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Pell Equation 22 — Dy? =2, 1T

AHMET TEKCAN

ABSTRACT. In this paper solutions of the Pell equation
22 — Dy? = 2 are formulated for a positive non-square inte-
ger D using the solutions of the Pell equation z2 — Dy? = 1.
Moreover, a recurrence relation on the solutions of the Pell
equation z2 — Dy? = 2 is obtained. Furthermore, the solu-
tions of the equation 2 — Dy2 = 2" are obtained using the
solutions of the equation z2 — Dy? = 2.

1. INTRODUCTION

A real binary quadratic form f (or just a form) is a polynomial in
two variables of the type

f(z,y) = ax® + bry + cy?

with real coefficients a, b, c. The discriminant of f is defined by the
formula b? — 4ac and denoted by D.

Let D be a non-square discriminant. Then the Pell form is defined
by the formula

a2 Dy if D =0 (mod 4)
e ={ 218 eay - imeas) O
Let
Pell(D) = {(z,y) € Z* : fp(z,y) =1}
and

Pell*(D) = {(z,y) €Z®: fp(z,y)==£1}.
Then Pell(D) is infinite. The binary operation

(z1,91)-(2,y2) = (v172 + Dy1y2, T1y2 + y172)

2000 Mathematics Subject Classification. 11E15, 11E18, 11E25.
Key words and phrases. Pell forms, Pell equation, solution of the Pell
equation.



74 AHMET TEKCAN

is a group law on Pell(D) for which Pell(D) ~ {£+1} x Z.

Let d be a positive non-square discriminant and K = Q(v/d) be
the quadratic number field. Then every element « of K can be rep-
resented as

a+bvd
c

for a,b,c € Z. The conjugate of « is denoted by

a—bvd

Cc

o =

The trace and norm of « are given by
2
Tr(a)=a+a= 4
c

and
a? — db?

2

N(a) =aa =
respectively. It is easy to show that for o, 8 € K,
Tr(a+ 0)=Tr(a)+Tr(0)
and
N(af) = N(a)N(B).
If d =1 (mod4) then the elements of K are of the form

a+bVd
2 b

where a,b € Z, and if d = 2,3 (mod 4) then the elements of K are of
the form

(1.2)

a=a+bVd, (1.3)

where a,b € Z. As in the case of rationals, the set of integers of
K forms a ring which we will be denoted as Ok, the maximal order
of K.

If every integer o € Ok can be uniquely expressed as
= a1wi + asws

where a; € Z and w; € Ok, then we call wy,ws an integral basis for
K, and we denote O by the Z-module [wy,ws] = w1 Z + weZ.

Every algebraic number field has an integral basis, and in the
quadratic fields it is especially easy to give one.
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If d =1 (mod4), then from Eq. (1.2) it is seen that

14+Vd
2

wi; =1 and wy =

is an integral basis.
If d = 2,3 (mod4), then from Eq. (1.3) it is seen that

w1:2andw2:\/g

is an integral basis.
The discriminant of K is defined as

2
wp w1
b

D(K) = ‘

wy W2

hence, D(K) = D for d = 1(mod4) and D(K) = 4d for d =
2,3 (mod 4). Therefore,

4d
for ( )
2 d=1(mod 4
"= { 1 d=2,3(mod 4) (1.4)
and {1,w} is an integral basis of K for
_r—1+ Vd
B r
(see [2]).
The D-order Op is defined to be the ring
Op={z+ypp: z,y€Z}, (1.5)
where

oy = L if D=0 (mod 4)
D=
YD if D=1 (mod 4)

It is clear from definition that Op is a subring of Q (\/D )

Lemma 1.1. [1] Let « € Op. Then « is a unit in Op if and only if
N(a) = £1.
The unit group O7F, is defined to be the group of units of the
ring Op. Let
Op1={a€O0p: N(a)=+1}
and for D > 0
Op . ={a€O0p: a>0}
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be the subgroup of positive units.

By Eq. (1.1) and Lemma 1.1, there is a bijection 1 : Pell*(D) —
O}, given by ¢(x,y) = = + ypp. Since it is in bijection with a
commutative group, Pell*(D) itself is a group for every non-square
discriminant D. The mapping 1 is used to transport the group law
from O7%), so that by definition

a.b ="' (P(a)p(b))

for every a,b € Pell*(D), i.e. the product (u,v).(U,V) of two ele-
ments (u,v), (U,V) € Pell*(D) is defined by the rule

(u,v).(U, V) = (x,y), (1.6)

where z +ypp = (u+vpp)(U +Vpp).
It follows by a calculation that

D . _

(w,0).0,v) = { (W F 20V, uV =+ eU) if D =0 (mod 4)
(wU + ==oV, uV +oU +oV) if D=1 (mod 4)

(1.7)

The group structure on Pell*(D) has been defined as
Y : Pell*(D) — O3,

and is an isomorphism of groups. Moreover, Eq. (1.7) is a group law
on Pell*(D) with identity element (1,0) for all non-zero discrimi-
nants D.

Lemma 1.2. [1] OB,+ ~ 7 for every positive non-square discrimi-
nant D.

From Lemma 1.2 we obtain

Lemma 1.3. [1] Let D be a non-square discriminant and let ep be
the smallest unit of Op that is greater than 1 and let

TD{ €D if N(ep) = +1
e, if N(ep)=-1
then
Pell*(D) ~ O} = {£e; n € Z} ~ {£1} x Z
and
Pell(D) ~ Op y ={£7h; n € Z} ~ {1} x Z.
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The fundamental unit p is defined to be the smallest unit of Op
that is greater than 1.

The Pell equation is the equation z? —dy? = 1, and the negative
Pell equation is the equation x? — dy? = —1, where d is a positive
non-square integer. The set of all solutions of the Pell equation is
infinite. The first solution (x1,y;) of the Pell equation is called the
fundamental solution.

One may rewrite the Pell equation as

z? —dy? = (ery\/g) (xfy\/g) =1,

so that finding a solution comes down to finding a nontrivial unit
in the ring Z[\/ﬁ] of norm 1; here the norm Z[\/&]* — Z* = {1}
between unit groups multiplies each unit by its conjugate, and the
units £+1 of Z [\/&] are considered trivial. This reformulation implies
that once one knows a solution, fundamental solution, of the Pell
equation, one can find infinitely many others. More precisely, if the
solutions are ordered by magnitude, then the nth solution (2, y,)
can be expressed in terms of the fundamental solution by

Ty + ynVd = (:vl erl\/g)n. (1.8)

forn > 2..

In [3], Jacobson and Williams considered the solutions of the con-
secutive Pell equations X2 — (D —1)YZ = 1 and X? — DY? = 1,
where D and D — 1 are not perfect square. They also proved that
p(D) = }gi%; could be arbitrary large for integers X; and Xs.

In [4], McLaughlin considered the solutions of the multi-variable
polynomial Pell equation C2 —F; H? = (—1)"~!, where n is a positive
integer, { F;} a finite collection of multi-variable polynomials, C; and
H,; are multi-variable polynomials with integral coefficients.

In [5], Lenstra gave the solution of the Pell equation using the
ring Z[\/&] He considered the solvability of the Pell equation as a
special case of Dirichlet’s unit theorem from algebraic number theory
which describes the structure of the group of units of a general ring
of algebraic integers; for the ring Z[\/&], it is product of {£1} and
an infinite cyclic group.

In [6], Li proved that the Pell equation 2 — dy? = 1 has infinitely
positive solutions. If (z1,y;) is the fundamental solution, then for
n=234,..., &, +yVd = (x1 + y1v/d)". The pairs (z,,y,) are
all the positive solutions of the Pell equation. The x,’s and y,,’s are
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strictly increasing to infinity and satisfy the recurrence relations

Tpntz = 281Tpt1 — Tp,
Ynt+2 = 2T1Yn41 — Yn.
Li also proved that the fundamental solution of the Pell equation is

obtained by writing v/d as a simple continued fraction. It turns out
that

1
Vd=ao+ ————
a1 az+...

where ag = [Vd] and a1, as,... is a periodic positive integer se-
quence. The continued fraction will be denoted by (aog, ai,as,...).
The kth convergent of (ag, a1, as,...) is the number

Pk
- = <a'07a17a‘27"'7ak>

dk
with px and gx relatively prime numbers. Let ag,a1,as,...,a, be
the period for v/d. Then the fundamental solution of the Pell equa-
tion 22 — dy? =1 is

(x1,41) = (Pm—1,Gm—1) if m is even
’ (P2m—1,Gam—1) if m is odd

and the other solutions are xz,, + yn\/g = (ml + 1 \/ﬁ) for n > 2.

In [7], Matthews considered the solutions of the equation z? —

Dy? = N for D > 0. He shoved that a necessary condition for
the solvability of 22 — Dy? = N, with ged(z,y) = 1, is that the
congruence u? = D (mod Qg) shall be soluble, where Qo = |N|.

In [8], Mollin gave a formula for the solutions of the equations both
X2 -DY? = cand 2> — Dy? = —c using the ideals I = [Q, P++/D],
for positive non-square integer D.

In [9], Mollin, Cheng and Goddard considered the solutions of
the Diophantine equation aX? — bY? = ¢ in terms of the simple
continued fraction expansion of v/a2b, and they explored a criteria
for the solvability of AX? — BY? = C for given integers A, B,C € N.

In [10], Mollin, Poorten and Williams considered the equation
22 — Dy? = —3. They obtained a formula for the solutions of this
equation using the continued fraction expansion of v/D and using
the ambiguous ideals I = [Q, P + /D], i.e., I = I, where T denotes

the conjugate of I.
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In [11], Stevenhagen considered the solutions of the negative Pell
equation 2 — Dy? = —1 for a positive non-square integer D. He
stated a conjecture for the solutions of the equation 2 — Dy? = —1.

In [12], we considered the solutions of the Pell equation 22— Dy? =
2 using the fundamental element of the field Q(\/K)

In the present paper, the solutions of the Pell equation 22 — Dy? =
2 for positive non-square integer and a recurrence relation for the
solutions of the Pell equation 22 — Dy? = 2 are obtained using the
solutions of the Pell equation z? — Dy? = 1.

2. THE PELL EQUATION 22 — Dy? =2
First, consider the fundamental solution of the Pell equation x2 —
Dy? =2.

Theorem 2.1. If (z1,y1) = (a,1) is the fundamental solution of
the Pell equation x> — Dy? = 1, then the fundamental solution of the
Pell equation 2* — (D — 1)y? = 2 is (X1,Y1) = (a,1).

Proof. Since (z1,y1) = (a, 1) is the fundamental solution of the Pell
equation 22 — Dy? = 1, we have

a®>~D=1.

Hence, by basic calculation, it is easily seen that
X2-D-1)Y2=d®>-(D-1)=d*>-D+1=2.
Therefore, (X1,Y1) = (a,1) is the fundamental solution of the Pell
equation 2 — Dy? = 2. O

Theorem 2.2. If D =k? — 2,k > 2, then the fundamental solution
of the Pell equation x> — Dy? = 1 is (z1,y1) = (a,b) = (k* — 1,k),
and the fundamental solution of the Pell equation x> — Dy? = 2 is
(X1,Y1) = (b, 1).

Proof. Note that (z1,31) = (a,b) = (k* — 1,k) is the fundamental
solution of the Pell equation 22 — Dy? = 1 since

23— Dyl =a®> - DV = (k* —1)? — (K* - 2)k* = 1.
For (X1,Y7) = (b,1), we get
X -DY?=0*-D=k>—(k*-2)=2.

Therefore, (X1,Y1) = (b,1) is the fundamental solution of the Pell
equation 2 — Dy? = 2. ([
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Now we consider the solutions of the Pell equation z2 — Dy? = 2.
To get this we have the following theorem.

Theorem 2.3. Let (X1,Y7) = (k,1) be the fundamental solution of
the Pell equation x? — Dy? = 2. Then the other solutions of the Pell
equation x> — Dy* = 2 are (X,,,Yy), where

X\ _(k ID Tp—1
Ge)=(r) () e
Proof. From above equalities we get

Xn _ k 1D Tp—1 _ kl‘n_l + lDyn_l
Yn N l k Yn—1 B lmnfl + kynfl ’

(2.2)

forn > 2.

Hence it is easily seen that
X2~ DY? = (kzu_1 + 1Dyn_1)* = D (lwn_1 + kyn_1)’
=K’z | 4 2klDxp_1yn—1 + *D%yp
— D(1Pa?_| + 2klzy— 1y + k22 _1)
=k*(z}_, — Dy2_,) — DI*(z%_y — Dy>_,)
= (Ii—l - Dy?z—l)(kZ - Dl2)
=2,

since 22_, — Dy?_ |, =1, and (X1,Y1) = (k,I) be the fundamental

n—

solution of the Pell equation 22 — Dy? =2, ie., k2 —DIi?>=2. O
From Theorem 2.3 the following corollary can be obtained.

Corollary 2.4. The solutions (X,,Y,) of the Pell equation z* —
Dy? = 2 satisfy the following relations

Xpe1 \ [ aX,+bDY, \ [ a bD\ [ X,
Yor1 ) bX,, +aY, “\b a Y.,
forn > 1.
Proof. We know from Eq. (2.2) that

Xn _ kwnfl + lDynfl
Yn N lxn—l + kyn—l '

KLX, + (2 — k)Y,
21

Hence
—-1X,, + kY,
— 5

Tp—1 = and Yn—-1 =

(2.3)
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On the other hand from Eq. (2.1)

(o)

a bD Tp_1
b a Yn—1
Tp—1 + bDyn_1 )

b1 + ayn—1
Using Eq. (2.3) and Eq. (2.4) we find

Xn+1 o k 1D Iy
Gen) = GG &
_ k 1D ap—1 +bDyn—1
- Ik by 1 + ayn_1
B Zp—1(ak 4+ blD) 4 yn_1(bkD + alD)
n Tn—1(al + bk) + yn—1(blD + ak)
Applying Eq. (2.3) and Eq. (2.5) it follows that

Xn+1 = xp—1(ak + blD) + yn_1(bkD + alD)

g2
_ <MX" + (221 Yo ) (ak + bID)

+ <_ZX“2+kY”> (bkD + alD)

2alX,, + 2bDIY,,

2
= aX, + bDY,

Il
7 N7 N7 N N

S
Q o
)
N~~~
N
S Q
Q o
)
~~_

—
7N
O =
~~

and
Ynt1 = Tp— l(al + bk) + Yn— 1 le + ak)

— k)Y,
_(le +( 2 k > (al + bk)

lX + kY,
+( .

) (blD + ak)

2bl.X,, + 2alY,

21
=bX, + aY,.
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Hence

Xps1 \ _ [ aXo+bDY, \ [ a bD\ [ X,
Yorr )\ bXu4aY, ) T\ b a Y, )
O

Ezample 2.1. Let D = 2. Then the fundamental solution of the Pell
equation 2% — 2y? = 1 is (z1,41) = (3,2), and the other solutions
are

() - (33) (0)-(3),
() - (3) (0)-(%),
() = (3) ()-(3):
(2) = (535) (0)-(3),
() = (23 ()-(im).
(7) = (3) (0)-(o).
() - (33)(0)- ().
() - (23)(0)-(mmm)

The fundamental solution of the Pell equation z2 — 2y = 2 is
(X1,Y1) = (k, 1) = (2,1), and the other solutions are

B) - (1()-(1)
(12)(5)- (%)
<
<

)= (%),
)-(12),

— N =N =N
DN NN NN
N~ N
T N T N N

7
2
9
0
7
0

IS, BN e R

7
8

~ N O~
I

(
(
(3
(
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3363 \ [ 11482
2378 )~ \ 8119 )°
19601 \ [ 66922
13860 ) — \ 47321 )
114243 \ _ [ 390050
80782 ) T \ 275807 )°

665857 \ [ 2273378
470832 )~ \ 1607521 )’

3880899 \ [ 13250218
2744210 ) 9369319 /-

Now we give a relation between ( Z ZD ) and ( f ?CD > To

RN RPN RN RN =N

N N N N
Inle
N— 7 N
[l
TN TN TN TN N

get this, set

SLs(2,R) = {( ; Z ) : s, t,u € R, ru—st:2}.
Then we have

Theorem 2.5. There exists an element A € SLy(2,R) such that
a bD k 1D
(3 )=(13")

Proof. Let A = ( :

a bD r s [ ar+bDt as+bDu \ [ k ID
b a t uw )\ br+at bs + au !k ’

Hence from the two equations

Z ) for r,s,t,u € R. Then we have

ar +bDt = k
br+at = 1
and
as+bDu = 1D

bs+au = k
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we obtain
1 —a®l + abk
T = D
b
k — a®k + ablD
s = —mM———
b
= al— bk
u = ak—>blD.
Hence

l—a’l+abk  k—a’k+ablD
A=

b b
al — bk ak — blD

It is easily seen that

2
det(A) = (laifabk) (ak — bID)
_ g2 D
- (k ok )(al—bk)
b(k? — DI2)
b

= k* — DI?

= 2.
Therefore A € SL2(2,R). O

Now we would like to obtain a recurrence relation on the solutions
of the Pell equation 2 — Dy? = 2. To get this using Eq. (2.1) we
obtain

) a5

<
N

<
w

&
N

7~ N7 N7 N7 N
8
w
N N N
|
S~ N7 N 77 N7 N
S~
s)
w
|
w
\/Q
"

<
Ny



8

<
S

8 Q@ 8

N7 N7 NN
N

<

and hence

(
(
(
(
(
(

Xs
Y5
X3
Y;
Xy
Y,
X5
Ys
Xe
Ys
X7
Y7

X3
Y

X9
Yy

N N N N~ N~

ot

3

[
N— — 7 N~

3
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16a —20a® + 5a
16a —12a2% + 1)

B 32a% — 48a* 4 18a% — 1

o b(32a° — 32a3 + 6a) ’
64a” — 112a® + 564> — Ta
b(64a° — 80a* + 24a® — 1)

128a® — 25645 + 160a* — 32a% + 1
b(128a" — 192a® + 80a® — 8a) ’

ka + 1bD ) ’ (2.7)

k(2a* — 1) + 2ablD
1(2a® — 1) +2abk )~
k(4a® — 3a) + blD(4a® — 1)
[(4a3 — 3a) + kb(4a® — 1) ’
k(8at — 8a% + 1) + blD(8a® — 4a)
[(8a* — 8a? + 1) + kb(8a® — 4a) )’
k(16a°® — 20a® + 5a) + blD(16a* — 12a% + 1)
[(16a® — 20a® + 5a) + kb(16a* — 1242 +1) )~
k(32a% — 48a* + 18a® — 1)
1(32a5 — 48a* + 18a% — 1)
+ blD(32a° — 32a® + 6a)
+ kb(32a® — 32a3 + 6a) ’
k(64a” — 112a® + 56a> — 7a)
[(64a” — 112a® + 564> — 7a)
+ blD(64a® — 80a* + 24a® — 1)
+ kb(64a% — 80a* +24a% — 1) )
k(128a% — 2564 + 160a* — 3242 + 1)
1(128a® — 2564 + 160a* — 3242 + 1)
+ bID(128a7 — 19245 + 80a® — 8a)
+ kb(128a" — 192a° + 80a® — 8a) '
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Using Eq. (2.7) it is easily seen that

X, = (2K*—1)(X3— Xo) + X1, (2.8)
X5 = (2K* 1) (X4 — X3) + Xy,
Xe = (2K* —1) (X5 — X4) + X3,
X; = (2k* —1) (X — X5) + X4,
Xs = (2K* —1) (X7 — Xg) + X5,
Xo = (2K* —1)(Xs — X7) + Xs.

Eq. (2.8) is also satisfied for Y;,. Hence we have
Conjecture 2.6. The solutions of the Pell equation % — Dy? = 2

satisfy the following recurrence relations

X, = (2k2 - 1) (anl - Xn72) + Xn737
Y, = (2k2 - 1) (Ynfl - Yn72) +Y, 3

forn > 4.

Now we obtain a formula for the solutions of the equation z2 —
Dy? = 2" using the solutions of the Pell equation 2 — Dy? = 2.

Theorem 2.7. Let (X1,Y7) = (k,1) be the fundamental solution of
the Pell equation 22 — Dy? = 2. Let

(v)-(F ) (6) @

Uy—DVZ=2"

forn = 1. Then

forn > 1.
Proof. We prove the Theorem by induction on n. For n = 1 we have
Ul -~ DV =k*—DI? =2

since (X 1, Yl) = (k,1) is the fundamental solution of the Pell equa-
tion 22 — Dy? = 2.

Let us assume that the equation U2 — DV,? = 2" is satisfied for
(Un717Vn71)7 ie. 5
U: ,—-DV2, =2""1

n
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We want to show that the equation U2 — DV,2 = 2" is also satisfied
for (Up, Vy,). From Eq. (2.9) it is easily seen that

(v) - (’“ZD)"(U

(K ID ID\" /(1
-\l ok k 0
(kD n N
N l k n 1
kU, n 1+ lDVn 1
lUn 1 + k‘/n 1
Hence
U2-DV? = (kUp_1+1DVy_1)* =D (Un 1+ kVy_1)®

= U?_,(k* = DI?) 4+ U,_1V,_1(2kID — 2kID)
+V7_(PD* - k*D)
= UZ_,(k* - DI*) - D(k* = DI*)V2_,
(k* = DI?) (U2, = DV;?_))

- n—1
= 2.7l =9n

Thus (Uy, V,,) is also a solution of the equation U2 — DV,? = 2". O

Example 2.2. Consider the Pell equation z? — 2y? = 2. The fun-
damental solution is (X1,Y7) = (k,1) = (2,1). Using Eq. (2.9) we
obtain

=

N————

w

'

=N =N =N =N

N~ N N~
[V}

7 N 7N 7N N

N DN NN N DN N DN

O = OFR, OFk OF

=Y =N RO =N
N—

oo Co =~ O
N——— ~~——

7 N 7N 7N 7N

S8 S8 58 S8

N— — 7 N~
I

7N 7N 7N N

N~ N N~
|
7 N 7N 7N 7N
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(%) - (13 G)-(3)
Vs 1 2 0 164
() - (13) ()~ ()
Ve 1 2 0 560 ) -
Hence it is easily seen that
Uz -2V = 2,
UZ -2VE = 4,
Ui —2VE = 8,
Ui -2V = 16,
U2 —2V2 = 32
Uz —-2V¢ = 64
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