F-injectors. But when F is the set of nilpotent subgroups, then we
saw above that nilpotent injectors can also be defined as nilpotent
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Fischer subgroups, so making manifest their persistence. Moreover
injectors are indeed persistent, by the theorem of Fischer, Gaschütz
and Hartley, so one could hope for a characterisation of injectors
analogous to the definition of nilpotent Fischer subgroups. In asking
the above Question, Doerk and Hawkes specified that the charac-
terisation should be ‘without recourse to the concept of a Fitting
set’, and their discussion indicates that they had in mind a condi-
tion involving pronormality, or something similar. Before suggesting
an answer to the question, we record some properties of injectors; it
is convenient to write Inj G for the set of injectors of G. Then the
first 2 statements of the next result are corollaries of the theorem
of Fischer, Gaschütz and Hartley, while the statement (iii) can be
deduced from the above result of Doerk and Hawkes.

Proposition. (i) If H ∈ InjG and H ≤ K ≤ G, then H ∈ InjK
(persistence).

(ii) If H ∈ InjG and X sn G, then H ∩X ∈ InjX.
(iii) Every normal subgroup of G is an injector.
(iv) [2, VIII (3.5)] Every maximal subgroup of G is an injector.
(v) [2, VIII (2.15) & (2.17)] If H ∈ Inj G and N C G, then

HN ∈ InjG.
(vi) [2, VIII (2.15) & (2.17)] If N C G then

InjG/N = {H/N : N ≤ H ∈ InjG}.
We recall that a chief factor of G is a factor M/N such that N C G

and M/N is a minimal normal subgroup of G/N . Our answer to the
above Question (proved in collaboration with Arnold Feldman) is
given by the following result.

Theorem. (Dark & Feldman [1]) If G is a finite soluble group
and H ≤ G, then the following statements are equivalent.

(i) The subgroup H is an injector of G.
(ii) Whenever g ∈ G and X ≤ G, with X sn 〈H,X〉 and X sn

〈Hg, X〉, then H ∩ X and Hg ∩ X are conjugate in 〈H ∩
X, Hg ∩X〉.

(iii) Whenever M/N is a chief factor of G, and M = M/N ,
H = HN/N , then
either H ≥ M ,
or H ∩ M = 1, and whenever g ∈ G and S sn H, with

S
g ≤ H M and S1 = H ∩S

g
M sn H, then S1 and S

g

are conjugate in 〈S1, S
g〉.
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The condition (ii) is a strengthened version of pronormality, and
we can prove as follows that (i) implies (ii). If F is a Fitting set such
that H is an F-injector of G, and if X sn 〈H,X〉 = K1, then H is an
FK1 -injector of K1 by the persistence property, so it follows from the
definition of F-injectors that H∩X is an FX -injector of X. Similarly
if X sn 〈Hg, X〉 = K2, then Hg is an FK2 -injector of K2, and hence
Hg ∩X is an FX -injector of X. Thus H ∩X and Hg ∩X are both
FX -injectors of X, so it follows from the conjugacy and pronormality
of injectors that they are conjugate in their join, as required in (ii).

The condition (iii) is technical and we shall not discuss it in detail.
However we can see as follows that if H ∩M = 1, then the second
alternative in (iii) follows from (ii). If g ∈ G and S sn H, with
S

g ≤ H M and S1 = H ∩ S
g
M sn H, then we take X = S

g
M , and

we note that

X = H M ∩X = (H ∩X)M = S1M.

Now S1 sn H and therefore X = S1M sn H M = 〈H, X〉, and
similarly S

g
sn H

g
and therefore X = S

g
M sn H

g
M = 〈Hg

, X〉.
It follows that there is a subgroup X such that X = X/N , with
X sn 〈H, X〉 and X sn 〈Hg, X〉. We can then deduce from (ii) that
H ∩ X and Hg ∩ X are conjugate in their join, which implies that
the images H ∩X and H

g ∩X are also conjugate in their join. But
because H ∩M = 1, we get

H ∩X = H ∩ S
g
M = S1 and H

g ∩X = H
g ∩ (S M)g = S

g
,

so we have shown that S1 and S
g

are conjugate in their join, as
required in (iii).

The deduction of (i) from (iii) is more technical. It is done by
taking a minimal normal subgroup M of G and showing that we can
assume inductively that HM ∈ InjG. It is then possible to combine
(iii) with the above Theorem of Doerk and Hawkes to prove that H
is an injector.
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