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Discrete Characterizations of Exponential Dichotomy
for Evolution Families

PETRE PREDA, ALIN POGAN AND CIPRIAN PREDA

ABSTRACT. We present some characterizations of exponen-
tial dichotomy using a discrete argument. The results ob-
tained generalize to the case of exponential dichotomy some
theorems proved by Littman, Rolewicz and Zabczyk.

1. INTRODUCTION

One of the most remarkable results in the theory of stability for a
strongly continuous semigroup of linear operators has been obtained
by Datko [2] in 1970; it states that the semigroup T' = {T'(¢) }+>0 is
uniformly exponentially stable if and only if, for each vector z from
the Banach space X, the application t +— ||T'(t)z|| lies in L*(Ry).
Later, A. Pazy (see for instance [10]) showed that the result remains
true even if we replace L?(R,) with LP(R..), where p € [1,00). In
1973, R. Datko [3] generalized the results above as follows.

Theorem 1.1. An evolutionary process U = {U(t, s)}hi>s>0 with
exponential growth is uniformly exponentially stable if and only if
there is p € [1,00) such that

o0
sup/ U (¢, s)z||Pdt < oo (x € X).
s>0 Js

The result provided by Theorem 1.1 was extended to dichotomy by
P. Preda and M. Megan [14] in 1985. The same result was generalized
in 1986 by S. Rolewicz [16] in the following way.
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Theorem 1.2. Let ¢ : R — R be a continuous, nondecreasing
function with $(0) = 0 and ¢(u) > 0 for each positive u, and U =
{U(t,s)}i>s>0 an evolutionary process on X with exponential growth.

If

sup /Ooqb(HU(t, gel)dt <oo  (x€X),
s>0 Js

then U is uniformly exponentially stable.

We note here the result obtained independently by Littman [6] in
1989, in the case of Cy-semigroups but without the assumption of
continuity of ¢.

Results of this type, for the case of Cy-semigroups were provided
by I. Zabcezyk [17] in 1974, with the additional requirement that the
function ¢ is also convex, as can be seen below:

Theorem 1.3. For every Cy-semigroup T = {T'(t) }+>0 the following
statements are equivalent:

(i) T is exponentially stable;

(ii) there is a convex increasing function ¢ : Ry — Ry wvanishing
at 0 and for every x € X there is a(x) > 0 such that

/ Tla@IT@al)dt < oo (v € X);

(iii) there is a convex increasing function ¢ : Ry — Ry with
»(0) =0 and for every x € X there is a(x) > 0 such that

Z @(a(sc)HT(n)xH) < o0 (z € X).
n=0

Also, more recently, an unified treatment was presented by J. M.
A. M. Neerven [8] in terms of Banach functions spaces.

The aim of this paper is to extend the preceding results to the
case of exponential dichotomy using a discrete time argument.

2. PRELIMINARIES

In the beginning we will fix some standard notation. We denote by
A the set of all non-decreasing functions a : Ry — Ry with the
property that a(t) > 0 for all ¢ > 0. In what follows we will put X
for a Banach space and B(X) the Banach algebra of all linear and
bounded operators acting on X.
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Remark 2.0. Ifae Aand A: Ry — R4, A(u) = / a(s)ds, then
A€ A and A is a continuous convex bijection. 0

Definition 2.1. A family of bounded linear operators acting on X
and denoted by U = {U(t,s)}1>s>0 s called an evolution family
if the following properties hold:

e1) U(t,t) =1 (the identity operator on X), for all t > 0;

e) U(t,s) =U(t,r) U(r,s), forallt >r>s>0;

es) there exist M,w > 0 such that

(U, s)|| < M=) forall t>s>0.

In order to deal with the dichotomy property we give the following:

Definition 2.2. A function P : Ry — B(X) is said to be a di-
chotomy projection family if

p1) P2(t) = P(t), for all t > 0;

p2) P()x is a bounded function, for all x € X.

We also denote by Q(t) =1 — P(t), t > 0.

Definition 2.3. An evolution family U is said to be uniformly expo-
nentially dichotomic (u.e.d.) if there exists P a dichotomy projection
family and two constants N,v > 0 such that the following conditions
hold:

dy) P(t)U(t,s) = U(t,s)P(s) for allt > s > 0;

dy) U(t,s) : KerP(s) — KerP(t) is an isomorphism for all t >
s >0;

d3) |U(t,s)z| < Ne7vE=9)||z||, for allt > s > 0, and all €
ImP(s);

di) U, s)z|| > 4e’t=)|z||, for allt > s > 0, and all z €
KerP(s).

In what follows we will consider an evolution family U for which
there is a dichotomy projection family P such that the properties dy)
and dg) hold. In this case we will denote by

Ui(t,s) =U(t,s)| ImP(s) , Usx(t,s)=U(t,s)| KerP(s).

Even if all the conditions eq), e3), es) and dy), da) are satisfied, it
does not follows that Us ! has exponential growth, as the following
example shows.
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Example 2.4. Let X = R, U(t,s) = e@=") P(t) = 0. Then
Uy'(t,s) = e =" for all t > s > 0 and hence U, ' does not have
exponential growth.

Remark 2.5. The evolution family U is u.e.d. if and only if there
exist the constants N1, No,v1,v9 > 0 such that, for allt > s > 0,

UL (8 s)l| < Nie =) and ||[Uy (8, 5)|| < Noe™™2(72),

Lemma 2.6. Let g : {(t,s) € R?> : t > s > 0} — Ry. If g satisfy
the conditions

i) g(t,s) <g(t,r)g(r,s) , forall t>r=>s2>0;

H) sup g(tvtO) < 005
0<to<t<to+1

iii) there exists h: N — R4 with lim h(n) =0 such that

g(m + ng,ng) < h(m) (m, ng € N),
then there exist N,v > 0 such that
g(t,tg) < Ne7?t=t) (£ >ty >0).

Proof. Let a = sup  g(t,to), mo =min{m € N : h(m) < 1}.
0<to<t<to+1
Conditions i) and ii) imply that sup g(t, tp) < a™o. Fix
0<to<t<to+mo
t t
t,to > 0 with t > tg+2mg, m = [—}, n= [—0} , where [s] denotes
mo mo

the largest integer less or equal than s € R. It follows that
mmo <t < (m+ 1)mg, nmg <ty < (n+1)mgo, m>n+2,
and

g(ta tO) < g(t7 mmo)g(mno, (n + 1)n0)g((n + 1)710, tO)

IN

a™® H g(kmg, (k — 1)mg)a™ = a*™° H h(mo)
k=n-+2 k=n-+2

m
_t=tg
a2m0 H 6_1 _ a2moe—(m—n—l) < a2m062 o

k=n-+42

IN
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If tog <t <ty + 2myg, then it follows easily that

_t=tg
gt to) < a®™0 < g?m0e® o

and hence that
g(t, to) < Ne V(t=t0) = forall t>t,>0 , where

1
N = e2g?mo v=—. O

)

Lemma 2.7. Ifa € A, a: N? — R, v > 0 satisfy the following
conditions:
i) sup{a(n,m):m,n € N,n < k} < oo;

n

1
ii) there exists C > 0 such that Y a(—ja(n,m)) < C, for all
e'U

j=0
m,n € N, then sup a(n,m) < co.
m,neN
Proof. Assume towards a contradiction that sup a(m,n) = oo.
Having in mind that m,neN
lim a(e"?) = oo,
p—00
we find
oo
Z a(e’?) = oo,
p=0
which implies that there exists kg € N such that
ko
Za(e”p) >C+1.
p=0

By our assumption and by condition i) it follows that

sup  a(n,m) = oo,
m>0,n>ko

and so there exist mg,ng € N, with ng > ko and ap, ., > ewko . Now
it is easy to check that

no 1 no 1
vk
C> Za(—ja(no,mo) > (6736 0)
j=0 j=
k() k(J
=Y o) = Y aen) = 1
7=0 p=0

which is a contradiction. O
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3. THE MAIN RESULT
We start with the following

Lemma 3.1. Ifa € A is a continuous convex function and if
T : N? — B(X) is an operator-valued function with the property that

oo
sup Y a(|[T(m,n)z|) <oo  (z € X),
meN n—0
then there exist jo € N,rg > 0 such that

sup S a(|T(m,n)el) <jo  (x€X with |z] <ro).

me n=0

Proof. For every natural number j we consider the set

oo
Hj={xeX: sup Za(HT(m,n)xH) <j}
me n=0
From the fact that a is continuous it follows that H; is a closed set
and since a is also convex it follows that H; is a convex set for all

7 € N. Using the hypothesis we can state that

X:Gm
=0

By Baire’s theorem it follows that there exists jo € N such that I,
has nonempty interior. Then there are zyp € X and ry > 0 such
that every y € X with ||y — x| < ro belongs to Hj . Let x € X
with [|z|| < rg and 21 = & 4+ g, 22 = © — 2. Then |21 — 29| =
| = x2 — x| = ||z|| < ro and hence x1, —x2, x2 € Hj,. Finally, by
convexity of Hj;, we obtain that

O

0*

1 1 1 1
xr = 5171 + 51’2 € iHjO + iHjO = Hj
Now, we can state the main result of this paper.

Theorem 3.2. The evolution family U is u.e.d. if and only if there
exist a,b € A such that, for all x € X,

sup Za(HUl(k +m,m)P(m)z||) < oo and

meN k=0 m
sup Zb(”U{l(m,k)Q(m)xH) < 0.
meN 20
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Proof. Necessity. It is a simple computation for a(t) = b(t) = .
Sufficiency. Step 1. Let us define

1
a:N? = Ry, a(n,m) = M”Ul(” +m, m)Q(m)z||

where x € X is fixed arbitrary. It follows that

n n

Za(ﬁa(n,m)) _ Oa(]wewl(n_k)HUl(n +m,m)P(m)a )

J=0

>
Il

M=

a([|Ur(k +m,m)P(m)z|])

b
i

0

< sup Za(HUl(k‘-i-m, m)P(m)z|) < oo,
meN 2o

for all m,n € N. By Lemma 2.7, it follows that sup «(n,m) < oo,
m,neN

and hence by the principle of uniform boundedness we obtain that
there exists Ly > 0 such that, for all m,n € N,

[UL(n +m,m)P(m)|| < Ly.

Now it is easy to see that

sup Z A(|Ur(k + m, m)P(m)x||)
meN k=0

< Li||z|| sup Za(HUl(k +m,m)P(m)z||) < oo,
mEN k=0

for all x € X, where A is the function defined in Remark 2.0, which
belongs to A and is continuous and convex, and hence, by apply-
ing Lemma 3.1 to the operator-valued function T : N? — B(X),
T(m, k) = Ui (k + m,m)P(m) it results that there exist j; € N and
r1 > 0 such that

D AUk + m,m)P(m)a|) < ji
k=0
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for all m € N and all x € X with ||| < r;. A simple computation
shows that

A(lUr(n +m,m)P(m)z|) =

A(|Ui(n +m,m+ k)P(m + k)Uy(m + k,m)P(m)z||)

IN

M- 1M 11 IM-

A(Ly[|Ur(m + k,m) P (m)z])

AU (m + k,m)P(m)(Liz)[]) < j

ES
I

0

r

for all m,n € N, and each z € X with |jz|| < —. Because A is also
o Ly

bijective we have that

I .
U1 (n+m,m)|| < rTlA_l(nj—fl—l) (m,n € N).

From Lemma 2.6 it follows that there exist the constants Ny, > 0
such that

UL (£, 8)[| < Nyem 10790 (£ > 5 >0).

Step 2. Now fix # € X arbitrary and consider 3: N? — R,

Bn,m) = U5 (04 1,m)Q(n + 1.

Then we have

ib<ew3 ) Z (Mew(" k) ||U2 ( +1,n)Q(n+1):17||>

= b5 V2 U (0 1 R)QUn + 1]

k=0
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< D Ob(IUz H(n+ 1, k)Q(n + 1)z])
k=0
n+1
> b(1Us (0 + 1L, k)Q(n + 1)z

k=0

IN

< bupzb 1U5 (1 k)Q(Dzl) < oo,

1eN ;=0
for all n,m € N. As a consequence of Lemma 2.7. we obtain that

sup ||U{1(n+1,n)Q(n+l)xH < 00 (z € X),
neN

and by the principle of uniform boundedness it follows that

sup [[Us ' (n + 1,n)| < oc.
neN

Now it is clear that there exists a constant § > 0 such that
U3 (n,m)|| < 7™ (0> m).
For x an arbitrary vector of X, we define
7 iN? = Re, A(nom) = Uy (n -+ m,m)Q(n + m)al .
We have that, for all m,n € N,

Zn:b( ; v(n, m))

Jj=0

=" (105 G+ mm) Uz (4, + m)Qm + )]

=0
< > b(IUs (4 m,j + m)Q(m + n)x|)
7=0
n+m
< b(||U; (0 +m, k)Q(n + m)z|)
k=0

< sup Z b(|U; (1, k)Q(Dz]]) < oo
IeN =5
By applying once again Lemma 2.7 we have that sup ~y(n,m) < oo,
n,meN
and hence by the principle of uniform boundedness we obtain that
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there exists Ly > 0 such that, for all n,m € N,

1U5 (n +m,m)Q(n +m)|| < L.
Then it is easy to observe that

sup > B(|U; ™ (m, k)Q(m)x|)

meN k=0

< Lol|z|| sup Y b(|U5 " (m, k)Q(m)z[|) < oo
mENk=0
for all © € X, where B : Ry — Ry, B(u) = [b(s)ds, which, by
0

Remark 2.0, is continuous and convex. If we apply Lemma 3.1 to
the operator-valued function V : N2 — B(X) defined by

U mn)QOm) . mzn
V(n,m)—{ 02 , m<n

we can state that there are jo € N,y > 0 such that

sup Y B(|U; ' (m, k)Q(m)z|)) < ja,

meN k=0

for all x € X with ||z]| < 7. It follows that

> BV (m + n,m)Q(m + n)z]))
0

ES
Il

B(|U;  (k 4+ m, m)Q(k +m) x

I
NE

o>~
Il

0
x Uy (m+n,m+ k)Q(m + n)xl|)

B(Ly||U5* (m + n, k +m)Q(m + n)z])

NE

£
I

0

m-n

= . B(|Us (n + m, j)Q(n + m)(Lax)]|)

+

i
3

3
+
3

IN

B(|U5 " (m + n, j)Q(m +n)(Lax)||) < ja,

<.
I
o
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for all m,n € N, and all z € X with, [[z| < 72. Using the fact that
B is bijective too we obtain that, for all m,n € N,

_ Ly 17 Jo
Ut <=22B 1( )
05 ) < 2t (2

In order to apply Lemma 2.6 we observe that
Uy *(t,to) = Us(to, [to]) Uz ' ([to] + 2, [to]) Uz([to] + 2,1)
for all 0 <ty <t <tg+ 1 and hence

sup U5 (¢, to) || < M2 Lae~.
0<to<t<to+1

Finally we obtain that there exists Na, 12 > 0 such that
U5t to)|| < Nae2(t=%0) | forall ¢t>ty>0. O

The necessity of Theorem 3.2 is not true for all a,b € A as the
following example illustrates.

Example 3.3. Let X = R, U(t,s) = e~ =) P(t) = 1,a(u) =
(%) {L/ﬂ
niz:l n2
we have

. It is clear that U = {U(¢, s) }y>s>0 is w.e.d. but for z =1,

o0

> alllUi(k + m,m) P(m)z])

o0

2 =22 5
k=0 k=0 k=0n=1

oo

for all m € N.

Theorem 3.4. The evolution family U is u.e.d. if and only if there
exist K, L,p,q > 0 such that
Z |U(n, m)z||P < K|z|? (meN, x € ImP(m)) and
l
Z U (n, m)x||? < L|U(l, m)x||? (m >1, x € KerP(m)).

n=m

Proof. Follows easily from Theorem 3.2 for a(u) = «?,b(u) =u?. O
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