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The Operator-valued Poisson Kernel
and its Applications

ISABELLE CHALENDAR

1. Introduction

Let H be a complex Hilbert space and let L(H) denote the algebra
of all linear and bounded mappings from H to H. For T ∈ L(H),
its spectrum σ(T ) is the nonempty compact subset of C consisting
of all λ ∈ C such that T − λId is non-invertible in L(H). Its point
spectrum σp(T ) is the (possibly empty) subset of σ(T ) consisting of
those λ ∈ C such that ker (T −λId) 6= {0}. We write D for the open
unit disc in C, and T for the unit circle. The spaces Lp = Lp(T),
1 ≤ p ≤ ∞ are the usual Lebesgue function spaces relative to nor-
malized Lebesgue measure on T.

As usual, we define the Hardy space H2 = H2(D) as the space
of all functions f : z 7→ ∑∞

n=0 anzn for which the norm ‖f‖ =(∑∞
n=0 |an|2

)1/2 is finite. It is well known that H2(D) may be re-
garded isometrically as a closed subspace H2(T) of L2 [31, 25], by
identifying the Taylor coefficients of f with the Fourier coefficients
of an L2(T) function. The Hardy space H∞ is the set of bounded
and analytic functions on D, which is isometrically isomorphic to
H∞(T) := {f ∈ L∞(T) : f̂(n) = 0, n < 0} via the mapping that
takes a function into its radial limit. The space H1

0 will denote the
set of functions f ∈ L1 such that f̂(n) = 0, n ≤ 0, which can be
naturally identified with the predual of H∞(T). M(T) is the set of
all (finite) complex measures on T.

The contents of this paper is mostly the contents of the talks that
were given at the Belfast Functional Analysis Day 2002. The aim is
to present in an as elementary as possible way some of the proper-
ties of the so-called operator-valued Poisson kernel and to describe in
detail some of its applications in operator theory and harmonic anal-
ysis understandable by non-specialists. For further information see
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also [13, 14, 18], where G. Cassier and T. Fack study the behaviour
of contractions and operators similar to contractions, in the context
of von Neumann algebras. We also mention the works of R. Curto
and F. Vasilescu [47, 24, 48], where the authors use the operator-
valued Poisson kernel to define an A(Dn)-functional calculus for an
n-tuple of commuting operators T = (T1, · · · , Tn) with σ(T ) ⊂ Dn.
In [48], Vasilescu obtained a von Neumann’s inequality and a series
of dilation theory objects related to T when T ∗1 T1 + · · ·T ∗nTn ≤ Id.

The paper is organized as follows. In Section 2 we define and
analyse the operator-valued Poisson kernel, especially its properties
in common with the (scalar) Poisson kernel. The two main applica-
tions that are presented are a dilation free proof of the well-known
von Neumann’s inequality and the proof of the existence of a den-
sity of elementary spectral measure for contractions. Section 3 relies
highly on Section 2 where we show how to calculate a functional cal-
culus for absolutely continuous contraction, first for the disc algebra
and then for H∞. The last sections are devoted to applications. In
Section 4, after a short introduction concerning the invariant sub-
space problem, we will give an idea of the nature of S. Brown’s
approximation method, which gave birth to dual algebra theory. In
particular, we present S. Brown’s starting point, involving density of
elementary spectral measure, and standard facts about the so-called
class A and its subclasses An,m. Finally, using the powerful tool of
operator-valued Poisson kernel, we show how to prove that classes
An,m are distinct. In Section 5, combining a result of J. Bourgain
with a result concerning the expression of the density of elementary
spectral measures associated with b(T ) (where b is a finite Blaschke
product and T an absolutely continuous contraction) in terms of
those associated with T , we obtain a factorization result for func-
tions in L1 by means of functions in H2(T).

In order to make this article as self-contained as possible, we will
give the proofs of most of the results more specifically involving the
operator-valued Poisson kernel.
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2. The Operator-valued Poisson Kernel

For reit ∈ D, recall that the (scalar) Poisson kernel Pr,t is defined by

Pr,t(eiθ) =
1

1− reite−iθ
+

1
1− re−iteiθ

− 1

=
1− r2

|1− reite−iθ|2
=

∑

n≥0

rneinte−inθ +
∑

n≥0

rne−inteinθ − 1.

Note that Pr,t(eiθ) ≥ 0. Recall also that each function f ∈ L1 has a
natural harmonic extension into D, which will also be denoted by f .
The extension is defined by Poisson’s formula:

f(reit) =
1
2π

∫ 2π

0

f(eiθ)Pr,t(eiθ) dθ.

In the sequel we will need the following theorem ([44], Chap. 11).

Theorem A. Let E be the set of harmonic functions f on D such
that

ρ(f) := sup
0≤s<1

∫ 2π

0

|f(seit)|dt < ∞.

For µ ∈M(T), denote by P (µ) the harmonic function on D defined
by

P (µ)(reit) =
1
2π

∫ 2π

0

Pr,t(eiθ)dµ(θ).

The mapping
{ M(T) −→ E

µ 7−→ P (µ) is bijective with ρ(P (µ)) =

‖µ‖. Moreover, limr→1− P (µ)(reit) exists a.e. and is equal to the
L1-function called the Radon–Nikodym derivative of µ, that is, the
density of the absolutely continuous part of µ.

Now, for T ∈ L(H) such that σ(T ) ⊂ D and for reit ∈ D, define
the operator-valued Poisson kernel Kr,t(T ) ∈ L(H) in the following
way:

Kr,t(T ) = (Id− reitT ∗)−1 + (Id− re−itT )−1 − Id.
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Remark 2.1. Note that

(Kr,t(T ))∗ = Kr,t(T ) and Kr,−t(T ) = Kr,t(T ∗).

As for the (scalar) Poisson kernel, we have the following equalities:

Lemma 2.2. For T ∈ L(H) such that σ(T ) ⊂ D, we have:

Kr,t(T ) = (Id− reitT ∗)−1(Id− r2T ∗T )(Id− re−itT )−1 (1)

= (Id− re−itT )−1(Id− r2TT ∗)(Id− reitT ∗)−1 (2)

=
∑

n≥0

rneintT ∗n +
∑

n≥0

rne−intTn − Id. (3)

Proof: The two first equalities follow from the fact that

(Id− reitT ∗)Kr,t(T )(Id− re−itT ) = Id− r2T ∗T and

(Id− re−itT )Kr,t(T )(Id− reitT ∗) = Id− r2TT ∗.

Moreover, since σ(T ) ⊂ D, we have limn→∞ ‖Tn‖1/n ≤ 1. For each
ε > 0, there exists N ≥ 1 such that ‖Tn‖ ≤ (1 + ε)n for all n ≥ N .
Now, taking r > 0 such that r(1 + ε) < 1, we get the convergence in
norm of

∑
n≥0 rneintT ∗n +

∑
n≥0 rne−intTn − Id, which proves the

last assertion of the lemma. ¤

For T ∈ L(H) and p ∈ C[z]|D a polynomial, it is natural to define
p(T ) ∈ L(H) in the following way:

p(T ) =
n∑

k=0

akT k if p(z) =
n∑

k=0

akzk.

Actually, using the operator-valued Poisson kernel, there is another
way to define p(rT ) for 0 ≤ r < 1.

Lemma 2.3. Let T ∈ L(H) such that σ(T ) ⊂ D. For all r ∈ [0, 1),
we have:

p(rT ) =
1
2π

∫ 2π

0

p(eit)Kr,t(T )dt, p ∈ C[z]|D.

Proof: Let p(z) =
∑N

k=0 akzk. By (3), we have

Kr,t(T ) =
∑

n≥0

rneintT ∗n +
∑

n≥0

rne−intTn − Id.
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Since
∫ 2π

0
eiltdt = 0 for l ∈ Z \ {0}, we get:

∫ 2π

0

p(eit)Kr,t(T )dt =
N∑

k=0

∫ 2π

0

akrkT kdt

= 2π

N∑

k=0

akrkT k

= 2πp(rT ).

¤

Moreover, using the operator-valued Poisson kernel, there is also
another way to characterize the fact that an operator T ∈ L(H) is
contractive.

Lemma 2.4. ‖T‖ ≤ 1 ⇐⇒ σ(T ) ⊂ D and Kr,t(T ) ≥ 0 for all
reit ∈ D.

Proof: Suppose that T ∈ L(H) is such that σ(T ) ⊂ D (automat-
ically satisfied if ‖T‖ ≤ 1). Recall that Kr,t(T ) ≥ 0 if and only if
〈Kr,t(T )h, h〉 ≥ 0 for all h ∈ H. Then, using (1), we have

〈Kr,t(T )h, h〉 = 〈(Id− r2T ∗T )h̃, h̃〉 = ‖h̃‖2 − r2‖T h̃‖2

with h̃ = (Id − re−itT )−1h. The surjectivity of (Id − re−itT )−1

implies that Kr,t(T ) ≥ 0 if and only if ‖h̃‖2 − r2‖T h̃‖2 ≥ 0 for all
h̃ ∈ H. Now the assertion of the lemma is clear. ¤

Now, let us present some nice applications of Lemma 2.3 and
Lemma 2.4. The first one is a dilation-free proof of the well-known
von Neumann’s inequality discovered by Heinz [30]. This proof is
reproduced in Section 153 of [43]. For a more recent account, see also
[35]. Recall that von Neumann’s inequality characterizes the Hilbert
spaces among the complex Banach spaces. Indeed, it is proved in [29]
that if X is a complex Banach space such that the von Neumann’s
inequality is true for all contractions T ∈ L(X), then X is necessarily
a complex Hilbert space.

Proposition 2.5. Whenever ‖T‖ ≤ 1, then

‖p(T )‖ ≤ ‖p‖∞ = sup
z∈D

|p(z)| (p ∈ C[z]|D).
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Proof: Let x, y ∈ H. By Lemma 2.3, we have:

〈p(rT )x, y〉 =
1
2π

∫ 2π

0

p(eit)〈Kr,t(T )x, y〉dt for r ∈ [0, 1).

Using Lemma 2.4, we have also

〈Kr,t(T )x, y〉 = 〈x̃r,t, ỹr,t〉,
where x̃r,t =

√
Kr,t(T )x and ỹr,t =

√
Kr,t(T )y. Therefore we get:

|〈p(rT )x, y〉| ≤ ‖p‖∞
2π

∫ 2π

0

|〈x̃r,t, ỹr,t〉|dt.

Now, applying twice the Cauchy-Schwarz inequality, we get:
∫ 2π

0

|〈x̃r,t, ỹr,t〉|dt ≤
∫ 2π

0

‖x̃r,t‖ ‖ỹr,t‖dt

≤
(∫ 2π

0

‖x̃r,t‖2dt

)1/2 (∫ 2π

0

‖ỹr,t‖2dt

)1/2

.

Using Lemma 2.3 with p identically equal to 1, we obtain:
∫ 2π

0

‖x̃r,t‖2dt =
∫ 2π

0

〈Kr,t(T )x, x〉dt = 2π‖x‖2.

Finally we get
|〈p(rT )x, y〉| ≤ ‖p‖∞‖x‖‖y‖,

which implies that ‖p(rT )‖ ≤ ‖p‖∞. Since

‖p(rT )− p(T )‖ ≤
N∑

k=0

(1− rk)|ak| for p(z) =
N∑

k=0

akzk,

in particular, we obtain limr→1 ‖p(rT )‖ = ‖p(T )‖ and therefore
‖p(T )‖ ≤ ‖p‖∞. ¤

The second application will be used extensively in the next sec-
tions.

Proposition 2.6. Let ‖T‖ ≤ 1. For all x, y ∈ H, there exists a
unique complex measure µT

x,y ∈M(T) such that

〈Kr,t(T )x, y〉 =
1
2π

∫ 2π

0

Pr(θ − t)dµT
x,y(θ)

and there exists a unique function in L1, denoted by x
T· y such that

(x
T· y)(eit) = lim

r→1−
〈Kr,t(T )x, y〉 and ‖x T· y‖1 ≤ ‖x‖‖y‖.
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Proof: For z = reit ∈ D, set ϕ(z) = 〈Kr,t(T )x, y〉. By (3), we
have:

ϕ(z) =
∑

n≥0

〈T ∗nx, y〉zn +
∑

n≥0

〈Tnx, y〉zn − 〈x, y〉,

and thus ϕ is an harmonic function on D. In the proof of Proposi-
tion 2.5, we have seen that

∫ 2π

0

|〈Kr,t(T )x, y〉|dt ≤ 2π‖x‖‖y‖.

Therefore we get

sup
0≤r<1

∫ 2π

0

|ϕ(reit)|dt ≤ 2π‖x‖‖y‖ < ∞. (4)

Applying Theorem A, there exists a unique complex measure µT
x,y

on T such that

ϕ(reit) =
1
2π

∫ 2π

0

Pr(θ − t)dµT
x,y(θ)

and moreover, limr→1 ϕ(reit) is well-defined almost everywhere on
T and is equal to the L1-function denoted by x

T· y and called
the Radon–Nikodym derivative of the elementary measure µT

x,y. By
Theorem A, we have also ‖µT

x,y‖ = sup0≤r<1

∫ 2π

0
|ϕ(reit)|dt. Since

‖x T· y‖1 ≤ 1
2π‖µT

x,y‖, by (4), we obtain ‖x T· y‖1 ≤ ‖x‖‖y‖. ¤

Remark 2.7. Since Kr,t(T )∗ = Kr,t(T ) and Kr,t(T ∗) = Kr,−t(T ),

we get x
T· y = y

T· x, and (x
T∗· y)(eit) = (x

T· y)(e−it) and therefore

(y
T∗· x)(eit) = (x

T· y)(e−it).

The last result of this section concerns the possibility of extending
analytically the density x

T· y (Lemma 5.1 in [16]).

Lemma 2.8. Let T ∈ L(H) be a contraction such that Γ(T ) :=
σ(T ) ∩ T 6= T. For any x, y ∈ H and any closed arc I ∈ T \ Γ(T ),
the function x

T· y extends analytically in a neighbourhood of I.

Proof: By (1), for eit 6∈ Γ(T ), we get exactly

(x
T· y)(eit) = 〈(Id− eitT ∗)−1(Id− T ∗T )(Id− e−itT )−1x, y〉.

Hence, the function defined by

z 7−→ z〈(Id− zT ∗)−1(Id− T ∗T )(zId− T )−1x, y〉
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is an analytic extension of x
T· y in a neighbourhood of I. ¤

3. The H∞-Functional Calculus for an Absolutely
Continuous Contraction

A reformulation of von Neumann’s inequality is the following:
ΦT : C[z]|D → L(H) defined by ΦT (p) = p(T ) is norm continuous

(‖ΦT ‖ ≤ 1) and thus it extends continuously to Φ̃T (with ‖Φ̃T ‖ ≤ 1)
on A(D), the disc algebra, defined by:

A(D) = (C[z]|D)
−‖.‖∞ = C(D) ∩Hol(D).

In other words,

Φ̃T (f) = lim
n→∞

pn(T ) (norm limit)

where (pn)n≥1 is a sequence of polynomials that converges uniformly
to f on D.

Proposition 3.1. Let f ∈ A(D) and T ∈ L(H) be a contraction.
For all x, y ∈ H, there exists a unique complex measure µT

x,y on T
such that

〈f(T )x, y〉 =
1
2π

∫ 2π

0

f(eit)dµT
x,y(t)

and

〈Kr,t(T )x, y〉 =
1
2π

∫ 2π

0

Pr(θ − t)dµT
x,y(θ).

Proof: Let µT
x,y be the measure defined in Proposition 2.6. It

remains to check that 〈f(T )x, y〉 = 1
2π

∫ 2π

0
f(eit)dµT

x,y(t). Let f be a
function in A(D) and let (pn)n≥1 be a sequence of polynomials that
converges uniformly to f on D. By definition, we have:

lim
n→∞

‖f(rT )− pn(rT )‖ = 0.

By Lemma 2.3, we have also

pn(rT ) =
1
2π

∫ 2π

0

pn(eit)Kr,t(T )dt.

Since limn→∞ ‖pn − f‖∞ = 0, it follows that

f(rT ) =
1
2π

∫ 2π

0

f(eit)Kr,t(T )dt,
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and therefore

〈f(rT )x, y〉 =
1
2π

∫ 2π

0

f(eit)〈Kr,t(T )x, y〉dt.

Now, since 〈Kr,t(T )x, y〉 = 1
2π

∫ 2π

0
Pr(θ− t)dµT

x,y(θ), by Fubini’s the-
orem, and the fact that 1

2π

∫ 2π

0
f(eit)Pr(θ− t)dt = f(reiθ), it follows

that:

〈f(rT )x, y〉 =
∫ 2π

0

f(reiθ)dµT
x,y(θ).

Define fr ∈ A(D) by fr(z) = f(rz). Since limr→1 ‖fr − f‖∞ = 0,
the continuity of the A(D)-functional calculus Φ̃T , implies that

〈f(T )x, y〉 =
1
2π

∫ 2π

0

f(eit)dµT
x,y(t).

¤
Remark 3.2. Let T be a contraction, and let f, g ∈ A(D). Since
f(T )g(T ) = (fg)(T ), it follows that fdµT

x,y = dµT
f(T )x,y.

Now, we would like to extend the A(D)-functional calculus into a
H∞-functional calculus. To that aim, we need to introduce the next
definition.

Definition 3.3. A contraction T ∈ L(H) is said to be absolutely
continuous if for all x, y ∈ H, the elementary spectral measure µT

x,y

satisfying

〈Kr,t(T )x, y〉 =
1
2π

∫ 2π

0

Pr(θ − t)dµT
x,y(θ)

is absolutely continuous with respect to Lebesgue measure. In other
words, using the notation of Proposition 2.6, T is absolutely contin-
uous (a.c.) if dµT

x,y(t) = (x
T· y)(eit)dt for all x, y ∈ H.

Recall the canonical decomposition of a contraction proved in [45]
(see also [46], Chap. I.3).

Theorem B. Every contraction T ∈ L(H) has a unique decomposi-
tion of the form T = T0⊕T1 where T0 is completely nonunitary and
T1 is unitary.
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Using dilation theory, B. Sz.-Nagy and C. Foias ([46], Chap. III.2)
proved the following characterization of absolutely continuous con-
tractions.

Theorem C. Let T ∈ L(H) be a contraction. Then T is absolutely
continuous if and only if the unitary part of T has an absolutely
continuous spectral measure.

Remark 3.4. In particular, if T is a completely nonunitary con-
traction, then T is absolutely continuous.

Proposition 3.5. Let T ∈ L(H) be an absolutely continuous con-
traction (a.c.c.). Then T has a w∗−w∗ contractive and multiplicative
H∞-functional calculus ΨT extending its A(D)-functional calculus
and defined as follows:
f(T ) := ΨT (f), f ∈ H∞ and for all x, y ∈ H,

〈f(T )x, y〉 =
1
2π

∫ 2π

0

f∗(eit)(x
T· y)(eit)dt, (5)

where (x
T· y) = limr→1−〈Kr,t(T )x, y〉 and where f∗ ∈ L∞ is defined

almost everywhere by f∗(eit) = limr→1 f(reit).

Remark 3.6. The set of absolutely continuous contractions can also
be defined as the set of contractions admitting an H∞-functional
calculus ΨT extending its A(D)-functional calculus. Moreover T is
an a.c.c. if and only if T ∗ is an a.c.c.

We have an explicit expression of the Fourier coefficients of the
density of the elementary spectral measures.

Lemma 3.7. Let T ∈ L(H) be an a.c.c. For all x, y ∈ H, we have:

x̂
T· y(n) =

{ 〈T ∗nx, y〉 if n ≥ 0
〈T |n|x, y〉 if n ≤ 0.

Proof: Using (5) with f(z) = zn, n ≥ 0, we get:

〈Tnx, y〉 =
1
2π

∫ 2π

0

eint(x
T· y)(eit)dt = x̂

T· y(−n).

Moreover, replacing T by T ∗, we have also

〈T ∗nx, y〉 =
1
2π

∫ 2π

0

eint(x
T∗· y)(eit)dt.
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Now, by Remark 2.7, we get:

〈T ∗nx, y〉 =
1
2π

∫ 2π

0

eint(x
T· y)(e−it)dt

=
1
2π

∫ 2π

0

e−int(x
T· y)(eit)dt = x̂

T· y(n).

¤

Remark 3.8. Obviously, when T ∈ L(H) is an a.c.c., T has also
a w∗ − w∗ contractive L∞-functional calculus (extending its H∞-
functional calculus) defined as follows: for f ∈ L∞ and for all
x, y ∈ H,

〈f(T )x, y〉 =
1
2π

∫ 2π

0

f(eit)(x
T· y)(eit)dt, (6)

where (x
T· y) = limr→1−〈Kr,t(T )x, y〉. This L∞-functional calculus

is multiplicative if and only if T is unitary, which is a very restrictive
condition.

4. Applications to the Invariant Subspace Problem

Let X be a separable, complex and infinite dimensional Banach
space. Denote by L(X) the algebra of all bounded and linear opera-
tors from X to X, and for T ∈ L(X) denote by Lat(T ) the lattice of
all the closed subspaces M of X such that TM⊂M. We say that
an operator T ∈ L(X) is transitive if Lat(T ) = {X, {0}}.

P. Enflo [26, 27], C. Read [37, 38, 39, 40, 41, 42], B. Beauzamy
[2, 3] have constructed transitive operators T ∈ L(X), where X is
a nonreflexive Banach space (`1, c0, . . .), with σ(T ) very rich or
reduced to a singleton.

The invariant subspace problem (ISP) is the following:

When X is a Hilbert space H, does there exist a
transitive operator T ∈ L(H)?

There is a huge number of positive results concerning the invariant
subspace problem, using a wide range of techniques (cf. [36, 19]).
One of them is the very nice result of V. I. Lomonosov [33] who
proved the next theorem:
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Theorem D. Let T ∈ L(X) be such that there exists K 6= 0 compact
satisfying TK = KT . Then T is not transitive.

Another nice result, whose interest lies mostly in an approximation
process which has led to a large number of applications, is the fol-
lowing [10].

Theorem E. Let T ∈ L(H) be a subnormal operator (i.e., the re-
striction to an invariant subspace of an operator N such that NN∗ =
N∗N). Then T is not transitive.

In 1991, V. I. Lomonosov [34] conjectured that if T ∈ L(X) where
X is a Banach space, then T ∗ is not transitive.

For T ∈ L(H), since TM ⊂ M if and only if T ∗M⊥ ⊂ M⊥, a
proof of the Lomonosov’s conjecture would clearly imply a positive
answer to the invariant subspace problem.

Concerning (ISP), since a nontrivial unitary operator has nontriv-
ial invariant subspaces, one may always assume that T ∈ L(H) is a
contraction which is completely nonunitary, and therefore admits an
H∞-functional calculus.

4.1. S. Brown’s method. Our aim is now to give an idea of S.
Brown’s method and to show the link with the two previous sections.

The starting point of S. Brown’s method is the following lemma.

Lemma 4.1. Let T ∈ L(H), ‖T‖ ≤ 1 and λ ∈ D. Suppose that
there exist x, y ∈ H such that

〈x, y〉 = 1 and 〈Tnx, y〉 = λn for n ≥ 1. (7)

Then T has a nontrivial invariant subspace.

Proof: Let M the closed linear hull of {(T − λId)Tnx : n ≥ 0}.
Then TM ⊂M. The equality (7) implies that y ⊥ M with y 6= 0.
Then M or Cx is a nontrivial invariant subspace. ¤

In view of the previous section, one can reformulate Lemma 4.1.
We have seen that if T ∈ L(H) is an a.c.c., for all x, y ∈ H there
exists a unique function x

T· y ∈ L1 such that




(Tnx, y) = (̂x
T· y)(−n), n ≥ 0

(T ∗nx, y) = (̂x
T· y)(n), n > 0.
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For λ ∈ D, set Pλ(eit) =
∑

n≥0

λne−int +
∑

n≥1

λneint.

A reformulation of S. Brown’s starting point is:

If there are x, y ∈ H, λ ∈ D such that [x
T· y]L1/H1

0
= [Pλ]L1/H1

0
,

then T is not transitive.
What is now called the S. Brown’s approximation process is the

next result [7].

Theorem F. Let E, F and G be complex Banach spaces, and let
ϕ : E × F → G be a bilinear or a sesquilinear map. Suppose that
there exists K > 0 such that for all z ∈ G, there exists a sequence
(xn, yn)n in E × F satisfying:




limn→∞ ‖ϕ(xn, yn)− z‖ = 0
‖xn‖‖yn‖ ≤ K‖z‖, n ≥ 1
limn→∞(‖ϕ(x, yn)‖+ ‖ϕ(xn, y)‖) = 0, x ∈ E, y ∈ F.

Then for all z ∈ G there exists (u, v) ∈ E ×F such that ϕ(u, v) = z.
In other words, ϕ is surjective.

This approximation process has been extensively used in dual algebra
theory (see for example [6]) in the particular case where T ∈ L(H)
is an a.c.c., E = F = H, G = L1 or L1/H1

0 and where ϕ is the
sesquilinear map defined by ϕ(x, y) = x

T· y or ϕ(x, y) = [x
T· y]L1/H1

0
.

4.2. The class A. Previously, we have mentioned that an a.c.c.
T ∈ L(H) has a contractive H∞-functional calculus ΨT . The case
where ΨT is an isometry is of particular interest because of Apostol’s
result [1].

Theorem G. Let T ∈ L(H) be a contraction such that σ(T ) ⊃ T.
Then either T has a nontrivial invariant subspace or T is an a.c.c.
in the class A, that is whose H∞-functional calculus ΨT is isometric.

We will present now some sufficient conditions for a contraction to
be in the class A. To that aim, we introduce the following definition.

Definition 4.2. A subset Γ of D is a dominating set of D (or a
dominating set for H∞) if, for every f ∈ H∞, we have:

‖f‖∞ = sup{|f(λ)| : λ ∈ Γ}.
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The dominating sets of D were characterized in [9], Theorem 3,
as follows: a subset Γ of D is a dominating set of D if and only if
almost every point ξ ∈ T is a nontangential limit point of Γ (that is,
ξ is the limit of a sequence in Γ that lies inside some proper angular
opening with vertex at ξ).

Lemma 4.3. If T is an a.c.c. such that σ(T ) is a dominating set
of D, then T ∈ A.

Proof: Recall that if T is an a.c.c., its H∞-functional calculus is
contractive, and thus ‖f(T )‖ ≤ ‖f‖∞, f ∈ H∞. Using the spectral
mapping inclusion f(σ(T )) ⊂ σ(f(T )) and the fact that ‖f(T )‖ ≥
sup{|β| : β ∈ σ(f(T ))} we have sup{|f(λ)| : λ ∈ σ(T )∩D} ≤ ‖f(T )‖.
Therefore, if σ(T ) is a dominating set of D, then T ∈ A. ¤

In [12], S. Brown, B. Chevreau and C. Pearcy proved that if T is
contraction such that T ⊂ σ(T ), then T has nontrivial invariant sub-
spaces. A few months later, Bercovici [4] and Chevreau [23] proved
independently that if T ∈ A, then for all f ∈ L1, there exist x, y ∈ H
such that

[f ]L1/H1
0

= [x
T· y]L1/H1

0
. (8)

Thanks to Theorem G, the existence of nontrivial invariant subspaces
for a contraction T such that T ⊂ σ(T ) can be seen as a corollary of
(8) applied with f = Pr,t for reit ∈ D.

In 1988, Brown and Chevreau [11] proved that if T ∈ A, then T
is reflexive. Recall that T is reflexive if for all B ∈ L(H) satisfying
Lat(T ) ⊂Lat(B), there exists f ∈ H∞ such that B = f(T ) (a trivial
sufficient condition which ensures that Lat(T ) ⊂Lat(B)). There-
fore, the class A is a class of contractions whose lattice of invariant
subspaces is particularly rich.

4.3. Classes An,m. In 1983, H. Bercovici, C. Foias and C. Pearcy
[5] introduced subclasses of the class A, defined as follows.

Definition 4.4. Let 1 ≤ n, m ≤ ℵ0. Then

An,m =
{
T ∈ A : ∀ (fp,q) ⊂ L1, ∃ (xp)0≤p<n, (yq)0≤q<m ⊂ H
such that [fp,q]L1/H1

0
= [xp

T· yq]L1/H1
0

}
.
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By (8), we have A = A1,1 and by definition, we have the following
scheme of inclusion for the classes An,m.

A1,1 ⊃ A1,2 ⊃ · · · ⊃ A1,ℵ0

∪ ∪ ∪
A2,1 ⊃ A2,2 ⊃ · · · ⊃ A2,ℵ0

∪ ∪ ∪
...

...
...

∪ ∪ ∪
Aℵ0,1 ⊃ Aℵ0,2 ⊃ · · · ⊃ Aℵ0,ℵ0

One can find characterizations and information about the classes
An,m in [6, 16, 17, 20]. The classes An,m have the property that
the larger the indices n and m are, the richer the lattice of invariant
subspaces is. Some of the properties of the classes An,m are presented
in the next proposition.

Proposition 4.5. Let 0 ≤ n, m ≤ ℵ0 and T ∈ L(H) be an a.c.c.
(1) T ∈ An,m if and only if T ∗ ∈ Am,n.
(2) If T ∈ An,n then, for all λ ∈ D, there is Mλ ∈ Lat(T ) such

that dim(Mλ ª (T − λId)Mλ) = n.
(3) If T ∈ Aℵ0,ℵ0 , then Lat(T ) contains a sublattice isomorphic

to the set of all closed subspaces of H.

Proof: 1. This is an obvious consequence of the equality

(y
T∗· x)(eit) = (x

T· y)(e−it)

(see Remark 2.7) and the fact that for all f ∈ L1 there exists g ∈ L1

such that f(eit) = g(e−it).
2. If T ∈ An,n, taking fp,p = Pr,t (with λ = reit) and fp,q = 0 for
0 ≤ p, q < n with p 6= q, there exist (xp)0≤p<n and (yq)0≤q<n in H
such that

〈T kxp, yq〉 = δp,qλ
k. (9)

Consider Mλ the invariant subspace for T generated by (xp)0≤p<n.
Then dim(Mλª(T−λId)Mλ) is necessarily at most n and is at least
n because, by (9), the vectors y′q equal to the orthogonal projection
of yq onto Mλ are linearly independent and belong to the space
Mλ ª (T − λId)Mλ.
3. If T ∈ Aℵ0,ℵ0 , taking fp,p = P0,0 = 1 and fp,q = 0 for 0 ≤
p, q < ℵ0 with p 6= q, along the same lines of the proof of 2., one can
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prove that there exists M ∈ Lat T such that dimMª TM = ℵ0.
Set K = Mª TM. Obviously we have PKT|K = 0, where PK is
the orthogonal projection of H onto K. By construction, we have
{K′ ⊕ TM : K′ a closed subspace of K} contained in Lat (T ). ¤

In what follows we will give an idea of the proof of the fact that
classes An,m are distinct.

Let L = {z ∈ C : (|z| = 1, <(z) ≤ 0) or (<(z) = 0, |=(z)| ≤ 1)}.
Thus L is the boundary of the open left half unit disc; let DL denote
this left half disc (so DL is the simply connected component of C\L).
Put arc-length measure ` on L, and define L2(L, d`) to be the space
of (equivalence classes of) square integrable complex functions on L.
Now, define E2(L, d`) as the closure of the polynomials in L2(L, d`).
Similarly, let us define

R = {z ∈ C : |z| = 1, <(z) ≥ 0} ∪ {z ∈ C : <(z) = 0, |=(z)| ≤ 1)}.
So R is the boundary of the open right half unit disc DR and we
define L2(R, d`) and E2(R, d`) in the analogous way.

Let NL be the (normal) operator of multiplication by z on the
space L2(L, d`), and TL its (subnormal) restriction to E2(L, d`). Let
NR and TR be defined similarly relative to R.

Let w = φ(z) be a map that takes the disc to the left semi-disc
DL; for example, z = φ−1(w) = (w2 − 2w − 1)/(w2 + 2w − 1).
Note that φ′(z) = (w2 + 2w − 1)2/(4(w2 + 1)). Then, we have an
unitary equivalence between TL and the operator Mφ on H2, where
Mφ(f) = φf .

The following formula will be of use in interpreting factorizations
with Mφ. In what follows φ : D→ DL is a conformal bijection, and
we shall choose it so that the left-hand arc [eiπ/2, e3iπ/2] is mapped
to itself (to achieve this, consider instead φ ◦µ for a suitable Möbius
map µ).

Lemma 4.6. For π/2 < t < 3π/2 and f, g ∈ H2(T), we have:

f
Mφ
· g(eit) =

fg(φ−1(eit))eit

φ′(φ−1(eit))φ−1(eit)
+

∫ π/2

−π/2

f(eiθ)g(eiθ)
1− |φ(eiθ)|2

|1− e−itφ(eiθ)|2 dθ,

and the second term has an analytic extension to the left-hand half
plane {<z < 0}.
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Proof: Using (1), we have, for π/2 < t < 3π/2,

f
Mφ
· g(eit) = lim

r→1−

∫ 2π

0

f(eiθ)g(eiθ)
1− r2|φ(eiθ)|2
|1− re−itφ(eiθ)|2 dθ

= lim
r→1−

∫ 3π/2

π/2

f(eiθ)g(eiθ)
1− r2

|1− re−itφ(eiθ)|2 dθ

+
∫ π/2

−π/2

f(eiθ)g(eiθ)
1− |φ(eiθ)|2

|1− e−itφ(eiθ)|2 dθ.

Define a new function ψ : T→ T by

ψ(eiθ) =

{
φ(eiθ) if π/2 < θ < 3π/2,

eiθ otherwise.

Then, since limr→1−
1−r2

|1−re−itψ(eiθ)|2 = 0 for θ ∈ (0, 2π) \ [π
2 , 3π

2 ], we
get:

f
Mφ
· g(eit) = lim

r→1−

∫ 2π

0

f(eiθ)g(eiθ)
1− r2

|1− re−itψ(eiθ)|2 dθ

+
∫ π/2

−π/2

f(eiθ)g(eiθ)
1− |φ(eiθ)|2

|1− e−itφ(eiθ)|2 dθ

=
fg(φ−1(eit))eit

φ′(φ−1(eit))φ−1(eit)

+
∫ π/2

−π/2

f(eiθ)g(eiθ)
1− |φ(eiθ)|2

|1− e−itφ(eiθ)|2 dθ,

using a change of variables and the standard properties of the Poisson
kernel. Note that the first term involves the value of fḡ at just one
point of the left-hand semi-circle, and the second term involves values
only on the right-hand semi-circle.

Since, for eit on the unit circle,

|1− e−itw|−2 = |eit − w|−2

= (eit − w)−1(e−it − w)−1

=
eit

(eit − w)(1− weit)
,

it is clear that the second term has an analytic extension to the
left-hand half plane {<z < 0}. ¤

The previous lemma will be useful for the proof of the next result.
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Theorem 4.7. We have TL ⊕ T ∗R ∈ A \ (A1,2 ∪ A2,1).

Proof: Clearly σ(TL ⊕ T ∗R) = D, which, using Lemma 4.3 is a
sufficient condition for membership in A. Using the first assertion of
Proposition 4.5, it is sufficient to prove that Mφ ⊕ T ∗R 6∈ A2,1. Let
δ = 1/2 and Cδ = {z ∈ C : <z < −δ}. Now consider the function γ
defined on T by

γ(eit) =
eit

φ′(φ−1(eit))φ−1(eit)
.

Take Ω1 and Ω2 to be closed subarcs of Cδ ∩T such that `(Ωc
1∩Ωc

2∩
Cδ) > 0, `(Ω1 ∩ Ω2) = 0, and `(Ωj) > 0 for j = 1, 2. Suppose that
Mφ⊕T ∗R ∈ A2,1. It follows that there exist functions f1, f2, g in H2

and x1, x2, y in E2(R, d`) such that:




[f
Mφ
·

1 g] + [x
TR

∗
·

1 y] = [χΩ1 ]

[f
Mφ
·

2 g] + [x
TR

∗
·

2 y] = [χΩ2 ].

Since σ(T ∗R)∩T = R∩T, it follows from the proof of Lemma 2.8 that

x
TR

∗
·

1 y and x
TR

∗
·

2 y have analytic extensions to Cδ. Using Lemma 4.6
there exist h1 and h2 in H2 and k1, k2 analytic on Cδ, such that, on
Cδ ∩ T,
{

χΩ1(e
it) + eith1(eit) = f1(φ−1(eit))g(φ−1(eit))γ(eit) + k1(eit)

χΩ2(e
it) + eith2(eit) = f2(φ−1(eit))g(φ−1(eit))γ(eit) + k2(eit).

On Ωc
1 ∩ Ωc

2 ∩ Cδ we have

[eith1(eit)− k1(eit)]f2(φ−1(eit)) = [eith2(eit)− k2(eit)]f1(φ−1(eit)),

and hence the same inequality holds on Cδ∩T since both sides of the
equation are E1 (Hardy class) functions on Cδ ∩D. Multiplying the
first of the above pair of identities by f2(φ−1(eit)) and the second
by f1(φ−1(eit)) and subtracting, we see that

χΩ1(e
it)f2(φ−1(eit)) = χΩ2(e

it)f1(φ−1(eit)) on Cδ ∩ T,

which implies that f1 and f2 are identically zero, since they vanish
on subsets of positive measure. This is absurd as χΩ1 and χΩ2 are
not the restrictions of analytic functions. ¤

For every pair of positive integers n and m, denote by T
(n)
L ⊕T ∗R

(m)

the operator given by the direct sum of n copies of TL and m copies
of T ∗R.
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One can extend the methods of this section to obtain the follow-
ing result (Theorem 5.2 in [21]), establishing Conjecture 3.5 of [28],
which provides a constructive proof of the fact that the classes An,m

are distinct. Recall that a non constructive proof was given in [32].

Theorem 4.8. We have T
(n)
L ⊕ T ∗R

(m) ∈ An,m \ (An+1,1 ∪A1,m+1).

5. Applications in Harmonic Analysis

Most of the results of this section comes from [21, 22]. The degree
of a finite Blaschke product b is defined to be the cardinality of its
zero set Zero(b) (taking into account multiplicity). The next result
[21] provides a link between the density of the elementary spectral
measure associated with T and that associated with b(T ).

Theorem 5.1. Let T ∈ L(H) be an a.c.c. and let b be a finite
Blaschke product of degree d. Then

(x
b(T )· y)(eit) =

d∑

j=1

(x
T· y)(ξj)
|b′(ξj)| a.e., (10)

where ξ1, . . . , ξd are the solutions of b(z) = eit.

Proof: We may partition T into intervals J1, . . . , Jd, each of which
is mapped onto T by b (see, for example, [15]). Then, we get:

(x
b(T )
· y)(eit) = lim

r→1−
〈Kr,t(b(T ))x, y〉

= lim
r→1−

〈(Id− re−itb(T ))−1x, y〉
+〈x, (Id− re−itb(T ))−1y〉 − 〈x, y〉

= lim
r→1−

〈(1− re−itb)−1, x
T
· y〉

+〈(1− reitb)−1, x
T
· y〉 − 〈1, x

T
· y〉,

since 〈f(T )x, y〉 = 〈f, x
T
· y〉 for all f ∈ L∞. Hence

(x
b(T )
· y)(eit) = lim

r→1−

∫ 2π

0

(x
T
· y)(eiθ)

1− r2

|1− re−itb(eiθ)|2
dθ

2π

= lim
r→1−

d∑

j=1

∫

Jj

(x
T
· y)(eiθ)

1− r2

|1− re−itb(eiθ)|2
dθ

2π
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= lim
r→1−

d∑

j=1

∫ 2π

0

(x
T
· y)(b−1(eiα))eiα

b′(b−1(eiα))b−1(eiα)
1− r2

|1− re−iteiα|2
dα

2π
,

where eiα = b(eiθ). Since dθ
dα ≥ 0, we have:

(x
b(T )
· y)(eit) = lim

r→1−

d∑

j=1

∫ 2π

0

(x
T
· y)(b−1(eiα))
|b′(b−1(eiα))|

1− r2

|1− re−iteiα|2
dα

2π

=
d∑

j=1

(x
T
· y)(ξj)
|b′(ξj)| .

¤
The formula (10) is well-defined as shown by the next result [15].

Theorem H. If b is a Blaschke product (finite or not) then

Zero(b′) ⊂ closed convex hull of Zero(b) ∪ {0}.
Therefore, if b is a finite Blaschke product, b′(ξ) 6= 0 for all ξ ∈ T.

Let us recall a result of J. Bourgain, who solved a problem of
Douglas and Rudin [8].

Theorem I. Let f ∈ L1, f 6≡ 0. Then

f ∈ H2(T)H2(T) ⇐⇒ log |f | ∈ L1.

Moreover, L1 = H2(T)H2(T) + C.

An immediate corollary is the next result.

Corollary 5.2. Let f0 ∈ L∞ with 1
f0
∈ L∞. Then

L1 = H2(T)H2(T) + Cf0.

Proof: It is clear that log |f0| ∈ L1. Hence, by Theorem I, since f0

is also bounded, it follows that f0 ∈ H∞(T)H∞(T), that is, we can
write f0 = g0h0, where g0, h0 ∈ H∞(T). Once more, by Theorem I,
we see that for all F ∈ L1 there exist g, h ∈ H2(T) and c ∈ C such
that F = gh+ c. Since f ∈ L1, we can therefore write f/f0 = gh+ c
as above, and so

f = gg0hh0 + cf0 ∈ H2(T)H2(T) + Cf0. ¤
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Definition 5.3. Let T ∈ L(H) be an a.c.c. and let f ∈ L1. If there
exist x, y ∈ H such that f = x

T· y, we say that T factorizes f .

Here is a reformulation of Bourgain’s result.

Lemma 5.4. Let S ∈ L(H) with H = H2(T) defined by

Sf(eit) = eitf(eit).

Then S factorizes f ∈ L1 if and only if f ≡ 0 or log |f | ∈ L1.

Proof: Since S is isometric and completely nonunitary, in partic-
ular S is an a.c.c. The only thing to check is that for g, h ∈ H2(T),
we have g

S· h = gh. By Lemma 3.7 we get:

ĝ
S· h(n) =

{
〈S∗ng, h〉 = 1

2π

∫ 2π

0
g(eit)h(eit)e−intdt = ĝh(n) n ≥ 0

〈S|n|g, h〉 = 1
2π

∫ 2π

0
e−intg(eit)h(eit)dt = ĝh(n) n ≤ 0.

The injectivity of the Fourier transform implies that g
S· h = gh. ¤

A reformulation of Corollary 5.2 in terms of factorization of L1-
functions is the following.

Lemma 5.5. Let f0 ∈ L∞ with 1
f0
∈ L∞. Let A ∈ L(H) be an

a.c.c. which factorizes f0. Then T := S ⊕A factorizes L1.

Proof: Let f ∈ L1. Using Corollary 5.2, there exist g, h ∈ H2(T)
and λ ∈ C such that f = gh + λf0. We have already noticed that
gh = g

S
· h. Our hypothesis implies that there exist x, y ∈ H such

that λf0 = x
A
· y, and hence f = (g ⊕ x)

T
· (h⊕ y). Indeed, if T1 and

T2 are a.c.c. on H1 and H2 respectively, then for x1, y1 ∈ H1 and
x2, y2 ∈ H2, it is not difficult to check that:

(x1 ⊕ x2)
T1⊕T2· (y1 ⊕ y2) = x1

T1· y1 + x2
T2· y2. ¤

Now, let us give an immediate corollary of the previous lemma.

Corollary 5.6. Let A ∈ L(H) be an a.c.c. such that (σp(A) ∩D) ∪
(σp(A∗) ∩ D) 6= ∅. Then S ⊕A factorizes L1.

Proof: Let λ = reit ∈ σp(A) ∩ D. Then there exists x ∈ H such
that ‖x‖ = 1, 〈Anx, x〉 = λn and 〈A∗nx, x〉 = λ

n
. So A factorizes

Pr,t with Pr,t ∈ L∞(T) and 1
Pr,t

∈ L∞(T). If λ ∈ σp(A∗) ∩ D, then
A factorizes Pr,−t. It remains to apply Lemma 5.5. ¤

A combination of Corollary 5.6 and Theorem 5.1 provides the
following factorization result.



42 Isabelle Chalendar

Theorem 5.7. For all f ∈ L1, there exist g, h ∈ H2(T) such that:

f(eit) =
(gh)(eit/2) + (gh)(−eit/2)

2
.

Proof: Since σp(S∗) = D, the operator S ⊕ S, which is unitarily
equivalent to S2, factorizes L1. Consider the finite Blaschke product
b(z) = z2. We have seen that, for g, h ∈ H2(T),

(g
S2· h)(eit) =

2∑

k=1

(g
S· h)(ξk)

2
,

where ξ1, ξ2 are the solutions of z2 = eit and g
S· h = gh. Since S2

factorizes L1, ∀f ∈ L1, there exist g, h ∈ H2(T) such that:

f(eit) = (gh)(eit/2)+(gh)(−eit/2)
2 . ¤
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