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Some Interfaces Between Noncommutative

Ring Theory and Operator Algebras

Pere Ara

Abstract. In this talk, I will present a unified approach to several
constructions in operator algebras that are related to the algebraic the-
ory of rings of quotients, thus showing deep relations between algebraic
and analytic concepts. These constructions include the algebra of un-
bounded operators affiliated to a finite von Neumann algebra, defined
by Murray and von Neumann in 1936, and the C*-algebra of essential
multipliers of a C*-algebra, defined by Elliott in 1976. In both cases,
the algebras were defined without any explicit reference to localisation
theory, but the fact that they can be obtained as algebras of quotients
has played a very important role in several applications.

Introduction

A pre-C*-algebra is a complex *-algebra A endowed with a norm
‖ · ‖ satisfying ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A and the important
C*-equation

‖x∗x‖ = ‖x‖2

for all x ∈ A. We call a norm satisfying the above properties a C*-
norm. A C*-algebra is a pre-C*-algebra which is complete for the
uniform structure induced by the norm. Every pre-C*-algebra A can
be completed, and so the pre-C*-algebras are just the *-subalgebras
of C*-algebras. An important example of a C*-algebra is the algebra
B(H) of all bounded linear operators on a Hilbert space H. The
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involution on this algebra is given by the adjoint operation and the
norm is the operator norm:

‖T‖ = sup
‖x‖≤1

‖Tx‖.

A von Neumann algebra is a *-subalgebra M of B(H) such that
M = M ′′, where, for a subset X of B(H), we denote by X ′ the
commutant of X, that is, the set of elements of B(H) that commute
with every element in X. Every von Neumann algebra is a C*-
algebra, but not every C*-algebra admits an *-isomorphism with a
von Neumann algebra.

Many important C*-algebras appear as completions of *-algebras
under suitable C*-norms on them. For example, both the group C*-
algebra C∗(G) and the reduced group C*-algebra C∗r (G) appear as
the completion of C[G] once we put on it suitable C*-norms. See
Section 3 for the definition of the reduced group C*-algebra.

The reader is referred to the textbooks [16], [30], [35] and [36]
for more information on C*-algebras.

Let B be a complex unital *-algebra. The involution ∗ is said to be
positive-definite if, for every finite family {xi} of elements in B, the
relation

∑
x∗i xi = 0 implies that xi = 0 for all i. The involution of a

pre-C*-algebra is always positive definite. We sketch here the general
rule that we will follow to attach a C*-algebra of quotients to any
symmetric algebra of quotients of a C*-algebra A. (In fact it is not
necessary to start with a C*-algebra to perform this construction,
and some examples will be constructed in Section 3 which does not
come from a C*-algebra, but for the sake of simplicity let us restrict
here to the case where A is a C*-algebra.) Assume that Q(A) is a
symmetric algebra of quotients of A in the sense that the involution
of A can be extended to Q(A). This happens with the classical ring of
quotients of A in case A satisfies the left Ore condition (equivalently,
the right Ore condition), and always with the symmetric Martindale
algebra of quotients and the symmetric maximal algebra of quotients;
see Section 2. Then the involution on Q(A) will be positive definite
and we can perform the Handelman-Vidav construction to Q(A) to
get the *-algebra of bounded elements Q(A)b, as follows.

Let Q = Q(A). Then Q is a unital, complex *-algebra with
positive-definite involution. We define the positive cone Q+ of Q
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as the set of all elements of the form
∑

x∗i xi, where {xi} is a finite
subset of Q. The self-adjoint part Qsa of Q becomes naturally a par-
tially ordered real vector space by x ≤ y if y − x ∈ Q+. An element
x ∈ Q is said to be bounded if x∗x ≤ n 1 for some positive integer n.
This is tantamount to the existence of a finite subset {yi} of Q such
that

x∗x +
∑

y∗i yi = n 1.

We will denote the set of all bounded elements of Q by Qb. It is
not hard to see that Qb is a *-subalgebra of Q in general, cf. [20]
and [39]. There is a seminorm on Q(A)b, which can be seen to be a
norm in our situation, given by

‖x‖2 = inf {λ ∈ R | x∗x ≤ λ 1}.

It is proved in [20] that Q(A)b is a pre-C*-algebra with this norm.
Its completion is therefore a C*-algebra, and we call it a C*-algebra
of quotients of A. We hope to convince the reader that it is the
analytic-algebraic context of the theory what makes it useful.

1. The Commutative Case

There is nothing more familiar to an algebraist than taking the field
of fractions of a commutative domain. In case the commutative ring
R has zero-divisors, we invert the set of non zero-divisors and we
obtain the so-called classical ring of quotients Qcl(R). If A is a
commutative von Neumann algebra then A = L∞(X,µ) for some
locally compact Hausdorff space X and some finite measure µ on X.
Here L∞(X, µ) denotes the algebra of essentially bounded measur-
able functions modulo the ideal of measurable functions which van-
ish outside a subset of measure zero, with the norm given by the
essential supremum. One can see that this is a maximal abelian sub-
algebra of the algebra B(L2(X, µ)) of bounded linear operators on
the Hilbert space L2(X, µ). In this case we have Qcl(A) = L(X,µ),
the algebra of equivalence classes of measurable functions on X, and
Qcl(A)b = L∞(X, µ), so that the C*-algebra of quotients of A is A
itself. The maximal ring of quotients of A is also L(X, µ).

Now consider a general commutative C*-algebra A. Then there
exists a locally compact Hausdorff space X such that A = C0(X), the
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algebra of continuous functions on X which vanish at infinity, with
the supremum norm. An element f ∈ C0(X) is not a zero-divisor if
and only if the cozero set of f is dense in X. Here Qcl(A)b 6= A in
general, for an easy example take the interval X = [−1, 1]. Then the
function x/|x| is bounded but not continuous. If X is metrisable,
then Qcl(A) = alg lim

−→ U∈D C(U) and Qcl(A)b = alg lim
−→ U∈D Cb(U),

where D is the set of dense open subsets of X. In the non-metrisable
case, the algebra alg lim

−→ U∈D C(U) can be bigger than Qcl(A), since
Qcl(A) only involves the dense cozero sets in X. It turns out that
alg lim
−→ U∈D C(U) is the so-called maximal ring of quotients of C0(X),

denoted Qmax(A), and of course alg lim
−→ U∈D Cb(U) is its bounded

part. Since Qmax(A) is the quotient algebra that can be gener-
alised to the non-commutative case, we will focus on it for the rest
of this section. The completion of Qmax(A)b is the C*-direct limit
Q(A) = lim−→U∈D Cb(U). It can also be described as the algebra of
bounded Borel functions on X modulo the ideal of bounded Borel
functions that vanish outside of a set of the first category; see [3,
Proposition 3.4.5]. The C*-algebra Q(A) should be thought of as
a topological completion of C(X) whilst the von Neumann algebra
L∞(X, µ) is a measure-theoretic completion of C(X). It is interest-
ing to observe that Q(A) has several important characterizations: It
is the injective envelope of A (see Section 2 for the definition), and it
is also the regular monotone completion of A; see [14, Theorem 4.5]
and [18, Theorem 6.3].

2. The Local Multiplier Algebra

The construction in Section 1 can be generalised in at least two dif-
ferent ways to the non-commutative situation. We first sketch the
construction of the local multiplier algebra, based on the symmet-
ric Martindale algebra of quotients, and then we consider a newer
concept, based on the symmetric maximal algebra of quotients.

We need the notion of the multiplier algebra M(A) of a semiprime
algebra A. Roughly speaking this is the maximal unitisation of A.
More precisely M(A) is a unital algebra containing A as an essential
ideal, and for any unital algebra T containing A as an ideal, there
is a unique unital algebra homomorphism T → M(A) which is the
identity on A. (Recall that a (right) ideal I of an algebra T is said
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to be essential if for every non-zero (right) ideal J of A we have
I ∩ J 6= 0.) If A = C0(X) for some locally compact Hausdorff space
X, then M(A) = Cb(X) = C(βX), where βX is the Stone–Čech
compactification of X. Now, the closed ideals of C0(X) are of the
form C0(U), where U is an open subset of X, and the closed essential
ideals correspond to open and dense subsets, so that we have

Q(C0(X)) = lim−→U∈D Cb(U) = lim−→U∈D M(C0(U)) = lim−→I∈Ice
M(I),

where Ice denotes the family of closed essential ideals of A. This
makes it possible to define a C*-algebra of quotients for a general
non-commutative C*-algebra A, called the local multiplier algebra
of A, namely

Mloc(A) = lim−→I∈Ice
M(I).

In [3], Martin Mathieu and the author describe at large the many
nice properties and applications of this algebra. It turns out that
Mloc(A) also follows the pattern we have sketched above for the
classical and the maximal ring of quotients of a commutative C*-
algebra A. Note that in the non-commutative case the classical ring
of quotients could very well not exist (the algebra can fail to satisfy
Ore’s condition), and the maximal ring of quotients is very large
and it has the additional shortcoming that the involution does not
extend to it. The local multiplier algebra corresponds rather to the
symmetric Martindale ring of quotients of A. For the construction
of this ring of quotients, see [21] (and also [32], [33] and [4] for the
prime case). For the relationship with the local multiplier algebra,
see [3, Chapter 2].

The C*-algebra Mloc(A) was first defined (using the direct limit
formula above) by Elliott in 1976 [11], under the name of essen-
tial multipliers, and was used by him to study automorphisms and
derivations on AF-algebras. Somewhat later, Pedersen proved in
[34] that every derivation on a separable C*-algebra becomes inner
in Mloc(A).

The connection with the theory of rings of quotients was realised
by Martin Mathieu and the speaker. They also realised, in analogy
with algebra, the importance of the centre of Mloc(A).
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By a local version of the Dauns–Hofmann Theorem ([1] or [3]),
the centre Z of Mloc(A) is described as

Z = lim−→U∈D Cb(U) ,

where now D is the set of dense open subsets of the primitive spec-
trum of A.

The C*-subalgebra AZ of Mloc(A) is called the bounded central
closure of A and it is denoted by cA. It plays an important role in
the study of several problems related with operators on C*-algebras,
see [3]. As its algebraic analogue, cA is a closure operation, i.e.,
c(cA) = cA. The following result is a sample of the results obtained
by using these techniques. It generalises a well-known result for von
Neumann algebras.

Theorem 2.1. (Mathieu [27], [28]) For an inner derivation δa on
a C*-algebra A, we have

‖δa‖ = 2 dist(a, Z).

Moreover there is b ∈ Mloc(A) such that δa = δb and ‖δb‖ = 2‖b‖.
Some important structural questions on Mloc(A) remain open:

(1) Is the construction of Mloc(A) a closure operation? (i.e., does
the equality Mloc(Mloc(A)) = Mloc(A) hold?)

(2) Is every derivation on Mloc(A) inner? (Not known even for
separable A.)

(3) Characterise the C*-algebras A such that Mloc(A) is simple.

A positive solution to (2) would give a unified approach to two
results by Sakai, one stating that every derivation on a simple C*-
algebra is inner in its multiplier algebra, and the other saying that
every derivation on a von Neumann algebra is inner. Some advances
on Problems (1) and (2) have been obtained by Somerset in [37].
For example, it is shown that if A is a unital separable C*-algebra
such that Prim(A) has a dense Gδ-subset consisting of closed points,
then Mloc(A) is its own local multiplier algebra and has only inner
derivations [37, Theorem 2.7]. Problem (3) has been raised by [2],
where the first non-trivial examples of C*-algebras with simple local
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multiplier algebra were constructed. We believe that the structure
of the lattice of ideals of Mloc(A) deserves further investigation.

Various aspects of the theory of local multipliers have been sur-
veyed in the papers [25, 26, 28, 29].

Now we consider the symmetric maximal algebra of quotients of
a C*-algebra A. The corresponding algebraic ring of quotients has
been considered in depth only recently in [22]. The construction is
based on essential right ideals I of A. Note that for an essential right
ideal I of A we have `A(I) = 0, where `A(X) is the left annihilator of
a subset X of A. Indeed, if x is a non-zero element in A, then there
is z ∈ A such that x∗z is a non-zero element in I by the essentiality
of I, and so (x∗z)∗(x∗z) 6= 0, showing that xI 6= 0. Let Ier denote
the family of essential right ideals of A.

Consider triples (f, g, I), where I ∈ Ier, f : I∗ → A is a left A-
module homomorphism, g: I → A is a right A-module homomor-
phism and they satisfy the compatibility rule

f(x)y = xg(y)

for all x ∈ I∗ and y ∈ I. Two such triples (f1, g1, I1) and (f2, g2, I2)
are equivalent if g1 and g2 coincide on I1 ∩ I2. In that case we have,
for all x, y ∈ I1 ∩ I2,

0 = x∗(g1(y)− g2(y)) = (f1(x∗)− f2(x∗))y,

so that f1 and f2 agree on I∗1 ∩ I∗2 , because I1 ∩ I2 is an essential
right ideal. This also shows that the first component in the triple
(f, g, I) is determined by the second, so what is really crucial is that
we impose the existence of f . Let Qσ(A) be the set of all equivalence
classes of triples (f, g, I). We define algebraic operations on Qσ(A)
by

[(f1, g1, I1)] + [(f2, g2, I2)] = [(h1, h2, I1 ∩ I2)],

[(f1, g1, I1)][(f2, g2, I2)] = [(k1, k2, J)],

[(f, g, I)]∗ = [(g∗, f∗, I)].

Here, h1(x) = f1(x) + f2(x) and h2(y) = g1(y) + g2(y), while J =
(f−1

1 (I∗2 )∗) ∩ (g−1
2 (I1)) and k1(x) = f2(f1(x)), k2(y) = g1(g2(y)).
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Finally f∗(x) = f(x∗)∗ for all x ∈ I and g∗(x) = g(x∗)∗ for all x ∈
I∗. Endowed with these operations, Qσ(A) becomes a complex *-
algebra called the maximal symmetric algebra of quotients of A [22].
We have an injective *-ring homomorphism ι:A → Qσ(A) given by
ι(a) = (Ra, La, A), where Ra (resp. La) denotes right (resp. left)
multiplication by a. Since the symmetric maximal ring of quotients
of a C*-algebra coincides with that of its unitisation, we will assume
in the rest of this section that A is a unital C*-algebra.

We will not apply the general Handelman–Vidav process to Qσ(A),
but a closely related one, which coincides with it in many situations—
in particular in the commutative case. Our C*-algebra of quo-
tients associated with Qσ(A) will be related to the hereditary C*-
subalgebras of A. Recall that there is a bijective, order-preserving
correspondence between the set of closed right ideals of A and the
set of hereditary C*-subalgebras of A, given by assigning to a closed
right ideal I the hereditary C*-subalgebra I ∩ I∗ and to a hereditary
C*-subalgebra D the right ideal I = {x ∈ A | xx∗ ∈ D}; see [35,
Theorem 1.5.2]. For a subset S in A define

S⊥ = {x ∈ A | Sx = xS = 0},
the annihilator of S. We say that a hereditary C*-subalgebra D
of A is essential in case the right ideal generated by D is essential
as a right ideal. The above bijective correspondence restricts to a
bijection between the set of closed right ideals I of A such that
`A(I) = 0 and the set of hereditary C*-subalgebras D of A such that
D⊥ = 0. This further restricts to a bijective correspondence between
the set Icer of closed essential right ideals and the set He of essential
hereditary C*-subalgebras of A.

We start by defining a positive cone P in Qσ(A). An element α in
Qσ(A) belongs to P , by definition, in the case α has a representative
(f, g, I) such that

f(x∗)x = x∗g(x) ≥ 0

for all x ∈ I. The first important observation is the following.

Lemma 2.2. For an element a ∈ A we have a ≥ 0 in A if and only
if ι(a) ∈ P .

Proof. Clearly ι(a) ∈ P if a ≥ 0 in A. Assume that ι(a) ∈ P . Then
there exists an essential right ideal I of A such that x∗ax ≥ 0 for
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all x ∈ I. Without loss of generality we can assume that I is closed.
Assume first that a = a∗. Then we can write a = a+ − a−, with a+

and a− positive and a+a− = 0. Multiplying the above relation by
a
1/2
− on the right and on the left, we get a

1/2
− aa

1/2
− = −a2

− ≤ 0. On
the other hand J := (a1/2

− )−1I = {x ∈ A | a1/2
− x ∈ I} is an essential

closed ideal of A, and for x in J we have

0 ≤ (a1/2
− x)∗a(a1/2

− x) = −x∗a2
−x ≤ 0.

From this we conclude that x∗a2
−x = 0 and so a− = 0 because

J is an essential right ideal. An analogous argument shows that,
if b = b+ − b− is self-adjoint and x∗bx = 0 for all x ∈ I then
b+ = b− = 0 and so b = 0. Now assume a ∈ A is a general element
such that x∗ax ≥ 0 for all x ∈ I. Then x∗(a−a∗

2i )x = 0 for all x ∈ I
and so a − a∗ = 0 by the above observation. Therefore a = a∗ and
the first part of the argument gives us a ≥ 0, as desired. ¤

An element α in Qσ(A) is said to be bounded in case there exists a
positive real number λ such that λ2 ·1−α∗α ∈ P and λ2 ·1−αα∗ ∈ P .
We denote by Qσ(A)b the set of bounded elements in Qσ(A). For α
in Qσ(A)b define

‖α‖σ = inf {λ ∈ R+ | λ2 · 1− α∗α ∈ P and λ2 · 1− αα∗ ∈ P} .

The following properties are easily checked. (For (P4) one needs
Lemma 2.2.)

(P1) If α, β ∈ P then α + β ∈ P .
(P2) If α ∈ P and υ ∈ R+ then υα ∈ P .
(P3) If α ∈ P and β ∈ Qσ(A) then β∗αβ ∈ P .
(P4) For a ∈ A we have ‖a‖ = ‖ι(a)‖σ.
Properties (P1)–(P2) say that P is a cone in Qσ(A). Now we

observe that if α ∈ Qσ(A)b then for every representative (f, g, I)
of α, the maps f and g are bounded linear maps with ‖f‖, ‖g‖ ≤
‖α‖σ. Indeed, given such a representative (f, g, I) of α and given
λ > ‖α‖σ, there is an essential right ideal J such that J ⊆ I and
x∗f∗(g(x)) ≤ λ2x∗x and x∗g(f∗(x)) ≤ λ2x∗x for all x ∈ J . But
x∗f∗(g(x)) = g∗(x∗)g(x) = g(x)∗g(x) and so we get g(x)∗g(x) ≤
λ2x∗x. By [35, 1.3.5], we obtain ‖g(x)‖ ≤ λ‖x‖ and so g is bounded
on J with ‖g|J‖ ≤ λ. Similarly we obtain that f is bounded on J∗
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with ‖f|J∗‖ ≤ λ. It follows easily from Lemma 2.2 that for a ∈ A we
have

‖a‖ = ‖La|J‖ = ‖Ra|J∗‖.
On the other hand, for x ∈ I and y ∈ J with ‖y‖ ≤ 1, we have

‖y∗g(x)‖ = ‖f(y∗)x‖ ≤ ‖f|J∗‖ ‖x‖ ≤ λ‖x‖.
It follows from the above that ‖g(x)‖ ≤ λ‖x‖ for all x ∈ I and so
‖g‖ ≤ λ. Since this holds for all λ > ‖α‖σ, we get ‖g‖ ≤ ‖α‖σ, and
similarly ‖f‖ ≤ ‖α‖σ.

Therefore every element α in Qσ(A)b has a representative where
the functions are defined on closed essential right ideals. Let Icer

denote the set of closed essential right ideals of A. As mentioned
before, this set is in bijective correspondence with the set He of
essential hereditary C*-subalgebras of A.

Theorem 2.3. For every C*-algebra A, Qσ(A)b is a *-algebra and
‖ · ‖σ is a C*-norm on it.

Proof. We have to prove the following properties:
(1) For α, β ∈ Qσ(A)b, we have ‖α + β‖σ ≤ ‖α‖σ + ‖β‖σ. In

particular α + β ∈ Qσ(A)b.
(2) For α ∈ Qσ(A)b and υ ∈ C we have ‖υα‖σ = |υ|‖α‖σ.
(3) For α, β ∈ Qσ(A)b we have ‖αβ‖σ ≤ ‖α‖σ‖β‖σ. In particular

αβ ∈ Qσ(A)b.
(4) For α ∈ Qσ(A)b we have ‖α∗‖σ = ‖α‖σ. In particular, α∗ ∈

Qσ(A)b.
(5) For α ∈ Qσ(A)b we have ‖α∗α‖σ = ‖α‖2σ.
(6) For α ∈ Qσ(A)b we have ‖α‖σ = 0 if and only if α = 0.

By our previous observations, we can take representatives (f, g, I)
for elements in Qσ(A)b with I a closed essential right ideal of A.

Proof of (1): Put α = [(f1, g1, I1)] and β = [(f2, g2, I2)], with
I1, I2 ∈ Icer. Take λ > ‖α‖σ and µ > ‖β‖σ. Set J = I1 ∩ I2. For all
x ∈ J we have

x∗[(λ + µ)21− (f1 + f2)∗(g1 + g2)](x)

= (λ2x∗x− x∗f∗1 (g1(x))) + (µ2x∗x− x∗f∗2 (g2(x)))

+ 2λµx∗x− x∗f∗1 (g2(x))− x∗f∗2 (g1(x))

≥ 2λµx∗x− x∗f∗1 (g2(x))− x∗f∗2 (g1(x)).
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Therefore we have to prove that g1(x)∗g2(x)+g2(x)∗g1(x) ≤ 2λµx∗x
for all x ∈ J . Put D = J ∩J∗ and take an approximate identity (ui)
for D. For x ∈ J and each i we have

g1(uix)∗g2(uix) + g2(uix)∗g1(uix)

= x∗[g1(ui)∗g2(ui) + g2(ui)∗g1(ui)]x

≤ x∗(2λµ)x = 2λµx∗x.

Since g1 and g2 are continuous and x = limi uix for x ∈ J , we get

g1(x)∗g2(x) + g2(x)∗g1(x) = lim
i

[g1(uix)∗g2(uix) + g2(uix)∗g1(uix)]

≤ 2λµx∗x,

as desired.
(2) is easy and left to the reader.
Proof of (3): Take λ > ‖α‖σ and µ > ‖β‖σ and take suitable

representatives (f1, g1, I1) and (f2, g2, I2) of α and β, respectively.
Set J := (g−1

2 (I1)) ∩ (f−1
1 (I∗2 )∗). For x ∈ J we have

g1(g2(x))∗g1(g2(x)) ≤ λ2g2(x)∗g2(x) ≤ λ2µ2x∗x.

We conclude that λ2µ2−(αβ)∗(αβ) ∈ P . Similarly λ2µ2−(αβ)(αβ)∗

belongs to P so that ‖αβ‖σ ≤ ‖α‖σ‖β‖σ, as wanted.
Property (4) is obvious from the definitions. Taking into account

properties (3) and (4), in order to prove (5) it is enough to show
‖α‖2σ ≤ ‖α∗α‖σ. The latter inequality is proved exactly as in [39,
page 78].

Proof of (6): If α = [(f, g, I)] ∈ Qσ(A)b then αι(x) = ι(g(x)) for
every x ∈ I. Since ‖a‖ = ‖ι(a)‖σ for a ∈ A we get

‖g(x)‖ = ‖αι(x)‖σ ≤ ‖α‖σ‖x‖

and so ‖α‖σ = 0 implies that g = 0 and α = 0. ¤

Let Qh(A) be the C*-completion of Qσ(A) under the norm ‖ · ‖σ.
By (P4) we have an injective *-homomorphism ι: A → Qh(A). The
following lemma is quite useful.
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Lemma 2.4. Let A be a C*-algebra, and let α = [(f, g, I)] ∈ Qσ(A)b,
with I a closed essential right ideal of A. Let (ui) be an approximate
identity for D = I ∩ I∗. Then

‖α‖σ = ‖f‖ = ‖g‖ = sup
i
‖g(ui)‖ = sup

i
‖f(ui)‖.

Proof. Clearly supi‖f(ui)‖ = ‖f‖ and supi‖g(ui)‖ = ‖g‖. Since
we have observed before that ‖f‖, ‖g‖ ≤ ‖α‖σ, we only have to
show that ‖α‖σ ≤ supi‖g(ui)‖. (The corresponding statement for
f follows by symmetry.) Take a positive real number λ such that
‖g(ui)‖ ≤ λ for all i. Then

g(ui)∗g(ui) ≤ λ2 · 1

and so
g(uix)∗g(uix) = x∗g(ui)∗g(ui)x ≤ λ2x∗x

for all x ∈ I and all i, which proves that λ2x∗x− g(x)∗g(x) ≥ 0 and
so λ2 · 1 − α∗α ∈ P . For all x ∈ I∗ with ‖x‖ ≤ 1 and all y ∈ I we
have

y∗f(x)∗f(x)y = g(y)∗x∗xg(y) ≤ g(y)∗g(y) ≤ λ2y∗y.

We infer that ‖f(x)y‖ ≤ λ‖y‖ and so ‖f(x)‖ = ‖(Lf(x))|I‖ ≤ λ for
all x ∈ I∗ with ‖x‖ ≤ 1. Therefore ‖f‖ ≤ λ and so we conclude as
before that λ2 ·1−αα∗ ∈ P . It follows that ‖α‖σ ≤ λ, and our proof
is complete. ¤

The above result tells us that we can build elements in Qσ(A)b

from suitable operators on essential hereditary C*-subalgebras D of
A, with controlled norm. Namely assume that f and g are bounded
linear operators from D to A such that f(x)y = xg(y) for all x, y ∈
D. Then we can uniquely extend f (respectively, g) to a left (respec-
tively, right) A-module homomorphism from the left (respectively,
right) ideal generated by D, so that we get an element α in Qσ(A)b

with ‖α‖σ = ‖f‖ = ‖g‖. In particular there is a unital injective *-
homomorphism from the multiplier algebra M(D) to Qh(A). It also
follows that we have a unital injective *-homomorphism Mloc(A) →
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Qh(A) which is the identity on A. (See below for a proof of this
using the universal property of Qh(A).)

An enlargement of a C*-algebra A is a pair (B, κ), where B is a
C*-algebra and κ:A → B is a *-monomorphism. Let A ⊆ B be an
enlargement of A (we suppress κ for the sake of simplicity). For each
I ∈ Icer define an A-subbimodule BA

I of B by

BA
I = {b ∈ B | bI + b∗I ⊆ A}.

Set BIcer
=

⋃
I∈Icer

BA
I . Then BIcer

is a *-subalgebra of B and its
completion is a C*-algebra, which we denote by Bh. We say that B
is an Icer-enlargement of A in case B = Bh. An Icer-enlargement
B of A is said to be essential in case, for q ∈ B and I ∈ Icer, we
have qI = 0 implies q = 0. Note that the enlargement (Qh(A), ι) is
an essential Icer-enlargement. Indeed, for q ∈ Qh(A) we can find a
sequence (qn) in Qσ(A)b converging to q. Without loss of generality
we can assume that the domain of qn is contained in I for all n ≥ 1.
From the fact that the norm of qn is determined by its action on its
domain In (Lemma 2.4) we conclude that qIn 6= 0 for n big enough.
In particular qI 6= 0.

Let us now state the universal property of the algebra Qh(A) in
a completely analogous fashion to the corresponding universal prop-
erty of Mloc(A), see [3].

Proposition 2.5. (Universal property of Qh(A)) Let A ⊆ B be an
enlargement of a C*-algebra A by a C*-algebra B. Then there exists
a unique *-homomorphism ψ: Bh → Qh(A) which is the identity
on A. The map ψ is injective if and only if Bh is an essential
Icer-enlargement of A.

Proof. Define ψ: BIcer → Qσ(A)b by ψ(b) = [(Rb, Lb, I)], where b ∈
BA

I . Clearly ψ is a *-homomorphism, and we have to check that
‖ψ(b)‖σ ≤ ‖b‖ for all b ∈ BIcer . Assume that b ∈ BA

I and set λ =
‖b‖. Then λ2·1−b∗b ≥ 0 in B, and so λ2x∗x−x∗b∗bx ≥ 0 for all x ∈ I,
which gives λ2 · 1−ψ(b)∗ψ(b) ∈ P . Similarly λ2 · 1−ψ(b)ψ(b)∗ ∈ P ,
and we conclude that ‖ψ(b)‖σ ≤ ‖b‖. We can therefore extend ψ to
a *-homomorphism (still denoted by ψ) from Bh into Qh(A).

Note that Lemma 2.4 implies that the kernel of ψ is precisely the
set of elements b ∈ Bh such that bI = 0 for some closed essential
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right ideal I of A. In particular, we see that ψ is injective if and only
if Bh is an essential Icer-enlargement of A. ¤

Finally we indicate the connection of Qh(A) with the injective
envelope I(A) of a C*-algebra, introduced by Hamana in [17]. Re-
call that I(A) is an injective C*-algebra, meaning that, given any
self-adjoint linear subspace S containing 1 of a C*-algebra C, any
completely positive linear map of S into I(A) extends to a completely
positive linear map of C into I(A). Moreover the identity map is the
only completely positive extension of the inclusion map A ⊆ I(A).
Every injective C*-algebra is monotone complete and, in particular,
an AW ∗-algebra. We need the following lemma, which is proved in
exactly the same way as the corresponding fact for essential ideals,
see [14, Lemma 4.1].

Lemma 2.6. Let D ∈ He. Then we have

{y ∈ I(A) | yD = 0} = {y ∈ I(A) | Dy = 0} = 0.

Theorem 2.7. Let A be a C*-algebra. Then the C*-algebra Qh(A)
is *-isomorphic to I(A)h. Moreover

Z(I(A)) = Z(Qh(A)) = Z(Mloc(A)).

Proof. By Proposition 2.5, there exists a unique *-homomorphism
ψ: I(A)h → Qh(A) which is the identity on A. We first show that
it is surjective. Let I be a closed essential right ideal of A, and let
α = [(f, g, I)] be in Qσ(A)b. Let (ui) be an approximate identity for
D = I ∩ I∗. Lemma 2.4 implies that

‖f‖cb = ‖g‖cb = supi‖g(ui)‖ = supi‖f(ui)‖ = ‖α‖σ.

By [14, Theorem 2.1], there is an element y ∈ I(A) such that g(x) =
yx for all x ∈ I and ‖y‖ = ‖g‖cb. By Lemma 2.6, there is only one
y ∈ I(A) with this property. Now observe that

(f(x)− xy)z = x(g(z)− yz) = 0

for all x ∈ I∗ and all z ∈ I. Consequently f(x) = xy for all x ∈ I∗,
and we conclude that ψ(y) = α. This shows that ψ is surjective, and
ψ is also injective because of Lemma 2.6 and Proposition 2.5.
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By [19], Z(Mloc(A)) = Z(I(A)). We therefore conclude from [17]
that Z(Mloc(A)) = Z(Qh(A)) = Z(I(A)). ¤

We close with some questions on Qh(A):
(1) We can prove that if A is an AW ∗-algebra then A = Qh(A).

Is it true that Qh(A) is always an AW ∗-algebra?
(2) Is it true that Qh(Qh(A)) = Qh(A) for every C*-algebra A?

(Conjecture: Yes.)
(3) Can we use Qh(A) to shed some light on the longstanding

problem: Is every AW ∗-algebra monotone complete?

3. Group Algebras

In this section we consider complex group algebras. A useful tool
in the study of algebraic properties of these algebras comes from
functional analysis, and we will describe some of the connections,
in particular the work of Linnell on the zero-divisor conjecture (over
the complex numbers). Recall that the zero-divisor conjecture states
that a group algebra K[G] has no non-trivial zero-divisors when G
is a torsion-free group. It turns out that localisation techniques in
the analytic setting are fundamental.

For any discrete group G we consider the Hilbert space `2(G) and
embed the complex group algebra C[G] into the algebra B(`2(G)) via
the left regular representation. The weak closure of C[G] in B(`2(G))
is the von Neumann group algebra N (G). It can be easily described
as the algebra of right G-equivariant bounded linear operators on
`2(G), that is, an element T ∈ B(`2(G)) belongs to N (G) if and
only if

T (ξg) = T (ξ)g

for every ξ ∈ `2(G) and g ∈ G. The group von Neumann algebra
N (G) is a finite von Neumann algebra, meaning that it admits a
faithful finite trace. In fact there is a canonical trace on N (G) given
by the formula

tr(T ) = 〈Te | e〉
for every T ∈ N (G). For every finite von Neumann algebra M,
Murray and von Neumann constructed in [31] the algebra U of un-
bounded operators affiliated toM, and they showed that this algebra
is a von Neumann regular ring. It was observed by Berberian that
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U is both the classical ring of quotients and the maximal ring of
quotients of M; see [5] and [6]. The algebra of unbounded opera-
tors affiliated to the von Neumann group algebra N (G) is denoted
by U(G).

Similarly to the commutative case (whereM = L∞(X, µ) and U =
L(X, µ)), we have Ub = M for every finite von Neumann algebra M.

We can now describe in some detail Linnell’s result on the zero-
divisor conjecture. We will denote by E the class of elementary
amenable groups, that is, the minimal class of groups which contains
all abelian groups and all finite groups and which is closed under
extensions and direct limits. The Linnell class, denoted by L, is the
class of groups consisting on those groups G which have a free normal
subgroup H such that the group G/H is elementary amenable.

For an extension of rings R ⊂ S, the division closure of R in S is
the smallest subring T of S containing R and closed under inversion,
that is, if x ∈ T and x is invertible in S, then x−1 ∈ T . The division
closure of C[G] in U(G) will be denoted by D(G).

Theorem 3.1. (Linnell [23]) Let G be a torsion-free group in the
Linnell class L, and let D be the division closure of C[G] in U(G).
Then D is a division ring. In particular C[G] is a domain.

The fact that U(G) is the classical ring of quotients of N (G) and
a von Neumann regular ring is fundamental here. It is interesting to
notice that, in the case where G is a free group, the division ring D
one gets in Linnell’s Theorem is the so-called free field ([7, p. 224]).
This is in fact a crucial ingredient in Linnell’s proof. The free field
can be described in terms of localisation by means of what is known
as universal localisation, a theory developed by P. M. Cohn. Namely
given a ring R and a set of square matrices Σ with coefficients in
R, one can form a ring RΣ obtained by universally inverting the
matrices in Σ. More precisely, there exists a ring RΣ and a ring
homomorphism ϕ: R → RΣ such that (1) For every matrix A ∈ Σ
the matrix ϕ(A) is invertible over RΣ, and (2) Given a ring T and a
ring homomorphism ψ: R → T such that for every A ∈ Σ the matrix
ψ(A) is invertible over T , there exists a unique ring homomorphism
ψ: RΣ → T such that ψ = ψϕ.

Now consider the group algebra of the free group R = C[H], and
let Σ be the set of all full square matrices over R. Here an square
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matrix A ∈ Mn×n(R) is called full if it cannot be written as a prod-
uct BC, where B ∈ Mn×(n−1)(R) and C ∈ M(n−1)×n(R). Then RΣ

is a division ring which coincides with the universal field of fractions
of R by [7, Corollary 4.5.9], which is, by definition, the free field [7,
p. 224]. Linnell proved in [23] that the division closure of R in U(H)
is precisely RΣ.

The reduced C*-algebra C∗r (G) of a group G is the norm-closure
of C[G] in B(`2(G)). We have an inclusion C∗r (G) ⊆ N (G). Let us
denote by S(G) the division closure of C[G] inN (G), which coincides
with the division closure of C[G] in C∗r (G).

For a free group H, Duchamp and Reutenauer computed S(H) in
[9], answering a question of Alain Connes. Let Γ = (V, E) be the
Cayley graph of a finitely generated free group H with respect to a
free set of generators X. Recall that V = H and E = H×X. There
exists a bijection π: H → E ∪ {∗} such that, for g ∈ H,

{h ∈ H | π(gh) 6= gπ(h)}

is finite. This bijection sends each non-identity element g ∈ H to
the first edge in the path from g to 1, and sends 1 to *. Therefore
we get a unitary P : `2(H) → `2(E) ⊕ C, and one can check easily
that the commutator [P, a] is a finite rank operator for all a ∈ C[H].

For a subalgebra B ⊆ B(`2(H)), we define

Bfin = {a ∈ B | [P, a] has finite rank }.

In [8, p. 342, Remarque 3], Connes conjectured that C∗r (H)fin co-
incides with the rational closure of C[H] in C∗r (H). Duchamp and
Reutenauer proved in [9] the stronger statement that S(H) =
N (H)fin. A similar result was then obtained by Linnell in [24] for
the division closure D(H) of C[H] in U(H). In particular, Linnell
proved that S(H) = D(H) ∩ N (H) and that D(H) is the classical
ring of quotients of S(H). This equality does not hold in general, in
fact if G is a free abelian group of rank 2, then D(G) ∩N (G) is not
contained in C∗r (G) = C(T2), where T2 is the 2-torus. This follows
from the computations in [20, p. 362].

Taking the C*-completion of D(G)b = D(G)∩N (G) one obtains a
sort of C*-algebra of quotients of C∗r (G), determined by its dense *-
subalgebra C[G]. It would be interesting to compute this C*-algebra
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in specific situations. In particular, it seems plausible that it does
not contain non-trivial idempotents in the case where G is a torsion-
free group in the Linnell class. This is the case when G is the free
abelian group of rank 2, since D(G)b is contained in the C*-algebra
lim−→U∈FC(U), where F is the family of sets of the form T2 \ F , for
finite F .

References

[1] P. Ara and M. Mathieu, A local version of the Dauns–Hofmann theorem, Math.
Z. 208 (1991), 349–353.

[2] P. Ara and M. Mathieu, A simple local multiplier algebra, Math. Proc. Cam-
bridge Phil. Soc. 126 (1999), 555–564.

[3] P. Ara and M. Mathieu, Local multipliers of C*-algebras, Monographs in Math-
ematics, Springer-Verlag, London 2003.

[4] K. I. Beidar, W. S. Martindale and A. V. Mikhalev, Rings with generalized
identities, Marcel Dekker, New York, 1996.

[5] S. K. Berberian, Baer *-rings, Grundlehren Math. Wiss., Vol. 195, Springer-
Verlag, Berlin Heidelberg, New York, 1972.

[6] S. K. Berberian, The maximal ring of quotients of a finite von Neumann algebra,
Rocky Mountain J. Math. 12 (1982), 149–164.

[7] P. M. Cohn, Skew Fields, Theory of General Division Rings, Encyclopedia of
Mathematics and its applications, Vol. 57, Cambridge University Press, Cam-
bridge, 1995.

[8] A. Connes, Noncommutative geometry, Academic Press, New York, 1994.

[9] G. Duchamp and C. Reutenauer, Un critère de rationalité provenant de la
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