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Weyl type Theorems and the
Approximate Point Spectrum

M. LAHROUZ AND M. ZOHRY

ABSTRACT. It is shown that, if an operator T' on a complex
Banach space or its adjoint 7 has the single-valued extension
property, then the generalized a-Browder’s theorem holds for
f(T) for every complex-valued analytic function f on a neigh-
borhood of the spectrum of T'. We also study the generalized
a-Weyl!’s theorem in connection with the single-valued exten-
sion property. Finally, we examine the stability of the gen-
eralized a-Wey!’s theorem under commutative perturbations
by finite rank operators.

1. INTRODUCTION

Throughout this paper X will denote an infinite-dimensional com-
plex Banach space and £(X) the unital (with unit the identity oper-
ator, I, on X) Banach algebra of all bounded linear operators acting
on X. For an operator T' € L(X), let T* denote its adjoint, N(T')
its kernel, R(T) its range, o(T') its spectrum, o, (7T) its approximate
point spectrum, o4, (T) its surjective spectrum and o, (7") its point
spectrum. For a subset K of C we write iso(K) for its isolated points
and acc(K) for its accumulation points.

From [14] we recall that for T' € £(X), the ascent a(T) and the
descent d(T') are given by

a(T) = inf{n > 0: N(T") = N(T"*1)}

and
d(T) = inf{n > 0: R(T™) = R(T""1)},
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respectively; the infimum over the empty set is taken to be oco. If
the ascent and the descent of T' € L(X) are both finite then a(T") =
d(T)=p, X = N(T?) ® R(T?) and R(TP?) is closed.

For T € L(X) we will denote by «(T) the nullity of T and by
B(T) the defect of T'. If the range R(T') of T is closed and o(T) < oo
(resp., B(T) < o) then T is called an upper semi-Fredholm (resp.,
a lower semi-Fredholm) operator. If T € L£(X) is either upper or
lower semi-Fredholm, then T is called a semi-Fredholm operator,
and the index of T is defined by ind(T) = «a(T) — B(T). If both
a(T) and B(T) are finite then T is called a Fredholm operator. For
a T-invariant closed linear subspace Y of X, let T | Y denote the
operator given by the restriction of 7' to Y.

For a bounded linear operator T" and for each integer n, define
T,, to be the restriction of T' to R(T™) viewed as a map from R(T™)
into itself. If for some integer n the range space R(T™) is closed and
T, =T | R(T™) is an upper (resp., lower) semi-Fredholm operator
then T is called an upper (resp., lower) semi-B-Fredholm operator.
Moreover if T, is a Fredholm operator, then T is called a B-Fredholm
operator. In this situation, from [1, Proposition 2.1], T;, is a Fred-
holm operator and ind(7},) = ind(7},) for each m > n which permits
to define the index of a B-Fredholm operator T' as the index of the
Fredholm operator T,, where n is any integer such that R(T™) is
closed and T, is a Fredholm operator. Let BF(X) be the class of all
B-Fredholm operators and pppr(T) = {A € C: T — A € BF(X)}
be the B-Fredholm resolvent of T and let ogr(T) = C\ ppr(T) the
B-Fredholm spectrum of T. The class BF(X) has been studied by
M. Berkani (see [1, Theorem 2.7]), where it was shown that T' € £(X)
is a B-Fredholm operator if and only if T' = Ty & T} where 1j is a
Fredholm operator and T; is a nilpotent one. He also proved that
opr(T) is a closed subset of C and showed that the spectral map-
ping theorem holds for opp(T), that is, f(opr(T)) = opr(f(T))
for any complex-valued analytic function on a neighborhood of the
spectrum o (7).

An operator T' € L£(X) is called a Weyl operator if it is Fredholm
of index 0, a Browder operator if it is Fredholm of finite ascent and
descent and a B-Weyl operator if it is B-Fredholm of index 0. The
Weyl spectrum, the Browder spectrum and the B-Weyl spectrum of
T are defined by

ow(T)={NeC: T — A is not Weyl},
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op(T) ={A € C: T — Al is not Browder},
opw(T) ={\ € C: T — X is not B-Weyl},

respectively. We will denote by E(T') (resp. E%(T)) the set of all
eigenvalues of T which are isolated in o(T') (resp., 0,(T)) and by
Eo(T) (resp. E§(T)) the set of all eigenvalues of T' of finite multi-
plicity which are isolated in o(T) (resp., o4(T)).

Let SF(X) be the class of all semi-Fredholm operators on X,
SF(X) the class of all upper semi-Fredholm operators on X and
SF,(X) the class of all T' € SF_(X) such that ind(T) < 0. For
T e L(X), let

={\eC: T -\ ¢SF(X)},
osp-(T) ={A€C: T =\ ¢ SFL(X)},

psr(T) = C\ osp(T) and Psr; (T)=C\ IsF7 (T).

Similarly, let SBF(X) be the class of all semi-B-Fredholm oper-
ators on X, SBF(X) the class of all upper semi-B-Fredholm oper-
ators on X and SBF7 (X) the class of all T' € SBF | (X) such that
1nd(T) <0. For T € E(X), the sets O’SBF(T)7 pSBF(T), OsBr- (T)
and pgp Py (T') are defined in an obvious way. B

An operator T € £(X) is called semi-regular if R(T') is closed and
N(T) C R(T™) for every n € N. The semi-regular resolvent set is
defined by s-reg(T) = {A € C: T — Al is semi- regular}, we note
that s-reg(T") = s-reg(T™) is an open subset of C. As a consequence
of [8, Théoreme 2.7], we obtain the following result.

O'SF(T

)
)

Proposition 1.1. Let T € L(X).
(i) If T has the SVEP then s-reg(T) = po(T) = C\ 04(T).
(ii) If T* has the SVEP then s-reg(T) = psu(T) = C\ 05 (T).

We recall that an operator T' € £(X) has the single-valued exten-
sion property, abbreviated SVEP, if, for every open set U C C, the
only analytic solution f : U — X of the equation (T'—\I)f(A\) =0
for all A € U is the zero function on U. We will denote by H(o(T))
the set of all complex-valued functions which are analytic on an open
set containing o (T).

The remainder of the following deals with Riesz points and left
poles. A complex number A is said to be Riesz point of T' € L(X) if
A € iso(o(T)) and the corresponding spectral projection is of finite-
dimensional range. The set of all Riesz points of T will be denoted by
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IIo(T). It is known that if T' € L(X) and A € o(T), then A € IIy(T)
if and only if T'— AI is Fredholm of finite ascent and descent (see [3]).
Consequently op,(T) = o(T)\IIo(T). We will denote by II(T) the set
of all poles of the resolvent of T. A complex number A € 0,(T) is
said to be a left pole of T if a(T—\I) < oo and R((T — AI)*T 2D+

is closed, and that it is a left pole of T of finite rank if it is a left
pole of T and a(T — M) < oo. We will denote by II%(T") the set of
all left poles of T', and by IIg(T) the set of all left poles of T' of finite
rank. If A € I1*(T'), then it is easily seen that T'— AI is an operator
of topological uniform descent, therefore from [4], it follows that A
is isolated in o, (T) [2, Theorem 2.5]. Let T € £L(X) and A € C be
isolated in 0, (T); then A € TI*(T') if and only if A ¢ Tspr: (T), and
A € II(T) if and only if A ¢ Tsp (T).
For T € L(X) we will say that:
(i) T satisfies Weyl’s theorem if ¢, (T") = o(T) \ Eo(T);
(ii) T satisfies generalized Weyl’s theorem if
opw(T) = o(T) \ E(T);
(iii) T satisfies a-Weyl’s theorem if
OsF; (T) = 0a(T) \ EG(T);
(iv) T satisfies generalized a-Weyl’s theorem if
9sBF; (T) = 0a(T) \ E“(T);
(v) T satisfies Browder’s theorem if
au(T) = o(T) \ Lo(T);
(vi) T satisfies generalized Browder’s theorem if
opw(T) = o(T) \ T(T);
(vil) T satisfies a-Browder’s theorem if
05— (T) = (1) \ TI(T);
(viii) T satisfies generalized a-Browder’s theorem if

ospp- (T) = 0a(T) \TI*(T).

Before proving our main result we deal with some preliminary
results.
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Proposition 1.2. Let T € L(X).
(i) If T has the SVEP then ind(T — X) < 0 for every \ €

pspr(T).
(ii) If T* has the SVEP then ind(T — XI) > 0 for every A €

psBr(T).

Proof. (i) Let A € pspr(T), then there exists an integer p such that
(T | R(T = AIP) = A = (T — M) | R(T — AP is semi-Fredholm.
From the Kato decomposition, there exists § > 0 such that

{ANeC: 0<|u—Al <6} C sreg(T | R(T — \I)P).
Since T has the SVEP, Proposition 1.1 implies that

steg(T | R(T — MN)P) = po(T | R(T — \I)?).

Therefore, N((T' | R(T — A)?) — pI) = 0 and so ind(T — pl) =
ind((T | R(T — AI)?» — uI) <0, holding for 0 < |u — A| < 4. Thus,
by the continuity of the index we obtain ind(7"— A) < 0.

(ii) Follows by similar reasoning, and may also be derived from the
first assertion and the fact that ind(7%) = —ind(T). O

Corollary 1.3. Let T be a bounded linear operator on X. If T* has
the SVEP, then Tsk: (T) = ow(T).

Proof. We have only to show that ¢, (T) C Tsp (T"), since the other
inclusion is always verified. Let A be given in pg P (T), then T—\I is

semi-Fredholm and ind(7T'— AI) < 0. Since T™* has the SVEP, Propo-
sition 1.2 implies that ind(7" — AI) > 0, and hence ind(T — AI) = 0,
which proves that T'— AI is Fredholm of index 0 and A € p,(T). O

The following results relate the generalized a-Weyl’s theorem and
the generalized a-Browder’s theorem to the single-valued extension
property. As motivation for the proofs, we use some ideas in [10, 12].

Proposition 1.4. Let T be a bounded linear operator on X.

(i) If T* has the SVEP, then T satisfies generalized a-Weyl’s
theorem if and only if it satisfies generalized Weyl’s theorem.
(ii) If T has the SVEP, then T* satisfies generalized a-Weyl’s
theorem if and only if it satisfies generalized Weyl’s theorem.

Proof. (i) Since T* has the SVEP, [6, Proposition 1.3.2] implies that

o(T) = 04(T) and consequently E*(T") = E(T). Suppose that T
satisfies generalized Weyl’s theorem, then opw (T) = o(T)\ E(T) =



46 M. LAHROUZ AND M. ZOHRY

0o (T)\ E*(T). Let X ¢ TsBr; (T') be given, then T' — A\ is semi-
B-Fredholm and ind(T — M) < 0. Therefore, by Proposition 1.2, it

follows that ind(T'— AI) = 0 and consequently T'— AI is B-Fredholm
of index 0. Hence A ¢ opw (T) and opw(T) C Tspr: (T). Since

the opposite inclusion is clear, we conclude that indeed o gy - (T) =
+

opw(T) = 04(T) \ E*(T) which proves the equivalence between

generalized Weyl’s theorem and generalized a-Weyl’s theorem for T'.

(ii) Similar to the proof of the first assertion. O

Our main result reads now as follows.

Theorem 1.5. Let T be a bounded linear operator on X. If T or its
adjoint T™ satisfies the SVEP, then generalized a-Browder’s theorem
holds for f(T) for every f € H(a(T)).

Proof. Let us establish that generalized a-Browder’s theorem holds
for T. If T* has the SVEP, then by [12, Theorem 2.4], it follows
that a-Browder’s theorem holds for 7', and consequently Browder’s
theorem holds for 7'. Thus Tsp (T) = 0, (T) \IIZ(T) and op(T) =
o(T) \ Hp(T). Moreover, since 0,(T) = o(T), IIY(T) = Io(T), it
follows that Tsp (T) = o(T) \ IIy(T). Because Tsp (T) = 0, (1),
see Corollary 1.3, it follows that Tsr- (T)=c(T)\Ip(T) = 0(T) =
ou(T). Let A € TI*(T) be given; then A is isolated in o, (T) and by
[2, Theorem 2.8], it follows that A ¢ ogp Py (T) which shows that
II°(T) C 0,(T) \ TsBF; (T). Conversely if A € 0,(T) \ TsBF; (T),
then T'— \I is semi-B-Fredholm and ind(T'— AI) < 0. Then, since T*
has the SVEP, Proposition 1.2 gives ind(7'— AI) = 0. Therefore T'—
Al is Fredholm and A ¢ ¢, (T) = 0,(T') which shows that A € Ty (T).
Consequently A is isolated in o,(T) and hence A € II*(T). Thus
oa(T) \ Tspr (T') ¢ II*(T) and generalized a-Browder’s theorem

holds for T. Now if T has the SVEP, let A € 0,(T) \ TsBr; (T);
s Pspr (T), then there exists an integer p such that R(T — \I)”
is closed and (T' | R(T — A\[)?) =X = (T — AXI) | R(T — AI)? is a
semi-Fredholm operator. Then, by the Kato decomposition, there
exists § > 0 for which

{peC: 0<|u—A <d}
C sreg(T | R(T = A)P) N psp(T | R(T — AI)P).
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Since T has the SVEP, so does T' | R(T' — A )?. Therefore
s1eg(T | R(T = AI)?) = pu(T | R(T = AI)?)
and

{peC: 0< |u—Al <8}
C pa(T | R(T = ADP) N psp(T | R(T — N\)?P),

hence A € iso(04(T)Npspr(T)). By [2, Theorem 2.8], it follows that
A €Il (T) and Ua(T)\JSBF:r (T') c II*(T). Since the other inclusion

is clear we get 0,(T) \ o —(T') = lI4(T) and thus generalized a-
SBF

Browder’s theorem holds for T. Finally, if f € H(o(T)), by [6,
Theorem 3.3.6] f(T) or f(T*) satisfies the SVEP and the above
argument implies that generalized a-Browder’s theorem holds for
f(D). O

From Theorem 1.5 we obtain the following useful consequence.

Corollary 1.6. Let T be a bounded linear operator on X. If T or
T* has the SVEP then generalized a-Weyl’s theorem holds for T if
and only if E*(T) =I1*(T).

Proof. We only have to use the fact that an operator T satisfying
generalized a-Browder’s theorem, satisfies generalized a-Weyl’s the-
orem if and only if T1*(T") = E*(T). O

In [7] the class of the operators T' € L(X) for which K(T') = {0}
was studied and it was shown that for such operators, the spectrum
is connected and the single-valued extension property is satisfied.

Proposition 1.7. Let T € L(X). If there exists a complex number
A for which K(T — M) = {0} then f(T) satisfies generalized a-
Browder’s theorem for every f € H(o(T)). Moreover, if in addition,
N(T — M) = {0}, then generalized a-Weyl’s theorem holds for f(T)

for any f € H(o(T)).

Proof. Let f be a non-constant complex-valued analytic function
on an open neighborhood of o(7T). Since T has the SVEP so does
f(T) and by Theorem 1.5 generalized a-Browder’s theorem holds for
f(T). Now assume that N(T' — M) = {0} and 8 € o(f(T)) then
f(z) = BI = P(z)g(z) where g is complex-valued analytic function
on a neighborhood of o(T) without any zeros in o(T) while P is a
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complex polynomial of the form P(z) = [[;_, (z — X;)"* with distinct
roots A1, ..., A, € o(T). Since g(T') is invertible, we have

N(f(T) = BI) = N(P(T)) = &y N(T — \I)™.

On the other hand, [7, Proposition 2.1] ensures that o,(T) C {\}
and since T — A is injective, we deduce that o,(T) = 0. Conse-
quently N(f(T) — BI) = {0} which proves that o,(f(T)) = 0. Thus
E*(f(T)) =1I%(f(T)) = 0 and generalized a-Weyl’s theorem holds
for f(T). O

Proposition 1.8. Let T be a bounded linear operator on X satisfy-
ing the SVEP. If T — A\l has finite descent at every A € E*(T), then
T obeys generalized a- Weyl’s theorem.

Proof. Let A € E“(T), then p = d(T — M) < oo and since T has the
SVEP it follows (see [13, Proposition 3]) that a(T — A\I) = d(T —
AI) = p and by [5, Satz 101.2], A is a pole of the resolvent of T" or
order p, consequently A is an isolated point in o,(7). Then X =
K(T — M) @ Ho(T — M), with K(T — M) = R(T — AI)? is closed,
therefore A € I1%(T). O

Now let us consider the class P(X) defined as those operators
T € L(X) for which for every complex number X there exists a
positive integer py such that Ho(T — ) = N(T — X )**. This class
has been introduced and studied in [10, 11], it was shown that it
contains every M-hyponormal, log-hyponormal, p-hyponormal and
totally paranormal operator. It was also established that the SVEP
is shared by all the operators lying in P(X) and generalized Weyl’s
theorem holds for f(T') whenever T' € P(X) and f € H(o(T)).

Proposition 1.9. Let T € P(X) be such that o(T) = 04(T) then
generalized a-Weyl’s theorem holds for f(T') for every f € H(o(T)).

Proof. By the spectral mapping theorem for the spectrum and the
approximate point spectrum, and the fact that f(T) € P(X), it suf-
fices to establish generalized a-Weyl’s theorem for T'. Since o(T) =
04(T) it follows that

E*(T) = 0,(T) Niso(04(T)) = 0,(T) Niso(c(T)) = E(T).

Let A € E“(T) = E(T), then X = Ho(T — X)) & K(T — M) and
K(T — M) is closed. Since T' € P(X), let py be a positive integer
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for which Ho(T — A\I) = N(T — XI)"*, therefore
R(T — AD)P = (T — AP (Ho(T — AI) @ K(T — \I)
— (T = AP (K(T — AI)
— K(T = \I),

thus R(T — AI)"* = R(T — AXI)™ " which by Proposition 1.8 shows
that the operator T obeys generalized a-Weyl’s theorem. O

2. GENERALIZED A-WEYL'S THEOREM AND PERTURBATION

In general, we cannot expect that generalized a-Browder’s theorem
necessarily holds under finite rank perturbations. However, it does
hold under commutative ones, as the following result shows.

Theorem 2.1. [2, Theorem 3.2] If T € L(X) is an operator satisfy-
ing generalized a-Browder’s theorem and F is a finite rank operator
such that TF = FT then T + F satisfies generalized a-Browder’s
theorem.

Lemma 2.2. Let T € L(X) be an injective operator. If F is a finite
rank operator on X such that FT =TF, then R(F) C R(T).

Proof. Since F is a finite rank operator on X there exist two systems:

a system of linearly independent vectors e; for ¢ = 1,...,n and a
system of non-zero bounded linear functionals f; for i =1,...,n on
X such that

F(z) = Z fi(z)e; (€ X).

Moreover, we have

> fi@)Te; =TF(x) = FT(z) = Y _ fi(Tz)e;  (z € X).

i=1 i=1
On the other hand, since T is injective, it is clear that the vec-
tors Te; (1 < i < n) are linearly independent. Hence F(z) €
Vect({e1, -+ ,en}) = Vect({Tey, -+ ,Te,}) for all x € X. Thus
R(F) C R(T), as desired. O

Lemma 2.3. LetT € L(X). If F is a finite rank operator on X such
that FT = TF then A € acc(o4(T)) if and only if A € acc(o,(T+F)).
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Proof. Let A ¢ acc(o4(T)) be given, there exists § > 0 such that
if 0 < |p—Al <6 then o(T — ulI) = 0 and R(T — ul) is closed.
This gives us a bounded linear operator S : R(T — ul) — X such
that S(T — uI) = I and (T — pI)S = I | R(T — pI). To see that
A ¢ acc(oo.(T + F)), suppose that p € 0,(T + F), and choose unit
vectors ¥, € X such that (T'+F—pul)z, — 0asn — oo. Let (z,x)),
be a subsequence such that Fu,) — = € R(F) as k — oo, and
since this level of generality is not needed here, we may assume that
Fz, — x as n — oo. Therefore S(T'+ F — pul)x,, = z,, + SFz,, — 0
as n — 00, and since lim SFx, = Sz exists, it follows that lim z,, =
—Sz and consequently x # 0. Next observe that x = lim Fz,, =
—FSz € R(F), then since Lemma 2.2 asserts that R(F) C R(T),
we obtain (T — pl)x = —(T — pl)FSx = —F(T — pl)Sx = —Fx,
hence (T'+ F — pl)x = 0. Thus p € 0,(T + F). Finally, because
eigenvectors corresponding to distinct eigenvalues of an operator are
linearly independent, and since all the eigenvectors of T'+ F' belong
to the finite dimensional subspace R(F'), it follows that o,(T + F)
may contain only finitely many points p such that 0 < |u — A| < 6,
and consequently A ¢ acc(o,(T + F')). The opposite inclusion is
similarly obtained. ([l

An operator T € L(X) is said to be approximate-isoloid if any
isolated point of o,(T) is an eigenvalue of T'.

Theorem 2.4. Let T be an approzimate-isoloid operator on X that
satisfies generalized a-Weyl’s theorem. If F' is an operator of finite
rank on X such that FT = TF then T + F satisfies generalized
a-Weyl’s theorem.

Proof. Since by Theorem 2.1 generalized a-Browder’s theorem holds
for T + F it suffices, from Corollary 1.5, to prove that E4(T' + F) =
*(T + F). Let A € E*(T + F) be given, then A € iso(cq(T + F))
and A € o,(T + F), hence A ¢ acc(o,(T + F) and by Lemma 2.3
A ¢ acc(oq(T). We distinguish two cases. Firstly if A ¢ o,(T),
T — A is injective with a closed range and T'— Al is an upper semi-
Fredholm operator on X such that ind(T' — AI) < 0, and since F is
a finite rank operator on X, it follows that T+ F' — Al is an upper
semi-Fredholm operator and ind(T + F' — AI) = ind(T' — XI) < 0.
Then A ¢ Tsp (T+ F) and A € TI*(T + F). On the other hand if

A € 04(T), then A € iso(04(T")) and since T is approximate-isoloid
A € 0,(T). Thus X € iso(o,(T)) Nop(T) = E*(T). From the
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fact that T obeys generalized a-Weyl’s theorem, it follows that A ¢
Tspr; (T) = Ospr; (T + F) and since A € iso(o, (T + F)), it follows
that A € I*(T + F). Finally E4(T + F) C II*(T + F'), and since
the reverse inclusion is verified, T' + F' obeys generalized a-Weyl’s
theorem. (]
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