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On a Class of Alternatingly Hyperexpansive
Subnormal Weighted Shifts

AMEER ATHAVALE, ABHIJIT RANJEKAR AND V. M. SHOLAPURKAR

Abstract. If T is a weighted shift operator on a Hilbert
space with the associated weight sequence {αn}n≥0 of pos-
itive weights, then meaningful insights into the nature of T
can be gained by examining the sequence {θn(T )}n≥0 where

θ0(T ) = 1 and θn(T ) = Πn−1
k=0αk

2 (n ≥ 1). We characterize
those subnormal weighted shifts whose associated θn(T ) are
interpolated by members of a special subclass of the class
of absolutely monotone functions on the non-negative real
line. The special subclass has such pleasant properties as
being closed under differentiation and integration. We also
attempt to highlight the operator theoretic significance of
such characterizations.

1. Introduction

Let H be a complex infinite-dimensional separable Hilbert space. By
B(H) we will denote the algebra of bounded linear operators on H.
If {en}n≥0 is an orthonormal basis for H, then a weighted shift op-
erator T on H with the weight sequence {αn = αn(T )}n≥0 is defined
through the relations Ten = αnen+1 (n ≥ 0). We will always assume
that αn > 0 for all n, and that {αn}n≥0 is a bounded sequence so
that T is in B(H). The basic properties of weighted shift operators
can be found in [3] and [10]. We will use the notation T = Γ(αn)
to indicate a weighted shift with the weight sequence {αn}n≥0. For
a weighted shift T = Γ(αn), the sequence {θn = θn(T )}n≥0 is de-
fined by θ0 = 1, θn =

∏n−1
k=0 α2

k (n ≥ 1). Note that θn = ||Tne0||2
and αn =

√
θn+1/θn, n ≥ 0. An operator T in B(H) is said to

be subnormal if there exist a Hilbert space K containing H and a
normal operator N in B(K) such that NH ⊂ H and N|H = T .
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An operator T in B(H) is said to be alternatingly hyperexpansive if
(−1)n

∑
0≤p≤n(−1)p

(
n
p

)
T ∗pT p ≥ 0 for all n ≥ 1. The Bergman shift

B = Γ(
√

n+1
n+2 ) is subnormal, while the Dirichlet shift T = Γ(

√
n+2
n+1 )

and the weighted shift T = Γ(n+2
n+1 ) are alternatingly hyperexpansive;

any isometry is subnormal as well as alternatingly hyperexpansive.
While there is a copious amount of literature on subnormal operators
(refer to [3] for references), some basic facts pertaining to alternat-
ingly hyperexpansive operators have been recorded in [1], [7] and [9].

The symbol R+ will denote the set [0,∞) of non-negative reals,
while the symbol N will stand for the set of non-negative integers.
For a real-valued map ϕ on N we define the (forward) difference
operator ∆ as follows: (∆ϕ)(n) = ϕ(n) − ϕ(n + 1). The operators
∆n are inductively defined for all n ≥ 0 through the relations ∆0ϕ =
ϕ, ∆nϕ = ∆(∆n−1ϕ)(n ≥ 1). A non-negative map ϕ on N is said
to be absolutely monotone if (∆kϕ)(n) ≥ 0 for all k, n ≥ 0.

A sequence {βn}n≥0 of reals will be referred to as a moment
sequence if there exist a positive real number b and a positive Borel
measure µ on [0,b] such that

βn =
∫

[0,b]

xndµ(x) (n ≥ 0). (1)

It is well known that a weighted shift T = Γ(αn) is subnormal if and
only if the sequence {θn(T )}n≥0 is a moment sequence corresponding
to a probability measure on

[
0, ||T ||2] (refer to [4]).

For x in R+ and k in N, let (x)k denote the “falling factorial
of x”, that is, (x)0 = 1 and (x)k = x(x − 1) . . . (x − k + 1) for
k ≥ 1. Given a sequence {βn}n≥0 of reals, we have by Newton’s
Interpolation Formula, βn = (1 +4)nβ0, that is,

βn =
n∑

k=0

ak(n)k, (2)

where ak = 4kβ0/k!
It was noted in [9] that a sequence {βn}n≥0 of reals is absolutely

monotone if and only if ak ≥ 0 for all k in (2). Further, as was
recorded in [9], a weighted shift T = Γ(αn) is alternatingly hy-
perexpansive if and only if the sequence {θn(T )}n≥0 is absolutely
monotone.
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A continuous non-negative function on R+ is said to be absolutely
monotone (on R+) if f is infinitely differentiable on (0,∞) and sat-
isfies f (n)(s) ≥ 0 at all points s of (0,∞) and for all n ≥ 0. It is
well known that an absolutely monotone function has a power series
representation on R+ (refer to [11]). A sequence {βn}n≥0 is said to
be interpolated by a function f defined on R+ if f(n) = βn for all
n in N. While it is known that any sequence interpolated by an
absolutely monotone function is absolutely monotone (see [11], for
example), it was observed in [9] that not every absolutely monotone
sequence arises that way.

In the sequel, it will be convenient to use the symbol AH to refer
to the class of alternatingly hyperexpansive operators (on a given
Hilbert space), and the symbols AMS and AMF , respectively to
refer to the class of absolutely monotone sequences and the class of
absolutely monotone functions on R+, respectively. The intersection
of the class AH with the class of subnormals defies an easy descrip-
tion. Indeed, as was shown in Proposition 4.1 of [9], if a subnormal
operator T is such that the spectrum of its ‘minimal’ normal ex-
tension is contained in the complement of the open unit disk in the
complex plane centered at the origin, then T is alternatingly hyper-
expansive; on the other hand there exist alternatingly hyperexpan-
sive subnormal operators such that the spectrum of their minimal
normal extension intersects the open unit disk—consider, for ex-
ample, the weighted shift T = Γ(

√
cosh(n + 1)/cosh(n)) for which

{θn(T ) = cosh(n)}n≥0 is a moment sequence with the corresponding
measure µ concentrated at the points e and 1/e. In the context of
weighted shifts, and in view of our discussion above, an almost tau-
tological answer to the problem under consideration is: A weighted
shift T is subnormal as well as in AH if and only if {θn(T )}n≥0

is an absolutely monotone moment sequence. A natural question
to raise, then, is: Can one characterize those subnormal weighted
shifts T whose associated {θn(T )}n≥0 are interpolated by members
of AMF? While the question could be of interest in its own right,
Theorem 1 below provides a strong motivation for examining such
sequences; indeed, the statement of Theorem 1 is the statement of a
‘spectral permanence property’ of T under the operations of differ-
entiation and integration on the corresponding member of AMF .

As has been pointed out in [2], there is not much literature on
absolutely monotone sequences. To the knowledge of the authors,
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there is no known characterization of absolutely monotone sequences
interpolated by absolutely monotone functions; to that extent, the
question posed above appears difficult to answer. One could, how-
ever, hope to obtain some positive results by looking at special
subclasses of AMF . In Section 2 we introduce a special subclass
AMF* of AMF , and in Section 3 we provide an explicit characteri-
zation of those moment sequences that are interpolated by members
of AMF*. The class AMF* enjoys several pleasant properties; in
particular, we establish that AMF* is closed under the operations
of differentiation and integration and allows the action of differenti-
ation to be interpreted as log(1 + ∆).

We conclude the present section by attempting to highlight the
operator theoretic motivation underlying the considerations in Sec-
tions 2 and 3.

If T = Γ(αn) is a weighted shift operator such that lim
n→∞

αn = α

exists, then it is well known (see [3]) that the assertions (S1), (S2)
and (S3) below hold:

(S1) The spectrum σ(T ) of T equals {λ : | λ |≤ α}.
(S2) The essential spectrum σe(T ) of T equals {λ : | λ |= α}.
(S3) If | λ |< α, then T−λI is Fredholm with the Fredholm index

ind(T − λI) of T − λI being equal to −1.

Lemma 1. Suppose f : R+ → R+ \ {0} is such that f(s) =∫
(0,b]

xsdµ(x) with µ a positive Borel measure and b a positive real.

Then lim
s→∞

f(s+1)
f(s) exists and equals the µ-essential sup norm ||x||∞

of x.

Proof. With f as above, we have limn→∞
f(n+1)

f(n) = ||x||∞ (see [8]).
Let [s] denote the integral part of s and let

g(s) =
∫

(0,b]

(x/||x||∞)[s]dµ(x) (s ≥ 0).

Using [s] ≤ s < [s] + 1, [s + n] = [s] + n (n ∈ N), and x/||x||∞ ≤ 1
([µ]-a.e.), we have

||x||∞ g(s + 2)
g(s)

≤ f(s + 1)
f(s)

≤ ||x||∞ g(s)
g(s + 1)

(s ≥ 0). (3)
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Let now

g1(s) =
g(s + 1)

g(s)
=

1
||x||∞

f([s] + 1)
f([s])

, s ≥ 0.

Clearly, g1(s) =
1

||x||∞
f(n + 1)

f(n)
for n ≤ s < n + 1, so that

lim
s→∞

g1(s) =
1

||x||∞ lim
n→∞

f(n + 1)
f(n)

= 1.

Appealing to the inequalities in (3) we arrive at the assertion

lim
s→∞

f(s + 1)
f(s)

= ||x||∞. ¤

Theorem 1. Let T = Γ(αn) be a weighted shift operator which
is both subnormal and alternatingly hyperexpansive, and such that
the sequence {θn(T )}n≥0 is interpolated by an absolutely monotone
function f(x) =

∑
j≥0 bjx

j (x ≥ 0) satisfying f(0) = 1 and f(s) =∫
(0,b]

xsdµ(x) (s > 0) with µ a positive Borel measure and b a positive
real. Let T d and T i be the weighted shift operators with θn(T d) =
1+f ′(n)
1+f ′(0) and θn(T i) = F (n) where F (x) = 1+

∑
j≥0

bj

j+1xj+1 (x ≥ 0).
If α is the µ-essential sup norm ||x||∞ of x, then all of T , T d and
T i satisfy (S1), (S2) and (S3).

Proof. With T as above we have, from the well-known property of
subnormals, that limn→∞ αn = limn→∞

f(n+1)
f(n) exists; from our ob-

servations in Lemma 1 it is clear that this limit equals α = ||x||∞,
and that lims→∞

f(s+1)
f(s) = α. While the desired conclusion for T is

now obvious, that for T i follows from noting that F ′(s) = f(s) and
applying L’Hopital’s Rule. Since f ′′(s) =

∫
(0,b]

xs(log x)2dµ(x), we

have by Lemma 1 again that β = lims→∞
f ′′(s+1)

f ′′(s) exists. In view of

L’Hopital’s Rule, lims→∞
1+f ′(s+1)
1+f ′(s) and lims→∞

f ′(s+1)
f ′(s) must exist

and equal β. Yet another application of L’Hopital’s Rule shows that
β equals α and the desired conclusion regarding T d follows. ¤

The weighted shift operator T = Γ(
√

cosh(n + 1)/ cosh(n)) sat-
isfies the hypotheses of Theorem 1 so that T and T d = T i =
Γ(

√
(1 + sinh(n + 1))/(1 + sinh(n))) satisfy (S1), (S2) and (S3); it
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should be noted that T d = T i = Γ(
√

(1 + sinh(n + 1))/(1 + sinh(n)))
is not subnormal.

2. The Subclass AMF* of AMF

In the sequel we require a number of combinatorial properties of Stir-
ling numbers S1(n, k) of the first kind and Stirling numbers S2(n, k)
of the second kind (n, k ∈ N); S1(n, k) and S2(n, k) may formally be
defined through relations (D1) and(D2) below as considered valid for
any real number x. For the basic information on Stirling numbers,
the reader is referred to [5]. Some elementary facts regarding Stir-
ling numbers are: S1(0, 0) = S2(0, 0) = 1; S1(n, 0) = S2(n, 0) = 0
(n ≥ 1); S1(n, 1) = (n−1)! (n ≥ 1); S2(n, 1) = 1 (n ≥ 1); S2(n, 2) =
2n−1 − 1 (n ≥ 1); S1(n, n) = S2(n, n) = 1 (n ≥ 0); S1(n, k) =
S2(n, k) = 0 (n < k).

Further, we require recurrence relations (R1), (R2) (with n, k in
N \ {0}), inversion formulas (I1), (I2), equalities (E1), (E2), (E3),
and “generating function formulas” (G1), (G2) (with n, k, m in N)
as given below and for which the reader is referred to Chapters 6
and 7 of [5].

(D1) (x)n =
∑n

k=0 S1(n, k)(−1)n−k
xk

(D2) xn =
∑n

k=0 S2(n, k)(x)k

(R1) S1(n, k) = (n− 1)S1(n− 1, k) + S1(n− 1, k − 1)

(R2) S2(n, k) = kS2(n− 1, k) + S2(n− 1, k − 1)

(I1)
∑

k≥0 S1(n, k)S2(k, m)(−1)n−k = δn,m

(I2)
∑

k≥0 S2(n, k)S1(k, m)(−1)n−k = δn,m

(E1) S2(n + 1,m + 1) =
∑

k≥0

(
n
k

)
S2(k,m)

(E2) m!S2(n,m) =
∑

k≥0

(
m
k

)
kn(−1)(m−k)

(E3)
(

n
m

)
=

∑
k≥0 S2(n + 1, k + 1)S1(k,m)(−1)(m−k)

(G1)
(
log 1

1−x

)m = m!
∑

k≥0 S1(k, m)xk

k! (−1 < x < 1)

(G2) 1
(1−x)w =

∑
k≥0

∑
r≥0 S1(k, r)wr xk

k! (−1 < x < 1, w ∈ R+).

Given a sequence {γn =
∑n

k=0 ak(n)k}n≥0 of reals, we define, for
r ≥ 0,

br =
∑

k≥0

(−1)k−rakS1(k, r).
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We use AMS∗ to denote the set of those sequences {γn}n≥0 in
AMS that satisfy conditions (A) and (B) below:

(A)
∑

k≥0

∑
r≥0 akS1(k, r)nr < ∞ for each n ∈ N (here 00 is

interpreted as the number 1);

(B) br ≥ 0.

Further, we use AMF ∗ to denote the set of those functions f(x) =∑
r≥0 crx

r in AMF for which

(C)
∑

j≥0

∑
k≥0

∑
r≥0 cjS2(j, k)S1(k, r)nr < ∞ for each n ∈ N.

Theorem 2. Every sequence {γn}n≥0 in AMS∗ is interpolated by
a member of AMF ∗. Conversely, any sequence {γn}n≥0 that is in-
terpolated by a member of AMF ∗ is a member of AMS∗.

Proof. If {γn}n≥0 is in AMS∗, then it follows from condition (A)
that

∑
r≥0 brn

r < ∞ for all n ≥ 0. Consider the function f(x) =∑
r≥0 brx

r on R+. Clearly f is a convergent power series on R+

and condition (B) shows that f is an absolutely monotone function.
Further, f(n) =

∑
r≥0 brn

r =
∑

r≥0[
∑

k≥0(−1)k−rakS1(k, r)]nr =∑
k≥0 ak[

∑
r≥0(−1)k−rS1(k, r)nr] =

∑
k≥0 ak(n)k = γn (the inter-

change of summations is justified by condition (A)). Hence f is an ab-
solutely monotone function that interpolates the sequence {γn}n≥0 .
Further, γn = f(n) =

∑
r≥0 brn

r =
∑

r≥0 br[
∑

k≥0 S2(r, k)(n)k] =∑
k≥0[

∑
r≥0 S2(r, k)br](n)k so that ak =

∑
r≥0 S2(r, k)br. Also,

∑

j≥0

∑

k≥0

∑

r≥0

bjS2(j, k)S1(k, r)nr

=
∑

r≥0

∑

k≥0

[
∑

j≥0

bjS2(j, k)]S1(k, r)nr

=
∑

r≥0

∑

k≥0

akS1(k, r)nr < ∞

by condition (A). Hence the function f interpolating the sequence
{γn}n≥0 satisfies condition (C) and is a member of AMF ∗.

Conversely, for f =
∑

k≥0 ckxk in AMF ∗, consider the abso-
lutely monotone sequence {γn = f(n) =

∑n
k=0 ak(n)k }n≥0 inter-

polated by f . From our observations above it follows that ak =
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∑
r≥0 S2(r, k)cr. Now,

bj =
∑

k≥0

(−1)k−jakS1(k, j)

=
∑

k≥0

[∑

r≥0

S2(r, k)cr

]
(−1)k−jS1(k, j).

Since the function f is a member of AMF ∗, the series representing
bj is absolutely convergent so that we have

bj =
∑

r≥0

[∑

k≥0

(−1)k−rS2(r, k)S1(k, j)
]
(−1)r−jcr

=
∑

r≥0

δ(r, j)(−1)r−jcr = cj .

Thus the sequence {γn = f(n)}n≥0 satisfies condition (B). Further,
∑

k≥0

∑

r≥0

akS1(k, r)nr

=
∑

k≥0

∑

r≥0

∑

p≥0

S2(p, k)cpS1(k, r)nr < ∞,

since the function f is a member of AMF ∗. Thus the sequence
{γn = f(n)}n≥0 satisfies condition (A) as well. ¤

Examples 1. (i) Any sequence {βn}n≥0 for which βn = p(n), where
p(n) is a polynomial with non-negative coefficients, is a member of
AMS∗. If, moreover, p(0) = 1, then p(n) may be looked upon as
θn(T ) corresponding to a weighted shift T that is an alternatingly
hyperexpansive d-isometry (refer to [9]). Besides the trivial case of
the constant polynomial p(z) = 1, the weighted shifts so obtained
are necessarily non-subnormal.
(ii) For the sequence {βn = (1 + δ)n}n≥0, with 0 ≤ δ < 1, we have
ak = δk/k!. Since 0 ≤ δ < 1, we have, in view of identity (G2),∑

k≥0

∑
r≥0 akS1(k, r)nr =

∑
k≥0

∑
r≥0 S1(k, r) δk

k! n
r = 1

(1−δ)n < ∞
for all n ≥ 0. Hence {βn}n≥0 satisfies condition (A).
Further, br =

∑
k≥0(−1)k−rS1(k, r)ak =

∑
k≥0(−1)k−rS1(k, r) δk

k! .

Since 0 ≤ δ < 1, we have br = 1
r! [log(1 + δ)]r (r ≥ 0), in view of

identity (G1). Thus {βn}n≥0 satisfies condition (B) as well. It is seen
that {βn}n≥0 is interpolated by the absolutely monotone function
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f(x) =
∑

r≥0 brx
r =

∑
r≥0

1
r! [log(1 + δ)]rxr = ex log(1+δ) = (1 + δ)x.

We will return to this example following Theorem 6 below.
Theorems 3 and 5 below show that the class AMF ∗ is closed

under the operations of differentiation and integration, while Theo-
rem 4 below deciphers the action of differentiation on that class.

Theorem 3. If f belongs to AMF ∗ then the derivatives f (k) belong
to AMF ∗ for all k ≥ 0.

Proof. If f(x) =
∑

j≥0 bjx
j then f ′(x) =

∑
j≥0 cjx

j , where cj =
(j + 1)bj+1. In view of identity (E1) we have

(j + 1)S2(j, k) ≤ S2(j + 2, k + 1).

Thus
∑

j≥0

∑

k≥0

∑

r≥0

(j + 1)bj+1S2(j, k)S1(k, r)nr

≤
∑

j≥0

∑

k≥0

∑

r≥0

bj+1S2(j + 2, k + 1)S1(k, r)nr

= P1 + P2 + P3,

where

P1 =
∑

j≥0

∑

k≥0

∑

r≥0

bj+1S2(j + 1, k + 1)kS1(k, r)nr,

P2 =
∑

j≥0

∑

k≥0

∑

r≥0

bj+1S2(j + 1, k + 1)S1(k, r)nr

and
P3 =

∑

j≥0

∑

k≥0

∑

r≥0

bj+1S2(j + 1, k)S1(k, r)nr.

(Here we used the recurrence relation (R2) for S2(j + 2, k + 1).)
Since f is a member of AMF ∗, we have P3 < ∞. The finiteness of
P1 and that of P2 follow by noting that kS1(k, r) ≤ S1(k + 1, r) and
S1(k, r) ≤ S1(k+1, r+1) and using condition (C) for the function f .
Thus f ′ satisfies condition (C) and hence belongs to AMF ∗. ¤

The difference operator 4 can be interpreted to act on any func-
tion f defined on R+ through the relation 4f(x) = f(x + 1)− f(x).
Interpreted thus, 4 acts on any real analytic function f as eD − 1,
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where D denotes differentiation (refer to [5], Chapter 9). It is fur-
ther known (refer to [6], Chapter 5) that D acts on polynomials as
log(1 +4) (see Definition 1 below). In Theorem 4 below, we estab-
lish that D effectively acts as log(1+4) on any member of the class
AMF ∗.

Lemma 2. (a) If {γn =
∑n

k=0 ak(n)k }n≥0 is in AMS∗, then∑
k≥0

4kγd

k! S1(k, r) < ∞ for all non-negative integers d and r.

(b) If f is in AMF ∗, then
∑

p≥0

∑
k≥0

fp(d)
p! S2(p, k)S1(k, r) < ∞

for all non-negative integers d and r.

Proof. (a) For the sequence {γ̃n = γn+1 =
∑n

k=0 ãk(n)k}, we
have ãk = 4kγ̃0/k! = 4kγ1/k! = 4k(1 + 4)γ0/k! = 4kγ0/k! +
4k+1γ0/k! = ak + (k + 1)ak+1. Consider

∑

k≥0

∑

r≥0

ãkS1(k, r)nr =
∑

k≥0

∑

r≥0

[ak + (k + 1)ak+1]S1(k, r)nr

= P1 + P2 + P3,

P1 =
∑

k≥0

∑
r≥0 akS1(k, r)nr, P2 =

∑
k≥0

∑
r≥0 kak+1S1(k, r)nr

and P3 =
∑

k≥0

∑
r≥0 ak+1S1(k, r)nr. The finiteness of P1 follows

from condition (A). Using the recurrence relation (R1), one has
kS1(k, r) ≤ S1(k+1, r), leading to the finiteness of P2. Further, using
the same recurrence relation, one has S1(k, r) ≤ S1(k+1, r+1), lead-
ing to the finiteness of P3. Thus {γ̃n} satisfies condition (A). Since
{γn}n≥0 is in AMS∗, there exists a function f(x) =

∑
p≥0 bpx

p in
AMF ∗ such that γn = f(n) for n ∈ N. Hence,

4kγ̃0 = 4kγ1 = 4kf(1) =
k∑

r=0

(
k

r

)
(−1)k−rf(1 + r)

=
k∑

r=0

(
k

r

)
(−1)k−r

[∑

p≥0

bp(1 + r)p
]

=
∑

p≥0

[ k∑
r=0

(
k

r

)
(−1)k−r(1 + r)p

]
bp

=
∑

p≥0

d(k, p)bp.
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Now, by (E2),

d(k, p) =
k∑

r=0

(
k

r

)
(−1)k−r(1 + r)p

=
k∑

r=0

1 + r

k + 1

(
k + 1
r + 1

)
(−1)k−r(1 + r)p

=
1

k + 1

k∑
r=0

(
k + 1
r + 1

)
(−1)k−r(1 + r)p+1

=
1

k + 1
(k + 1)! S2(p + 1, k + 1)

= k!S2(p + 1, k + 1).

Hence, ãk = 4kγ̃0/k! =
∑

p≥0 d(k, p)bp/k! =
∑

p≥0 S2(p+1, k+1)bp.
Thus,

b̃r ≡
∑

k≥0

S1(k, r)(−1)k−rãk

=
∑

k≥0

S1(k, r)(−1)k−r
[∑

p≥0

S2(p + 1, k + 1)bp

]

=
∑

p≥0

[∑

k≥0

S2(p + 1, k + 1)S1(k, r)(−1)k−r
]
bp

=
∑

p≥0

(
p

r

)
bp,

where in the last step we used identity (E3). Since
∑

p≥0

(
p
r

)
bp =

fr(1)/r!, we have 0 ≤ b̃r < ∞. (The justification for the interchange
of summations can be provided as follows:

∑

p≥0

∑

k≥0

S2(p + 1, k + 1)S1(k, r)bp

=
∑

p≥0

∑

k≥0

[S2(p, k) + (k + 1)S2(p, k + 1)]S1(k, r)bp

= Q1 + Q2 + Q3,
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where

Q1 =
∑

p≥0

∑

k≥0

S2(p, k)S1(k, r)bp,

Q2 =
∑

p≥0

∑

k≥0

S2(p, k + 1)kS1(k, r)bp,

Q3 =
∑

p≥0

∑

k≥0

S2(p, k + 1)S1(k, r)bp.

Since f is in AMF ∗, using condition (C) for n = 1, the finiteness of
Q1 follows. The finiteness of Q2 and that of Q3 follow by appealing
to the recurrence relations (R1) and (R2) again.) Thus {γ̃n} satisfies
condition (B) as well. Hence {γ̃n} is a member of AMS∗. It follows
that the sequence {γn+d}n≥0 is in AMS∗ for every d ≥ 0. In par-
ticular,

∑
k≥0

∑
r≥0

4kγd

k! S1(k, r)nr < ∞ for every d ≥ 0. Putting
n = 1, the desired conclusion follows.
(b) If the sequence {γn}n≥0 belongs to AMS∗, then it follows from
the proof of Theorem 1 that the function f(x) =

∑
r≥0 brx

r be-
longs to AMF ∗. By part (a) above, the sequence {γ̃n} belongs
to AMS∗ and hence the function f̃(x) =

∑
r≥0 b̃rx

r is a mem-
ber of AMF ∗. As shown in the proof of part (a) above, we have
b̃r = fr(1)/r!; thus f̃(x) =

∑
r≥0 fr(1)/r!xr = f(x + 1). This

shows that g1(x) = f(x + 1) is a member of AMF ∗, and so is
gd(x) = f(x + d) for every integer d ≥ 0. Thus gd satisfies condi-
tion (C), that is,

∑
p≥0

∑
k≥0

∑
r≥0

fp(d)
p! S2(p, k)S1(k, r)nr < ∞ for

every n ≥ 0. Putting n = 1, the desired conclusion follows. ¤

For m ∈ N, let AMS(m) denote the class of absolutely monotone
sequences {γn}n≥0 for which

∑
p≥m m!(−1)p−mS1(p,m)4

pγn

p! are
finite real numbers for all n ≥ 0.

Definition 1. Given a sequence {γn}n≥0 in AMS(m), define

[log(1 +4)]mγn =
∑

p≥m

m!(−1)p−mS1(p,m)
4pγn

p!
.

(In particular, for m = 1,

log(1 +4)γn =
∑

k≥1

(−1)k+1

k
4kγn =

∑

k≥1

(−1)k−1S1(k, 1)
4kγn

k!
.)
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Theorem 4. The inclusion AMS∗ ⊂ AMS(m) holds for every
positive integer m; moreover, the following commutative diagram
holds with D denoting differentiation:

[log(1+4)]m

AMS∗ −−−−−−−→ AMS∗

xI

xI

Dm

AMF ∗ −−−−−−−→ AMF ∗

Proof. Suppose a sequence {γn}n≥0 is interpolated by f in AMF ∗;
then {γn}n≥0 is a member of AMS∗ by Theorem 1, and by part (a)
of Lemma 2 we have that

∑∞
p=0

4pγn

p! S1(p, m) < ∞ for every n ≥ 0
and m ≥ 0. Hence [log(1 +4)]mγn is a finite real number for every
m ≥ 0 and n ≥ 0. Since γn = f(n) for all n ≥ 0, we have

4pγn = 4pf(n) = (−1)p

p∑
r=0

(
p

r

)
(−1)rf(n + r)

= (−1)p

p∑
r=0

(
p

r

)
(−1)r

[ ∞∑

k=0

rkf (k)(n)/k!
]

=
∞∑

k=0

[ p∑
r=0

(
p

r

)
(−1)p−rrk

]
f (k)(n)/k!

=
∞∑

k=0

p!S2(k, p)f (k)(n)/k!,

where in the last step we used identity (E2). Also,

[log(1 +4)]mγn =
∞∑

p=0

m!(−1)p−mS1(p,m)
4pγn

p!

=
∞∑

p=0

m!(−1)p−mS1(p,m)
[ ∞∑

k=0

S2(k, p)f (k)(n)/k!
]
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= m!
∞∑

k=0

[ ∞∑
p=0

S2(k, p)S1(p,m)(−1)k−p
]
(−1)m−kf (k)(n)/k!

= m!
∞∑

k=0

δk,m(−1)m−kf (k)(n)/k!

= m!f (m)(n)/m! = f (m)(n).

(The interchange of summations above is justified by part (b) of
Lemma 2.) ¤

Theorem 5. If f(x) =
∑

j≥0 bjx
j belongs to AMF ∗, then the func-

tion F (x) = 1+
∑

j≥0
bj

j+1xj+1 (obtained by integrating the series for
f(x) term by term) belongs to AMF ∗.

Proof. If F (x) =
∑

j≥0 b̃jx
j then b̃0 = 1, b̃j = bj−1

j (j ≥ 1). Using
the recurrence relation (R2) we have

∑

j≥0

∑

k≥0

∑

r≥0

b̃jS2(j, k)S1(k, r)nr = 1 + P1 + P2,

where P1 =
∑

j≥1

∑
k≥0

∑
r≥0

bj−1
j kS2(j − 1, k)S1(k, r)nr and P2 =∑

j≥1

∑
k≥0

∑
r≥0

bj−1
j S2(j − 1, k − 1)S1(k, r)nr. For k > j one has

S2(j, k) = 0 so that in P1 one may only consider the terms for which
k ≤ j. Thus

P1 ≤
∑

j≥1

∑

k≥0

∑

r≥0

bj−1S2(j − 1, k)S1(k, r)nr.

Further, it follows from the recurrence relation (R1) that S1(k, r) ≤
(k − 1)S1(k − 1, r − 1). Thus

P2 ≤
∑

j≥1

∑

k≥0

∑

r≥0

bj−1S2(j − 1, k − 1)S1(k − 1, r − 1)nr.

The finiteness of P1 and that of P2 follow by using condition (C) for
the function f . Thus F satisfies condition (C) and hence belongs to
AMF ∗. ¤

3. Moment Sequences in AMS∗

Theorem 6 below provides necessary and sufficient conditions for an
absolutely monotone moment sequence to fall in AMS∗.
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Theorem 6. Let {βn =
∑

k≥0 ak(n)k}n≥0 be an absolutely mono-
tone sequence as well as a moment sequence with the representation
βn =

∫
[0,b]

xndµ(x) (n ≥ 0) (where µ is a finite positive Borel mea-
sure on [0, b], b > 0). Then {βn}n≥0 is in AMS∗ if and only the
measure µ is supported on the open interval (0, 2) and satisfies con-
ditions (A*) and (B*) below:

(A*)
∫
[1,2)

1
(2−x)n dµ(x) < ∞ for every positive integer n.

(B*)
∫
(0,2)

(log x)rdµ(x) ≥ 0 for every odd positive integer r.

Proof. For any sequence {βn}n≥0 as in the hypotheses of the the-
orem and with µ supported on (0, 2) in particular, one may write
ak = Ak + (−1)kBk, where Ak =

∫
[1,2)

(x−1)k

k! dµ(x) for k ≥ 0 and

Bk =
∫
(0,1)

(1−x)k

k! dµ(x) for k ≥ 0. Since ak ≥ 0 for all k ≥ 0, one
has A2k−1 ≥ B2k−1 for all k ≥ 1. Further, 2kA2k ≤ A2k−1 for k ≥ 1
and 2kB2k ≤ B2k−1 for k ≥ 1.

Suppose now the sequence {βn}n≥0 belongs to AMS∗. We first
observe that the measure µ must be supported on (0, 2). Indeed, if
µ{[2, b]} > 0, then it is easy to see that the series

∑
k≥0 a2kS1(2k, 1)

is divergent; similarly µ({0}) > 0 leads to the divergence of the same
series. Next, {βn}n≥0 satisfies condition (A) so that

∑

k≥0

∑

r≥0

akS1(k, r)nr < ∞

for all n ≥ 0. Since a2k ≥ A2k for all k ≥ 0, one has

∑

k≥0

∑

r≥0

A2kS1(2k, r)nr < ∞

for all n ≥ 0. Using the fact (2k + 1)A2k+1 ≤ A2k for k ≥ 0 and
the recurrence relation (R1), one also has A2k+1S1(2k + 1, r)nr ≤
A2kS1(2k, r)nr + nA2kS1(2k, r − 1)nr−1 for all k ≥ 0, n ≥ 1. This
shows that

∑
k≥0

∑
r≥0 A2k+1S1(2k + 1, r)nr < ∞ for all n ≥ 0.

Thus
∑

k≥0

∑
r≥0 AkS1(k, r)nr < ∞ for all n ≥ 0. It then follows

from

∑

k≥0

∑

r≥0

AkS1(k, r)nr =
∑

k≥0

∑

r≥0

[∫

[1,2)

(x− 1)k

k!
dµ(x)

]
S1(k, r)nr
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=
∫

[1,2)

[∑

k≥0

∑

r≥0

(x− 1)k

k!
S1(k, r)nr

]
dµ(x)

=
∫

[1,2)

1
(2− x)n

dµ(x)

for all n ≥ 1 that (A*) is satisfied. (We used the formula (G2) here).
Further,

br =
∑

k≥0

(−1)k−rakS1(k, r)

=
∑

k≥0

(−1)k−r
[∫

(0,2)

(x− 1)k

k!
dµ(x)

]
S1(k, r)

=
∫

(0,2)

[
(−1)r

∑

k≥0

(1− x)k

k!
S1(k, r)

]
dµ(x)

=
∫

(0,2)

(log x)r

r!
dµ(x)

for all r ≥ 1, so that (B*) holds. (We used the formula (G1) here.)
Conversely, suppose µ is supported on (0, 2) and (A*) and (B*)

hold. Our observations above show that∑

k≥0

∑

r≥0

AkS1(k, r)nr < ∞

for all n ≥ 0. Clearly, a2k−1 ≤ A2k−1 for all k ≥ 1 so that, to verify
condition (A), we need only verify the finiteness of

∑

k≥0

∑

r≥0

a2kS1(2k, r)nr (n ≥ 0).

Note that a2k = A2k + B2k ≤ A2k−1
2k + B2k−1

2k ≤ 2A2k−1
2k for all k ≥ 1.

Using the recurrence relation (R1), we have

a2kS1(2k, r)nr ≤ 2A2k−1

2k
S1(2k, r)nr

≤ 2A2k−1S1(2k − 1, r)nr + nA2k−1S1(2k − 1, r − 1)nr−1

for all k and n ≥ 1, and it is now clear that (A) holds. Further, (B*)
yields the non-negativity of br (r ≥ 0) in view of our computations
earlier so that (B) holds as well, and {βn}n≥0 falls in AMS∗. ¤
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Examples 2. (i) As noted in (ii) of Examples 1 above, the se-
quence {βn = (1 + δ)n}n≥0, with 0 ≤ δ < 1, is a member of AMS∗.
The sequence {βn}n≥0 satisfies the hypotheses of Theorem 6 with
the corresponding measure µ being the unit point mass at (1 + δ).
Clearly, the sequence {βn}n≥0 can be looked upon as {θn(T )}n≥0

corresponding to a weighted shift T that is an alternatingly hyper-
expansive subnormal operator.
(ii) The function f(x) = (ax + a−x)/2, where 1 < a < 2, defines a
member of AMF ∗ such that the sequence f(n) satisfies the hypothe-
ses of Theorem 6; the corresponding weighted shift is alternatingly
hyperexpansive and subnormal with the associated measure µ con-
centrated at the points a and 1/a. On the other hand, the absolutely
monotone moment sequence {cosh(n)}n≥0 does not satisfy the hy-
potheses of Theorem 6.
(iii) In view of Theorems 2 and 3, the sequence {βn = f ′(n)}n≥0

that is interpolated by the derivative f ′(x) of the function f(x) in
(ii) above is a member of AMS∗; however, the weighted shift T
with θn(T ) = 1 + βn, though alternatingly hyperexpansive, is non-
subnormal.

Motivated by our observations so far, we raise the following ques-
tions.

Questions. If T = Γ(αn) is such that {θn(T )}n≥0 is interpolated by
a member of AMF∗, does the limit limn→∞ αn exist? More gener-
ally, does the limit limn→∞ αn exist if {θn(T )}n≥0 is interpolated by
an absolutely monotone function on R+? In general, does the limit
limn→∞ αn exist for any alternatingly hyperexpansive weighted shift
T = Γ(αn)?
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