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The Number of Generators of a Finite Group

FEDERICO MENEGAZZO

Abstract. In this expository article, which is a slightly ex-
panded version of the lecture given at the All Ireland Algebra
Days (Belfast, 16–19 May, 2001), we first recall a technique
recently developed by F. Dalla Volta and A. Lucchini to study
generation properties of finite groups. We then discuss some
problems in permutation groups, linear groups and profinite
groups where this technique has proved useful. Finally, we
comment on some results and problems related to probability
and computation.

1. Introduction

If G is a finite group (all groups in this paper will be finite, un-
less explicitly stated otherwise), we denote by d(G) the minimum
cardinality of a set of generators of G.

(This is not to be confused with the related notion of ‘cardinality
of an irredundant set of generators’: e.g. in Sym(n), (1 2), (2 3), . . . ,
(n−1 n) is an irredundant set of generators having n−1 elements, but
d(Sym(n)) = 2: (1 2), (1 2 . . . n) suffice. But in the particular case of
p-groups the two notions coincide, namely, according to Burnside’s
Basis Theorem, if G is a finite p-group, then any irredundant set of
generators has d(G) elements.)

It is well known that the map G 7→ d(G) is not well behaved
with respect to subgroups. As a familiar example, consider the
group Sym(n): d(Sym(n)) = 2, but Sym(n) has a subgroup E =
〈(1 2), (3 4), . . . , (2i− 1 2i), . . . 〉 with d(E) = [n/2].

And this time p-groups are no exception: if we denote Cm a cyclic
group of order m, the standard wreath product W = Cp wr Cpn has
d(W ) = 2, while its ‘base subgroup’ B has d(B) = pn.

On the other hand, if d(G) = m and X is any epimorphic image
of G, then obviously d(X) ≤ d(G), and there is an epimorphic image
H of G with the property
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d(H) = m and d(X) < m for all proper epimorphic images of H.
We refer to such groups as being generator-critical.
To transform this simple-minded remark into a useful tool, we will

need to study generator-critical groups in some detail.
We note at this point that the classification of finite simple groups

enters heavily in most general results on the generation of finite
groups. In particular, the classification allows to assemble classical
results on alternating groups and groups of Lie type with individual
checks on the sporadic simple groups into the fundamental unified
statement.

Theorem. If S is any non abelian simple finite group, then
d(S) = 2.

And it is also required in the proof of the following more technical
results which will be basic in our discussion:

Theorem. [17]. Let N be a proper, minimum normal subgroup
of the finite group G. Then d(G) ≤ d(G/N) + 1.

Theorem. [20]. Let the finite, non cyclic group G have a unique
minimum normal subgroup M . Then d(G) = max(2, d(G/M)).

2. Generator-critical Groups

Let L be the set of finite groups L with the properties:

• L has a unique minimal normal subgroup, M ;
• if M is abelian then it has a complement in L.

The groups in L are rather well understood. With M abelian,
easy examples are: if F is the field with p elements, take M = F
(the additive group of the field), L = M o H with H ≤ F× (the
multiplicative group of F ; we do not exclude H = 1). In general L
is an affine group L = M oH, where M is an F -vector space and H
is an irreducible subgroup of GLF (M).

With M non abelian, easiest examples are: if S is a non abelian
simple group, S ≤ L ≤ AutS (i.e. L is almost simple; we do not
exclude L = S. We record that d(L) ≤ 3 for any almost simple group
[4]). Here are more examples: L = S wrSym(n), where M = Sn is
the base subgroup. The general case is as follows: L is a subgroup
of W = Aut S wrSym(n), M = Sn ≤ L ≤ W , such that L projects
onto a transitive subgroup of Sym(n).
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Given L ∈ L with M = soc L and a positive integer t define the
group Lt as follows:

Lt :=
{

(l1, . . . , lt) ∈ Lt
∣∣ l1 ≡ · · · ≡ lt mod M

}
.

Moreover let L0 := L/M.
The following properties of these groups Lt for t > 0 are easily

proved:
• soc Lt = M t;
• if K is a minimal normal subgroup of Lt, then K ∼= M and

Lt/K ∼= Lt−1;
• d(Lt−1) ≤ d(Lt) ≤ d(Lt−1) + 1 for t > 1;
• limt→∞ d(Lt) = ∞.

Hence if m > d(L) there is a unique t = f(L,m) such that

d(Lt) = m, d(Lt−1) < m.

This means that d(Lf(L,m)) = m and for every proper epimorphic
image X we have d(X) < m: in other words, Lf(L,m) is generator-
critical.

The significance of this construction comes from the following
Theorem. [5]. If H is a generator-critical finite group and

d(H) = m, then H is isomorphic to Lf(L,m) for some L ∈ L.
Hence, if G is any nontrivial finite group, there exist L ∈ L and

a positive integer t such that Lt is an epimorphic image of G and
d(G) = d(Lt).

When trying to prove that a finite group which has a given prop-
erty P can by generated by a certain number m of elements, a min-
imum counterexample is often a generator-critical group with m + 1
generators. Hence results on the generation of groups Lt allow us to
prove general results on the generation of finite groups. In particular,
we are interested in getting information about f(L,m).

Here is an informal and very crude summary: if M is abelian,
then f(L,m) is linear in m, while if M is not abelian, then f(L,m)
is approximately exponential in m.

For a precise statement, we distinguish several cases.
Case 1: L = M is cyclic of order p. In this case of course Lt = Lt

and f(L,m) = m.
Case 2: L > M , M abelian.
Let F be the field CEnd M (L0), and define rL, sL by rL = dimF M ,

sL = dimF H1(L0,M). If m > d(L0), then f(L,m) = rL(m − 2) +
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1− sL. Since sL < rL [1], we get the inequalities m− 1 ≤ f(L,m) ≤
rL(m− 2) + 1.

Case 3: M non abelian.
For any finite group X, let φX(s) denote the number of s-bases,

that is, ordered s-tuples (x1, . . . , xs) of elements of X that gener-
ate X. We may identify L with a subgroup of AutM, and there
is a simple group S such that M ∼= Sn. Let γL = |CAut M (L/M)|
and for any s ∈ N define ψL(s) = φL(s)

γLφL/M (s) . It can be proved that
if m > d(L0) then f(L,m) = ψL(m − 1) + 1. Moreover, there is a
constant γ, 0 < γ < 1, such that for any s ≥ max(2, d(L0)) we have

γ|M |s−1

n|OutS| ≤ ψL(s) ≤ |M |s−1.

And then, known information on the automorphism groups of simple
groups allows to conclude that there is a constant c such that

c|M |m−2

log |M | ≤ f(L,m) ≤ |M |m−2.

As a matter of fact, it turns out that in many instances the fol-
lowing simplified statement is enough to get the desired conclusion:

If m elements are really needed to generate a group G, then G has
a normal section H/K that is either elementary abelian of rank ≥
m−1 or the direct product of at least a constant times 2m isomorphic
simple groups.

3. Generating Permutation Groups

Every subgroup of Sym(n) can be generated by at most n elements
[10]; this bound has been lowered, using the classification, to [n

2 ]
if n > 3 (P. Neumann, in [3]). But for special classes of permuta-
tion groups, such as transitive and primitive ones, it has long been
suspected that substantially smaller bounds would hold.

Theorem. [21] There is a constant C such that, if G ≤ Sym(n)
is transitive, then

d(G) ≤ Cn√
log n

.

To prove this result, which was first obtained for nilpotent groups
in [12] and extended to soluble groups in [2], we used the approach
via generator-critical groups introduced above, but also a bound on
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the number of abelian composition factors [27] and the following
lemma, also proved in the soluble case in [2]:

Lemma. There is a constant b such that, if H is a subgroup of
index n ≥ 2 of a finite group G, F is any field, V is an FH-module
of dimension a over F , then every submodule of the induced module
W = V ↑G

H can be generated by [abn/
√

log n] elements.
The same ideas, plus information on linear groups which will be

described in the next section, yield
Theorem. [22] There is a constant C such that, if G is a primi-

tive permutation group of degree n ≥ 3, then

d(G) ≤ C log n√
log log n

.

Note that the bounds given by the above theorems are asymptot-
ically best possible [12], [29].

4. Generating Linear Groups

In this section K is a field, V a K-vector space, dimK V = n is finite,
and G is a finite subgroup of GLK(V ). The goal is to give bounds
for d(G) (under suitable restrictions for G and K) in terms of n (and
possibly of K).

The starting point is the following
Theorem. [13] If G is completely reducible, then d(G) ≤ 3

2n.

Note that this statement is valid for arbitrary fields, and contains
no unspecified constant!

If we restrict to irreducible groups, one might suspect that a better
bound could be found; but the examples in [9] show that any bound
for the number of generators of an irreducible linear group of degree
n over an arbitrary field K must be linear in n.

So we assume that the field K has finite degree d over its prime
subfield.

Theorem. [22] Let V be a vector space of finite dimension n ≥ 2
over the finite field K of order pd. There exists a constant C such
that, if G is an irreducible subgroup of GLK(V ), then

d(G) ≤ Cd log p
n√
log n

.
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Theorem. [24] Let K be a finite extension field of the rational
field Q, and let d = [K : Q]. If G is an irreducible linear group of
degree n ≥ 2 over K, then

d(G) ≤ (C1 + C2d)
n√
log n

for some constants C1, C2.

The study of the particular case of primitive linear groups is cru-
cial in the proof of both theorems. But the result in this case is
more satisfactory: it holds for arbitrary fields and the bound for the
number of generators is much stronger.

Theorem. [24] Let K be a field, V a K-vector space of dimension
n ≥ 2, G a finite primitive subgroup of GLK(V ). Then d(G) ≤
C log n for some constant C.

Also for linear groups, there are examples showing that these
bounds have the correct order (up to the choice of the constants).

5. Composition Length, and a Problem in Number Theory

In order to be able to apply the machinery of generator-critical
groups to linear groups, as a preliminary step it was necessary to
find estimates for the composition length of the groups involved –
especially so for primitive linear groups over number fields and finite
fields.

If X is any finite group, we denote by a(X) the length of a com-
position series of X.

Theorem. [15] Let K be a finite extension field of Q, and let d =
[K : Q]; let V be a K-vector space of dimension n, G a finite quasi-
primitive subgroup of GLK(V ). Then a(G) ≤ c1 log n + 2 log d + 1,
where c1 is an absolute positive constant.

This result is again best possible, in the sense that the lower bound
for a(G) is of the same form but with a different constant.

The problem for finite fields is more difficult – and perhaps more
interesting.

For any positive integer n, denote by Ω(n) the number of prime
factors of n, counting multiplicities, and as customary by d(n) the
number of positive divisors of n. Then clearly for a finite abelian
group X, the composition length equals Ω(|X|).
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A most natural example of a primitive linear group is the multi-
plicative group F× of the field F with qn elements acting by multi-
plication on F itself, viewed as a vector space of dimension n over the
field with q = pd elements. It is easy to see that the action is indeed
primitive, since it is transitive on the set of non-zero vectors. Hence,
a particular case of our question is the following number-theoretic

Problem: Find the asymptotic behaviour of Ω(qn − 1).
As far as I know, the problem is still open. We have been able to

find an upper bound:
Theorem. [15] Let q > 1 be an integer. Then

Ω(qn − 1) ≤ C
n

log n
log q

for all n ≥ 2, where C is an absolute positive constant.
We do not know how good this estimate is; it is to be compared

with the lower bounds that come from
Proposition. [31] For every integer n ≥ 1

a) Ω(2n − 1) ≥ d(n)− 1;
b) Ω(qn − 1) ≥ d(n) if q > 2.

which, combined with a well-known result of Wigert, gives
Proposition. For any given ε > 0, for infinitely many natural

numbers n we have, uniformly over q, that

Ω(qn − 1) > 2
(1−ε) log n
log log n .

This partial solution to the number-theoretic problem leads to
the following

Theorem. [15] Let K be a finite field of characteristic p and
order pd, V a K-vector space of dimension n, G a quasi-primitive
subgroup of GLK(V ). Then a(G) ≤ log p max

{
1, Cnd

log(nd)

}
, where C

is an absolute positive constant.

6. ‘Profinite Grushko-Neumann Theorem’

The method of generator-critical groups has been successfully ap-
plied to profinite groups.

We start by recalling a well-known result on free products:
Theorem (Grushko - Neumann). If H1, H2 are finitely generated

groups, then d(H1 ∗H2) = d(H1) + d(H2).
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The free product is a coproduct in the category of groups; a co-
product exists also in the category of profinite groups, and the ques-
tion has been open for some time whether d(H1

∐
H2) = d(H1) +

d(H2) for any pair of topologically finitely generated profinite groups
(it is Problem 12.71 in the ‘Kourovka Notebook’).

Ribes and Wong [30] have shown that the question is equivalent
to: for every pair H1, H2 of finite groups, does there exist a finite
group G such that G = 〈H1,H2〉 and d(G) = d(H1) + d(H2) ?

If both H1, H2 are p-groups, for the same prime, then d(H1 ×
H2) = d(H1)+d(H2). It is then natural to look at the other extreme
– namely, the case of groups of coprime orders.

If H1, H2 and G are assumed to be soluble, then the answer is
negative [14].

The answer is negative also for arbitrary finite groups [18], [19]:
Theorem. There exist two constants α and β, with α < 1, such

that if a finite group G is generated by two subgroups H1 and H2

of coprime orders and each of these subgroups can be generated by d
elements then d(G) ≤ d(1 + α) + β.

Theorem. There exists an integer δ such that for any d ≥ δ the
following is true: for any pair p and q of distinct primes, if P is a
p-group, Q is q-group, and P and Q can be generated by d elements
then d(G) ≤ d + 1 for any finite group G generated by P and Q.

7. Probability

For any finite group G, we already defined φG(s) as the number of
s-bases, that is, ordered s-tuples (g1, . . . , gs) of elements of G that
generate G. The number PG(s) = φG(s)

|G|s gives the probability that s

randomly chosen elements of G generate G.
A rather active research area in the past few years has been con-

cerned with the problem of finding conditions on G and s which
imply that PG(s) is ‘high’ (s must of course be at least d(G)). A
particularly good example is the following

Theorem. [7], [11], [16] If S is a finite non abelian simple group
and S ≤ G ≤ Aut G, then the probability that two randomly cho-
sen elements of G generate a subgroup containing S tends to 1 as
|S| → ∞.

A similar result holds for groups in the class L. To formulate it
neatly, we introduce a related notion: if G is a finite group and N
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is a normal subgroup of G, let PG,N (s) = PG(s)
PG/N (s) . This number is

the probability that a s-tuple generates G, given that it generates G
modulo N.

Theorem. [25] Assume that a finite group L has a unique mini-
mum normal subgroup M and that s ≥ d(L). Then PL,M (s) → 1 as
|M | → ∞.

This means that, if L has a unique minimum normal subgroup M ,
M is ‘large’, and we choose at random s elements which generate L
modulo M , then these elements almost certainly generate L itself.

On the other hand, it is a remark of Kantor and Lubotzki [11]
that, given any real number α with 0 < α < 1, there is no function
f such that if s ≥ f(d(G)) then PG(s) > α. Hence, in probabilistic
estimates of the kind we are considering, it is not possile to refer
only to d(G), and it will be necessary to take other invariants of G
into account. In this context, some attention has centered around
the

Conjecture (Pak [26]): given a real number α with 0 < α < 1
there exists an absolute constant β such that for any finite group G,
if s ≥ βd(G) log log |G| then PG(s) ≥ α.

Pak’s conjecture is still open. Evidence in favour of it comes from
the study of generator-critical groups:

Theorem. [6] Given a real number α with 0 < α < 1 there exist
two constants β1, β2 such that, for every L ∈ L and positive integer
t, PLt,soc Lt(s) ≥ α provided

• s ≥ β1 + d(Lt) if socL is abelian
• s ≥ β2 log(t + 1) if soc L is non abelian.

8. Computer Algebra

In computer algebra packages, the standard way of giving a permu-
tation or linear group G is to exhibit a list S of generators. Most
algorithms to study properties of G or of its subgroups will have S
in their input.

Analysis of the complexity shows that the size |S| will usually seri-
ously affect the performance of the algorithms, and this is confirmed
by practice. It would therefore be important to be able to reduce
|S| as far as possible. The results described in the previous sections
may be considered as a small step in this direction: at least, we
have some indication of how big a generating set should be. Notice
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however that a small size is by no means the only requirement that
a good generating set should fulfil: the ability to perform a mem-
bership test is certainly at the same level of importance, and there
will usually be further requirements depending on the particular task
that an algorithm is aimed at.

For permutation groups, Jerrum’s filter [10] is an elegant algo-
rithm which, given a subset S of Sym(n), outputs a generating set
T of G = 〈S〉 of cardinality at most n (actually, |T | ≤ n−k, where k
is the number of G-orbits). On the other hand, the algorithm to get
|T | ≤ [n/2] which has been recently developed [23] is neither simple
nor elegant.

These elementary considerations suggest that we conclude with
the warning that to the following problems, that is quite natural to
formulate at this point, it may be rather hard to give satisfactory
answers:

Problem 1: Give an algorithm to transform a given set of gener-
ators into a generating set of minimum cardinality, for permutation
and linear groups.

Problem 2: Give an algorithm to find a set of generators of the
expected cardinality, for particular classes of permutation and linear
groups (e.g. log n for primitive subgroups of Sym(n), etc.).
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