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Admissibility and Exact Observability of
Observation Operators for Semigroups

JONATHAN R. PARTINGTON AND SANDRA POTT

Abstract. A characterization of the admissibility of an ob-
servation operator for a linear semigroup system in terms
of certain rational functions of the infinitesimal generator
is given, extending work of Grabowski–Callier and Gao–Hu.
The same functions are then used to give new necessary and
sufficient conditions for admissibility and exact observability,
in both infinite and finite time. In the special case of the
right shift semigroup on L2((0,∞),K), where K is a Hilbert
space, this translates into necessary and sufficient conditions
for boundedness of vectorial Hankel operators, including a
formulation in terms of test functions. This leads finally to
a characterization of operator-valued functions in the dual of
trace-class valued H1 spaces in terms of BMO-type condi-
tions.

1. Introduction

In this paper we consider a linear system given by the equations

ẋ(t) = Ax(t), t ≥ 0,

y(t) = Cx(t),
(1)

where A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on
a Hilbert space H (the state space) and C, an observation operator
for (T (t))t≥0, is assumed to be a linear bounded operator from D(A),
the domain of A, to another Hilbert space Y (the output space). Here
D(A) is given the graph norm ‖x‖g = (‖x‖2 + ‖Ax‖2)1/2.

A mild solution of ẋ(t) = Ax(t) with initial condition x(0) =
x0 ∈ H means the continuous function x(t) = T (t)x0, for t ≥ 0. An
additional assumption is needed to guarantee that the output y of
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the system is in L2((0,∞); Y ). In the following we use the notation
L(X,Y ) for the set of bounded linear operators from a space X to
a space Y .

Definition 1.1. Let C ∈ L(D(A), Y ). Then C is called an (infinite-
time) admissible observation operator for (T (t))t≥0 if there is some
K > 0 such that

‖CT (·)x‖L2((0,∞);Y ) ≤ K‖x‖, x ∈ D(A).

Moreover, C is weakly admissible if the functional x 7→ 〈Cx, y〉 is
admissible for each y ∈ Y .

It is known that admissibility is a strictly stronger notion than
weak admissibility [6, 13].

There has been much work done towards characterizing admissi-
bility in terms of A and C, without knowledge of a precise formula
for the semigroup (T (t))t≥0 — in many PDE situations one knows
A but cannot write down (T (t))t≥0 explicitly — and we refer to the
survey [5] and the book [10] for further information and many rele-
vant references. In particular, there is a dual notion of admissibility
for control operators, and the results of this paper can be translated
into these terms as well.

There is one simple necessary and sufficient condition for admis-
sibility that applies in the case when the output space is finite-
dimensional, and (T (t))t≥0 is a contraction semigroup, namely that
there is a constant M > 0 such that

‖C(λ−A)−1‖ ≤ M

(Re λ)1/2
(2)

for all λ ∈ C+ = {z ∈ C : Re z > 0}. See [4, 11, 12] for further
information.

A weaker notion than admissibility (but equivalent for systems
that are exponentially stable) is the following.

Definition 1.2. Let C ∈ L(D(A), Y ) and let τ > 0. Then C is
called a finite-time admissible observation operator for (T (t))t≥0 if
there is some K > 0 such that

‖CT (·)x‖L2((0,τ);Y ) ≤ K‖x‖, x ∈ D(A).

This definition is independent of τ (see Section 4).
In this article we also consider various notions of exact observ-

ability, which we now define.
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Definition 1.3. Let C ∈ L(D(A), Y ) and let τ > 0. Then (A,C) is
exactly observable if there is some K > 0 such that

‖CT (·)x‖L2((0,∞);Y ) ≥ K‖x‖, x ∈ D(A),

and (A,C) is τ -exactly observable if there is some K > 0 such that

‖CT (·)x‖L2((0,τ);Y ) ≥ K‖x‖, x ∈ D(A).

It is well-known that the notion of τ -exact observability may de-
pend on τ , see Section 5.

For the case of an exponentially stable semigroup Grabowski and
Callier [3] gave a characterization of infinite-time admissibility in
terms of an operator-valued analytic function; Gao and Hou [1] ex-
tended this result to semigroups such that C+ ⊆ ρ(A). As we shall
show, it is possible to characterize other properties of semigroup
systems in terms of these operator-valued analytic functions, and we
shall refer to such results as GCGH theorems.

In this paper we proceed as follows. In Section 2 we use alter-
native and arguably somewhat simpler methods to derive a slightly
stronger form of the GCGH theorem characterizing infinite-time ad-
missibility. Then in Section 3 we prove a GCGH-type theorem giving
a new characterization of exact observability. In Sections 4 and 5 we
provide analogous results characterizing finite-time admissibility and
exact observability. When the underlying semigroup is the right-shift
semigroup on L2(0,∞), it is known that admissibility is equivalent
to the boundedness of certain Hankel operators (see [6, 7, 8]), and
in Sections 6 and 7 we consider this in the light of the GCGH con-
ditions: thus we have a new characterization of the boundedness of
vectorial Hankel operators and, as a consequence, a characterization
of operator-valued functions in the dual of H1(C+, S1), the Hardy
space of analytic functions on C+ with values in the trace class S1.

We begin by defining the analytic functions that we shall require.
For (T (t))t≥0, a strongly continuous semigroup on H with generator
A such that ρ(A) ⊇ C+, and C : D(A) → Y an observation operator,
let

F : C+ → L(H, H2(C+, Y )), F (λ) : z 7→ C(λ−A)−1 1
λ + z

. (3)

Thus F (λ) is the Laplace transform of the operator-valued function
f(λ) defined by t 7→ e−λtC(λ−A)−1. We also define

γn(λ)(t) =
1
n!

∂nf

∂λn
(λ)(t)
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so that

γn(λ)(t) = (−1)n
n∑

k=0

tke−λt

k!
C(λ−A)−(n−k+1).

The following identity will be needed later.

Proposition 1.4. We have

γn(λ)(t) =
(−1)n

n!

∫ ∞

0

CT (w)e−λ(t+w)(t + w)n dw.

Proof. We begin with the formula

F (λ)(z) =
∫ ∞

0

e−zte−λt dt

∫ ∞

0

CT (w)e−λw dw.

Differentiating with respect to λ (such operations are easily seen to
be valid for λ, z ∈ C+) we obtain

F (n)(λ)(z) =
∫ ∞

0

∫ ∞

0

e−ztCT (w)e−λ(t+w)(−1)n(t + w)n dt dw,

and thus

f (n)(λ)(t) = (−1)n

∫ ∞

0

CT (w)e−λ(t+w)(t + w)n dw,

which implies the result. ¤

Using these functions we are now ready to begin to characterize
the admissibility and observability properties associated with the
semigroup.

2. Infinite-time Admissibility

Notice that for z, λ ∈ C+, we have an operator F (n)(λ)(z) : H → Y
given by h 7→ (F (n)(λ)h)(z). If λ > K, then F (n)(λ)(z) is actually
well-defined for all z ∈ {s ∈ C : Re s > −K}.
Lemma 2.1. Let H be a Hilbert space and (T (t))t≥0 be a strongly
continuous semigroup on H with generator A such that C+ ⊆ ρ(A).
Let C : D(A) → Y be an observation operator, and let F be defined
as in (3). Then for each r > 0, h ∈ H,

(−1)n (rn)n+1

n!
(F (n)(rn))(z)h−→C(z + A)−1(eA/r − e−z/r)h,

as n →∞ uniformly on compact sets in C−.
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Proof. Note that for given λ ∈ C+, F (λ) = C(λ− A)−1 1
λ+z is well-

defined as an analytic function in z on the half-plane

C−Re λ = {z ∈ C : Re z > −Re λ}.
For λ ∈ ρ(A), −z ∈ ρ(A), and λ + z 6= 0, we have the identity

F (λ)(z) = C(A + z)−1[(λ−A)−1 − (λ + z)−1], (4)

since on multiplying this expression on the right by (λ − A)(λ + z)
we obtain

C(A + z)−1[(λ + z)− (λ−A)] = C.

So in particular, (4) holds for

z ∈ C(−Re λ,0) = {z ∈ C : 0 > Re z > −Re λ}.
Now, choosing a suitably small disc D in C+ and differentiating F

n times with respect to λ, we obtain

F (n)(λ)(z) = (−1)nn!C(A + z)−1[(λ−A)−n−1 − (λ + z)−n−1]

for z ∈ C(− 1
2 Re λ,0). Putting λ = rn, we find that for each z ∈ C−,

(−1)n (rn)n+1

n!
(F (n)(rn))(z) =

C(−A− z)−1

(
(

nr

nr + z
)n+1 − (1− 1

nr
A)−(n+1)

)
,

for suitably large n. The right hand side in this equation is easily
seen to converge to C(z + A)−1(eA/r − e−z/r) in the strong opera-
tor topology (SOT). Furthermore, for any given h ∈ H, the norm
convergence in Y of

(−1)n (rn)n+1

n!
(F (n)(rn)h)(z) −→ C(A + z)−1(eA/r − e−z/r)h

is uniform in z on each compact subset of C−. ¤

Before we go on to prove a stronger form of the GCGH theorem,
we note the following lemma.

Lemma 2.2. For all n ∈ N, h ∈ H, g ∈ L2((0,∞), Y )),

|〈γn(λ)h, g〉L2((0,∞),Y )| ≤
1

λn+1
‖CT (·)h‖L2((0,∞),Y ) ‖g‖.
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Proof. From Proposition 1.4, we have

γn(λ)(t) =
(−1)n

n!

∫ ∞

0

CT (w)e−λ(t+w)(t + w)n dw.

Take h ∈ H and g ∈ L2((0,∞), Y ). Then, writing t + w = z we get

〈γn(λ)h, g〉L2((0,∞),Y ) =

(−1)n

n!

∫ ∞

z=0

zne−λz dz

∫ z

w=0

〈CT (w)h, g(z − w)〉Y dw.
(5)

Hence, since
∫∞
0

zne−λz dz = n!/λn+1, this proves the lemma. ¤

Theorem 2.3 (see [3, Theorem 2.3] and [1, Theorem 1]). Let H be
a Hilbert space and (T (t))t≥0 be a strongly continuous semigroup on
H with generator A such that ρ(A) ⊇ C+. Let C : D(A) → Y be
an observation operator. Then (A,C) is (infinite-time) admissible if
and only if there exists M, K, N0 > 0 such that

‖γn(λ)‖L(H,L2((0,∞),Y )) ≤
M

λn+1
(λ ∈ R+, λ > K, n > N0), (6)

where γn(λ)(t) = (−1)n
∑n

k=0
tke−λt

k! C(λ−A)−(n−k+1) for t ≥ 0.

Proof. Taking Laplace transforms, we obtain that

‖γn(λ)h‖L2((0,∞),Y ) =
∥∥∥ 1

n!
F (n)(λ)h

∥∥∥
H2(C+,Y )

for all λ ∈ R, n ∈ N, h ∈ H.
By Lemma 2.2, we obtain the necessity of condition (6) for all

n ∈ N, λ ∈ R+.
Conversely, suppose that (6) holds. By Lemma 2.1, we obtain

that ∫ ∞

−∞
‖C(iω − δ + A)−1(eA/r − e−(iω−δ)/r)h‖2 ≤ M‖h‖2

for all h ∈ H, δ > 0. It follows that C(z + A)−1(eA/r − e−z/r)h ∈
H2(C−, Y ) for each r > 0. Taking Laplace transforms again, we see
that

C(A + z)−1(eA/r − e−z/r)h

= C(A + z)−1(e(A+z)/r − 1)e−z/rh

= L(χ[0,1/r]T (·)h)(−z) e−z/r (z ∈ C−)

(7)
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and therefore

∫ 1/r

0

‖CT (t)h‖2dt

= ‖C(A + z)−1(eA/r − e−z/r)ez/rh‖H2(C−,Y )

= ‖C(A + z)−1(eA/r − e−z/r)h‖H2(C−,Y ) ≤ M2‖h‖2

for each r > 0. It follows that (A, C) is admissible with admissibility
constant M . ¤

We use the seemingly weaker condition

‖γn(λ)‖L(H,L2((0,∞),Y )) ≤
M

λn+1
(λ ∈ R+, λ > K, n > N0)

than in [1], where the inequality is required for all n ∈ N, λ > 0.
However, it is easily seen that our condition at once implies the
corresponding inequality for all n ∈ N, λ > 0.

Proposition 2.4. Let (T (t))t≥0 be a strongly continuous semigroup
on H with generator A such that ρ(A) ⊇ C+, let C : D(A) → Y be
an observation operator, and let F be as above. Suppose that there
exist constants M and K such that for each n ≥ 0 and for each
λ ∈ R with λ > K

‖F (n)(λ)‖L(H,H2(C+,Y )) ≤ n!
M

λn+1
. (8)

Then

‖F (n)(λ)‖L(H,H2(C+,Y )) ≤ n!
M

(Re λ)n+1
for all λ ∈ C+ (9)

with the same constant M .

Proof. Suppose that (8) holds with certain constants K, M > 0. Let
λ ∈ C+. For sufficiently large λ0 > K, one has |λ − λ0| < λ0.
Then, using the Taylor expansion for the analytic operator-valued
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function F , we have

‖F (n)(λ)‖L(H,H2(C+,Y ))

=
∥∥∥
∞∑

k=n

F (k)(λ0)
k!

k!
(k − n)!

(λ− λ0)k−n
∥∥∥
L(H,H2(C+,Y ))

≤ M

∞∑

k=n

k!
(k − n)!λk+1

0

λk−n
0

( |λ− λ0|
λ0

)k−n

= M
1

λn+1
0

∞∑

j=0

(j + n)!
j!

∣∣∣∣
λ− λ0

λ0

∣∣∣∣
j

≤ M
n!

(λ0 − |λ− λ0|)n+1
.

Letting λ0 → +∞, we obtain ‖F (n)(λ)‖L(H,H2(C+,Y )) ≤ M n!
(Re λ)n+1 .

¤

Remark 2.5. In particular, for n = 1 we recover the resolvent con-
dition for all λ ∈ C+.

Remark 2.6. If we assume that lim
λ→+∞

‖C(λ − A)−n‖ = 0 for all

n ∈ N (for example, by assuming weak admissibility of (C, A)), then
we obtain the following result by simple integration:

Suppose that there exist constants N0, M and K such that for
each n ≥ N0 and for each λ ∈ R with λ > K

‖F (n)(λ)‖L(H,H2(C+,Y )) ≤ n!
M

λn+1
. (10)

Then

‖F (n)(λ)‖L(H,H2(C+,Y )) ≤ n!
M

(Re λ)n+1
(11)

for all λ ∈ C+, n ∈ N with the same constant M .

3. Exact Observability

The operator functions γn can also be used to obtain a characteri-
sation of exact observability. Before we state the main theorem, we
require some further notation. Recall that O(D) denotes the set of
analytic functions on a domain D ⊆ C. Then for γ > 0, let

H2
−γ(C+) =

{
f ∈ O(C+ − γ) | lim

δ↓0

∫ ∞

−∞
|f(iω − γ + δ)|2dω < ∞}

.
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This is a (non-closed) subspace of H2(C+). Similarly, let

H2
γ(C−) =

{
f ∈ O(C− + γ) | lim

δ↓0

∫ ∞

−∞
|f(iω + γ − δ)|2dω < ∞}

,

which is a non-closed subspace of H2(C−).
Here is our result about exact observability.

Theorem 3.1. Let (T (t))t≥0 be a strongly continuous semigroup on
H with generator A such that ρ(A) ⊇ C+, and let C : D(A) → Y
be an observation operator. Then (A,C) is exactly observable if and
only if there exists a constant m > 0 such that, for each h ∈ H, there
exist n ≥ 0 and λ > 0 with

‖γn(λ)h‖ ≥ m‖h‖/λn+1.

Proof. The “if”-part follows easily from Lemma 2.2, since this im-
plies that

‖CT (·)h‖L2((0,∞),Y ) ≥ λn+1‖γn(λ)h‖ (n ∈ N, λ ∈ R+, h ∈ H).

Now suppose that (A,C) is exactly observable with constant m > 0.
Let ε > 0. Using the identity (7) again, we find that for each h ∈ H,
there exist r, δ > 0 such that

m2‖h‖2 ≤
∫ ∞

0

‖CT (t)h‖2dt

≤ (1 + ε)
∫ 1/r

0

‖CT (t)h‖2dt

= (1 + ε)‖C(A + z)−1(eA/r − e−z/r)ez/rh‖H2(C−,Y )

= (1 + ε)‖C(A + z)−1(eA/r − e−z/r)h‖H2(C−,Y )

≤ (1 + ε)2
∫ ∞

−∞
‖C(A + iω − δ)−1(eA/r − e−(iω−δ)/r)‖2dω,

provided that
∫∞
0
‖CT (t)h‖2dt < ∞. If

∫∞
0
‖CT (t)h‖2dt = ∞, then

we can use (7) to make
∫∞
−∞ ‖C(A+iω−δ)−1(eA/r−e−(iω−δ)/r)‖2dω

as large as we wish. In either case, we can find δ, r > 0 such that
∫ ∞

−∞
‖C(A + iω − δ′)−1(eA/r − e−(iω−δ′)/r)h‖2dω ≥ m2

(1 + ε)2
‖h‖2

for 0 < δ′ ≤ δ. As
⋃

γ>0 H2
γ(C−, Y ) is dense in H2(C−, Y ), there are

γ > 0, g ∈ H2
γ(C−, Y ) with ‖g‖H2(C−,Y ) = 1 and 0 < δ′ < min(γ, δ)
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such that
∣∣∣∣
∫ ∞

−∞
〈C(A + iω − δ′)−1(eA/r − e−(iω−δ′)/r)h, g(iω − δ′)〉 dω|

≥ m2

(1 + ε)3
‖h‖2.

By Lemma 2.1, there exists n ∈ N such that

m2

(1 + ε)4
‖h‖2 ≤

∣∣∣∣
∫ ∞

∞
〈 (nr)n+1

n!
(F (n)(rn))(iω − δ′)h, g(iω − δ′)〉 dω

∣∣∣∣ .

We can assume that (nr)n+1

n! (F (n)(rn)) ∈ H2(C+, Y ). Using the
notation pz(it) = Re z 1

|z+it|2 , z ∈ C+, t ∈ R for the Poisson kernel of
the right half plane, we obtain the identity

∫ ∞

−∞
〈u(iω − δ′), v(iω − δ′)〉 dω

=
∫ ∞

−∞
〈u(iω − δ′),

∫ ∞

−∞
piω+δ′(is)v(s)ds〉 dω

=
∫ ∞

−∞
〈
∫ ∞

−∞
pis+δ′(iω)u(iω − δ′)dω, v(s)〉 ds

=
∫ ∞

−∞
〈u(iω), v(iω)〉 dω

for u ∈ H2
−γ(C+, Y ), v ∈ H2

γ(C−, Y ), 0 < δ′ < γ.
Consequently, with λ = rn,

‖λn+1γn(λ)h‖

=
∥∥∥∥

(nr)n+1

n!
(F (n)(rn))h

∥∥∥∥

≥
∣∣∣∣
∫ ∞

∞
〈 (nr)n+1

n!
(F (n)(rn))(iω)h, g(iω)〉 dω

∣∣∣∣

=
∣∣∣∣
∫ ∞

∞
〈 (nr)n+1

n!
(F (n)(rn))(iω − δ′)h, g(iω + δ′)〉 dω

∣∣∣∣

≥ m2

(1 + ε)4
‖h‖2.

This finishes the proof of Theorem 3.1. ¤
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4. Finite-time Admissibility

We recall that (A,C) is finite-time admissible on (0, τ) when there
is a constant Mτ > 0 such that

∫ τ

0

‖CT (t)x‖2 dt ≤ Mτ‖x‖2 (x ∈ D(A)).

As mentioned in Section 1, the definition is independent of the choice
of τ > 0, since if (A,C) is finite-time admissible on (0, τ), then

∫ nτ

0

‖CT (t)x‖2 dt =
n−1∑

k=0

∫ τ

0

‖CT (s)T (kτ)x‖2 ds

≤ Mτ

n−1∑

k=0

‖T (kτ)‖2‖x‖2

≤ Mτ

n−1∑

k=0

‖T (τ)‖2k‖x‖2.

We conclude that, if (A, C) is finite-time admissible for some τ > 0,
then there exist constants α, µ such that

∫ z

0

‖CT (t)x‖2 dt ≤ µ2e2αz‖x‖2 (x ∈ D(A), z > 0).

In this case, we shall say that (A,C) is finite-time admissible with
constants µ, α.

If (T (t))t≥0 is exponentially stable, then the above argument
shows that finite-time admissibility is equivalent to infinite-time ad-
missibility. In general we may deduce that if (A, C) is finite-time
admissible, then there are constants µ, α > 0 such that for every
σ > 0 we have

∫ σ

0

‖CT (t)x‖2 dt ≤ µ2e2ασ‖x‖2 (x ∈ D(A)). (12)

As it already became apparent in the proof of Theorem 2.3, one
can characterize finite-time admissibility in terms of the γn.

Proposition 4.1. Let H be a Hilbert space and (T (t))t≥0 be a
strongly continuous semigroup on H with generator A such that
ρ(A) ⊇ C+. Let C : D(A) → Y be an observation operator. Then
(A, C) is finite-time admissible if and only if there exist r,M, N0 > 0
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such that

‖γn(rn)‖L(H,L2((0,∞),Y )) ≤
M

(rn)n+1
for all n > N0, (13)

where γn(λ)(t) = (−1)n
∑n

k=0
tke−λt

k! C(λ−A)−(n−k+1) for t ≥ 0.

Proof. Assuming that (13) holds, we shall show finite-time admissi-
bility on (0, 1/r). Proceeding as in the proof of Theorem 2.3, we find
that

‖C(A + iω)−1(eA/r − e−iω/r)h‖H2(C+,Y ) ≤ M‖h‖ (h ∈ H).

Since

L(χ[0,1/r]CeA·h)(z) = C(A− z)−1(eA/r − ez/r)e−z/rh (z ∈ C+),

one verifies that

‖C(A + iω)−1(eA/r − e−iω/r)h‖2H2(C+,Y ) =
∫ 1/r

0

‖CT (t)h‖2dt,

which finishes the proof of the first implication.
The converse may be derived as follows. With h ∈ H and g ∈

L2((0,∞, Y )), we use (5) and (12) to obtain the following estimate,
valid for λ > α:

|〈γn(λ)h, g〉| ≤ 1
n!

∫ ∞

z=0

zne−λz‖h‖µeαz‖g‖ dz =
µ

(λ− α)n+1
‖h‖‖g‖.

We may now choose any r > 0. Taking λ = rn for n > α/r, we
obtain

‖γn(rn)‖L(H,L2((0,∞),Y )) ≤
µ

(rn− α)n+1
=

µ

(rn)n+1

(
1− α

rn

)−(n+1)

from which (13) follows easily for any M > µeα/r, since the last term
tends to eα/r as n →∞. ¤

5. Finite-time Exact Observability

We recall that (A,C) is τ -exactly observable for some τ > 0 if there
is a constant mτ > 0 such that∫ τ

0

‖CT (t)x‖2 dt ≥ mτ‖x‖2 (x ∈ D(A)).

This definition does depend on the choice of τ : for example it can be
verified that the left-shift semigroup onH = L2(0, 1) with Cf = f(0)
is τ -exactly observable if and only if τ ≥ 1.
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Here is the main result of this section.

Theorem 5.1. Let H be a Hilbert space and (T (t))t≥0 be a strongly
continuous semigroup on H with generator A such that ρ(A) ⊇ C+.
Let C : D(A) → Y be an observation operator. Let r > 0.

(1) Suppose that (A,C) is finite-time admissible with constants
µ, α, and that there exists constants m, ε > 0 such that for
each h ∈ H, there exists n ≥ N = N(ε, α/r, µ, m) with

‖γn((1 + ε)rn)h‖ ≥ 1
((1 + ε)rn)n+1

m‖h‖.

Then (A, C) is 1/r-exactly observable.
(2) Conversely, suppose that (A,C) is 1/r-exactly observable.

Then there exists a constant m > 0 such that for each h ∈ H,
there exists n ∈ N with

‖γn(rn)h‖ ≥ 1
(rn)n+1

m‖h‖.

Proof. (1) Let h ∈ H. Choosing an appropriate g ∈ L2((0,∞), Y )
with ‖g‖ = 1, we write as in the proof of Lemma 2.2

m‖h‖
≤ ((1 + ε)rn)n+1‖γn((1 + ε)rn)h‖
= ((1 + ε)rn)n+1〈γn((1 + ε)rn)h, g〉

≤ ((1 + ε)rn)n+1

n!

∣∣∣
∫ ∞

0

zne−(1+ε)rnzdz

∫ z

0

〈CT (ω)h, g(z − ω)〉Y dω
∣∣∣

≤ ((1 + ε)rn)n+1

n!

∣∣∣
∫ 1/r

0

zne−(1+ε)rnzdz

∫ z

0

〈CT (ω)h, g(z − ω)〉Y dω
∣∣∣

+
((1 + ε)rn)n+1

n!

∣∣∣
∫ ∞

1/r

zne−(1+ε)rnzdz

∫ z

0

〈CT (ω)h, g(z − ω)〉Y dω
∣∣∣

Using finite-time admissibility, we find that

((1 + ε)rn)n+1

n!

∣∣∣
∫ ∞

1/r

zne−(1+ε)rnzdz

∫ z

0

〈CT (ω)h, g(z − ω)〉Y dω
∣∣∣
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≤ ((1 + ε)rn)n+1

n!

∫ ∞

1/r

µzne−((1+ε)rn−α)zdz

≤ µ

(
(1 + ε)rn

(1 + ε)rn− α

)n+1 1
n!

∫ ∞

(1+ε)n−α/r

zne−zdz

. µeα/r 1
n!

∫ ∞

(1+ε)n−α/r

zne−zdz

for nr > α. Notice that χ[0,∞)
1
n!z

ne−z is the (n + 1)st convo-
lution power of the density function of the exponential distribu-
tion χ[0,∞)e

−z. It follows from the Central Limit Theorem that
1
n!

∫∞
(1+ε)n−α/r

zne−zdz → 0 as n → ∞. Therefore, there exists
N ∈ N, only depending on ε, m, α/r and µ, such that

‖γn((1 + ε)rn)h‖ ≥ 1
((1 + ε)rn)n+1

m‖h‖ for some n ≥ N

implies

∣∣∣
∫ 1/r

0

zne−(1+ε)rnzdz

∫ z

0

〈CT (ω)h, g(z − ω)〉Y dω
∣∣∣

≥ n!
((1 + ε)rn)n+1

m

2
‖h‖

and therefore

m

2
‖h‖

≤ ((1 + ε)rn)n+1

n!

∫ 1/r

0

zne−(1+ε)rnzdz

∫ 1/r

0

‖CT (ω)h‖‖g(z − ω)‖dω

≤ ((1 + ε)rn)n+1

n!

∫ ∞

0

zne−(1+ε)rnzdz
(∫ 1/r

0

‖CT (ω)h‖2dω
)1/2

=
(∫ 1/r

0

‖CT (ω)h‖2dω
)1/2

.

Part (2) of the theorem is proved exactly as in the forward direction
of Theorem 3.1. ¤
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6. Boundedness of Vector Hankel Operators

It is possible to use Theorem 2.3 to give a characterization of the
boundedness of vector Hankel operators, using the right-shift semi-
group on L2(0,∞) as in [6, 7, 8]. However, one can derive the anal-
ogous results by a more direct argument, and this is what we do
now.

Define kz(s) = 1
(s+z) , the reproducing kernel for H2(C+), which

satisfies

f(z) =
1
2π

∫ ∞

−∞
f(iw)kz(iw) dw, for f ∈ H2(C+) and z ∈ C+.

For n ∈ N, let k
(n)
z denote the n-fold derivative of kz,

k(n)
z (s) = (−1)nn!

(
1

s + z

)n+1

= (−1)nn! kn+1
z .

This is the Laplace transform of the function

(−1)nk(n)
z : t 7→ (−1)ntne−z̄t.

A densely-defined Hankel integral operator Γh : L2((0,∞),K) →
L2((0,∞), Y ) is given by

u 7→ Γhu =
∫ ∞

0

h(τ + w)u(τ)dw.

Here, h : (0,∞) → L(K, Y ) is assumed to be measurable. If K = Y
then Γh has a natural interpretation whenever h is scalar-valued.
Moreover, by the Paley–Wiener theorem there is a unitarily equiva-
lent (Hankel) operator defined between H2(C+,K) and H2(C−, Y ),
given by a multiplication followed by an orthogonal projection.

Now let Γ
k
(n)
λ

be defined using the kernels above, and let Γ̃
k
(n)
λ

=
(Re λ)n+1

n! Γ
k
(n)
λ

for n ∈ N, λ ∈ C+. The set

M = {Γ̃
k
(n)
λ

: n ∈ N, λ ∈ C+}

has SOT cluster points, some of which we investigate below.

Lemma 6.1. For n ∈ N and r > 0, let Pr,n = (−1)nΓ̃
k
(n)
rn

. Let
er : C+ → D be defined by w 7→ e−rw. Then for each r > 0, the
sequence (Pr,n)n∈N converges strongly to the Hankel operator Γer .
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Proof. Notice that for each r > 0,

(−1)n (rn)n+1

n!
k(n)

rn (w) =
(

rn

(rn + w)

)n+1

(w ∈ C+),

which converges for n → ∞ uniformly on bounded sets in C+ to
e−w/r. It follows that for any f ∈ H2(C+,K), (−1)n (rn)n+1

n! k
(n)
rn f →

e−·/rf in norm, and we have strong convergence of the corresponding
multiplication operators. Thus, Pr,n → Γe1/r

in SOT as n →∞. ¤

We can use this to obtain an elementary proof for a boundedness
theorem for vector Hankel operators, which is also a consequence of
Theorem 2.3.

Theorem 6.2. Let Γh : L2((0,∞),K) → L2((0,∞), Y ) be a densely
defined Hankel operator given by

u 7→ Γhu =
∫ ∞

0

h(τ + w)u(τ)dw,

where h : (0,∞) → L(K, Y ) is measurable. Then Γh defines a bounded
linear operator on L2((0,∞),K) if and only if there exists a con-
stant M > 0 such that for each λ > 0, each n ∈ N and each
y ∈ L2((0,∞), Y ),

‖Γ∗hΓ
k
(n)
λ

y‖ ≤ M‖y‖ n!
λn+1

,

that is, Γ∗h acts boundedly on the images of the scalar Hankel opera-
tors Γ

k
(n)
λ

with uniform bound.

Proof. Notice that the Hankel operator Γer on H2(C+) is unitar-
ily equivalent via the Laplace transform to the translation-reflection
operator

Tr : L2(0,∞) → L2(0,∞), Trf(t) =
{

f(r − t) if r > t
0 otherwise.

By the preceding lemma, the conditions of the theorem imply that
‖TrΓh‖ = ‖Γ∗hTr‖ ≤ M for all r > 0. Since

⋃
r>0 Range Tr contains

the compactly supported functions in L2(0,∞) and lim
r→∞

‖Trf‖ =

‖f‖ for all f ∈ L2(0,∞), it follows that Γh is bounded, and
‖Γh‖ ≤ M . ¤



Admissibility and Exact Observability of Observation Operators 35

7. Operator BMO and the Dual of H1(C+, S1)

Let K be a separable infinite-dimensional Hilbert space, and let S1

denote the ideal of trace-class operators in L(K). The following
fact is a well-known consequence of Sarason’s factorization theorem
H1(C+, S1) = H2(K)⊗̂H2(K) [9].

Proposition 7.1. Let B be an operator-valued measure on iR such
that

∫
iR dB∗B converges in the WOT-topology and such that

∫ ∞

−∞
eiωtdB(iω) = 0 for a.e. t < 0.

Then B gives rise to a bounded vector Hankel operator ΓB on
H2(C+,K); that is, the densely defined sesquilinear map

H2(C+,K)×H2(C−,K) → C,

(f, g) 7→ 〈ΓBf, g〉 =
∫ ∞

−∞
〈dB(iω)f(iω), g(iω)〉

extends to a bounded sesquilinear form on H2(C+,K) ×H2(C−,K)
if and only if B defines a bounded linear functional on H1(C+, S1)
via

F 7→
∫ ∞

−∞
trace(dB(iω)F (iω)).

In this case, ‖ΓB‖ = ‖B‖H1(C+,S1)∗ .

We write H1(C−, S1) for the space {F : C+ → S1|F ∗ ∈ H1(C+, S1)}
and H1

re(iR, S1) for the space H1(C+, S1) + H1(C−, S1) with the
norm ‖H‖H1 = ‖F + G‖H1 = ‖F‖H1(C+,S1) + ‖G∗‖H1(C+,S1) for
H = F + G with F ∈ H1(C+, S1) and G ∈ H1(C−, S1).

For an operator-valued function B : iR→ L(K) such that B∗B is
WOT integrable on iR, we can define its analytic and anti-analytic
parts B+ and B−, given by B+e = P+Be, B−e = P−Be for e ∈ K,
where P+ : L2(iR,K) → H2(C+,K) denotes the Riesz projection
and P− the corresponding orthogonal projection.

One sees easily that such an operator function B defines a bounded
linear functional on H1

re(iR,K) if and only if both B− and (B+)∗

are in the dual of H1(C+, S1).
We obtain the following consequence of Theorem 6.2.
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Theorem 7.2. Let B : iR → L(K) be an operator-valued function
such that B∗B is WOT integrable on iR. Then B defines a bounded
linear functional on H1

re(iR, S1) if and only if there exists a constant
C > 0 such that

∣∣∣
∫ ∞

−∞

∫ ∞

−∞
trace

(
(B(iω)−B(it))φ(n)

s (iω, it)f(iω)⊗ g(it)
)
dω dt

∣∣∣ (14)

is at most C/sn+1 for all s ∈ R+, f ∈ L2(iR,K), g ∈ L2(iR,K) and
n ∈ N0, where

φ(n)
s (iw, it) =

1
(iω + s)(it + s)

n∑

k=0

1
(iω + s)k(it + s)n−k

for s ∈ C+, t, w ∈ R, and n ∈ N0.

Remark. Note that (14) is a bounded mean oscillation-type con-
dition. Recall that one of the characterizations of the scalar BMO
space BMO(iR), the dual of the scalar space H1

re(iR), is that b be-
longs to BMO(iR) if and only if there exists a constant C > 0 such
that

∫ ∞

−∞

∫ ∞

−∞
|b(iω)− b(it)|2|φ(0)

s (iw, it)|2 dt dω

=
1

π2(Re s)2

∫ ∞

−∞

∫ ∞

−∞
|b(iω)− b(it)|2ps(t)ps(ω) dt dω ≤ C

(Re s)2

for all s ∈ C+ and b(it) satisfies a certain decay condition as |t| → ∞.
(For further information on scalar BMO, see e.g. [2].) For n = 0, we
know that the condition that

∣∣∣
∫ ∞

−∞

∫ ∞

−∞
trace

(
(B(iω)−B(it))f(iω)⊗ g(it)

1
(iω + s)(it + s)

)
dω dt

∣∣∣

is at most C/s for all s ∈ C+, f ∈ H2(C+,K) and g ∈ H2(C+,K)
is one characterization of the so-called adjoint strong operator BMO
condition: B∗e ∈ BMO(iR,K) with uniformly bounded norm for
e ∈ K, ‖e‖ ≤ 1. This condition is general not sufficient for B to be
in H1(C+, S1), but corresponds to the resolvent condition (2).
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Alternatively, for B anti-analytic, the condition in (14) simplifies
to

∣∣∣∣
∫ ∞

−∞

∫ ∞

−∞
trace

(
B(iω)φ(n)

s (iω, it)f(iω)⊗ g(it)
)

dω dt

∣∣∣∣

≤ C
1

sn+1
for all s ∈ R+, f, g ∈ H2(C+,K), n ∈ N0

and can be understood as a test function condition on certain ele-
ments of H1(C+, S1), namely those of the form

z 7→
∫ ∞

−∞
φ(n)

s (z, it)f(z)⊗ g(it) dt = (f ⊗ Γ∗
k
(n)
s

g)(z)

with the notation of the previous section.

Proof of 7.2. To prove that (14) is necessary, note first that the func-
tion φ̄

(n)
s (iω, it) = ( d

ds )nks(it)k(iω) is up to a factor (−1)n the in-
tegral kernel for the Hankel operator Γ

k
(n)
s

, taken as an operator
L2(iR,K) → L2(iR,K) from the previous section. This is eas-
ily seen with (−1)nΓ

k
(n)
s

= ( d
ds )nΓks = ( d

ds )nks ⊗ ks. The op-
erator Γ

k
(n)
s

is bounded on L2(iR,K) with norm less or equal to

‖k(n)
s ‖∞ = n!( 1

s )n+1.
Suppose first that B is anti-analytic and split f , g into analytic

and anti-analytic parts, f = f+ + f−, g = g+ + g−. Note that
∫ ∞

−∞

∫ ∞

−∞
trace

(
(B(iω)−B(it))φ(n)

s (iω, it)f+(iω)⊗ g−(it)
)
dt dω

=
∫ ∞

−∞

∫ ∞

−∞
trace

(
B(iω)φ(n)

s (iω, it)f+(iω)⊗ g−(it)
)
dt dω = 0

and
∫ ∞

−∞

∫ ∞

−∞
trace

(
(B(iω)−B(it))φ(n)

s (iω, it)f−(iω)⊗ g+(it)
)
dt dω

=
(

d

ds

)n ∫ ∞

−∞

∫ ∞

−∞
trace

(
(B(iω)−B(it))ks(it)ks(iω)×

× f−(iω)⊗ g+(it)
)
dt dω

=
(

d

ds

)n

trace
(
(B(s̄)−B(s̄)

)
f(s̄)⊗ g(s̄)) = 0.
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Furthermore,
∫ ∞

−∞

∫ ∞

−∞
trace

(
(B(iω)−B(it))φ(n)

s (iω, it)f+(iω)⊗ g+(it)
)
dt dω

=
∫ ∞

−∞

∫ ∞

−∞
trace

(
B(iω)φ(n)

s f+(iω)⊗ g+(it)
)
dt dω

= 〈Bf,

∫ ∞

−∞
φ̄(n)

s (iω, it)g+(it)dt〉 = 〈ΓBf+,Γ
k
(n)
s

g+〉

and
∫ ∞

−∞

∫ ∞

−∞
trace

(
(B(iω)−B(it))φ(n)

s (iω, it)f−(iω)⊗ g−(it)
)
dt dω

= −
∫ ∞

−∞

∫ ∞

−∞
trace

(
B(it)φ(n)

s f−(iω)⊗ g−(it)
)
dt dω

= −〈Γ∗
k
(n)
s

f−, Γ∗Bg−〉.
This yields the required estimates. A similar but simpler argument
covers the case that B is analytic.

To prove the sufficiency of (14), suppose first that B is anti-
analytic and take f, g ∈ H2(C+,K). Let H = H2(C+,K), let
(T (t))t≥0 be the semigroup onH induced by the right shift semigroup
on L2((0,∞);K) via Laplace transform, and let C : D(A) → K be
given by f 7→ ∫∞

−∞B(iω)f(iω) dω. Then, with the notation of (3),
we have that

F (λ)f(z) =
∫ ∞

−∞
B(iω)f(iω)

1
(iω + λ)(z + λ)

dω

and

(F (n)(λ)f)(z)

= (−1)nn!
∫ ∞

−∞
B(iω)f(iω)

n∑

k=0

1
(iω + λ)k+1(z + λ)n+1−k

dω.

The result follows now from Theorem 2.3. The case of general B
follows easily. ¤
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