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Consequences of the Axiom of Blackwell Determinacy

BENEDIKT LOWE

ABSTRACT. We describe the mathematization of games and
set theoretic questions stemming from game theoretic axioms.
In particular, we shall look at game theoretic axioms sug-
gested by results and questions from statistics.

1. INTRODUCTION

1.1. Two Versions of Game Theory. For most mathematicians,
the term “game theory” evokes associations of applications in Eco-
nomics and Computer Science: it is often associated with the Pris-
oner’s Dilemma or other applications in the social sciences. Game
theory is not perceived as an area of mathematics but rather as an
area in which mathematics is applicable.

But beyond the well-known applications in the social sciences,
game theory has applications in a plethora of mathematical and
semi-mathematical fields: games have been used successfully in sev-
eral parts of mathematics, and there is a huge community of game
theoretic researchers in areas of computer science.
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Even among these mathematically oriented game theorists few
know much about a part of game theory that belongs to mathemat-
ical logic or, more precisely, to set theory. We are talking about
the study of two-player perfect information zero-sum games of infi-
nite length with methods from set theory that is sometimes called
“Cabal-style” or “Californian” Descriptive Set Theory.

It was the Polish school of topologists and measure theorists that
connected game theory to set theory. According to Steinhaus [39,
464], Banach and Mazur knew in the 1930s that there is a non-
determined infinite game (constructed by a use of the Axiom of
Choice) and that there is a connection between games and the Baire
property.

Gale and Stewart in their seminal [7] presented the general the-
ory of infinite games, and Mycielski and Steinhaus proposed a set
theoretic analysis of game-related axioms in [32].

In the 1960s, the early set theoretic investigation of the game the-
oretic axioms proposed by Mycielski and Steinhaus was mainly done
by Mycielski and a growing group of Californian logicians, among
them John Addison, Tony Martin, Yiannis Moschovakis and Bob
Solovay at the University of California at Berkeley and Los Ange-
les. In the 1970s, the Los Angeles area set theory seminar with
researchers from UCLA and CalTech (including prominently the
Californian researchers mentioned earlier plus Alekos Kechris, John
Steel, and later Hugh Woodin) became known as “the Cabal” and
its regular meetings together with a conference series called the Very
Informal Gathering produced a theory that is now known as Cabal-
style Descriptive Set Theory and was published in the four proceed-
ings volumes of the Cabal seminar [18, 15, 16, 17] and codified in
Moschovakis’ text book [29].

The Cabal has investigated the consequences of game theoretic
axioms in set theory, and they have unveiled very deep connections
between these axioms and the foundations of mathematics and meta-
mathematics. On their way, they have also developed a lot of set
theoretic techniques for dealing with infinite games.

The entire Cabal-style theory has been developed in the setting
of two-player perfect information games. Although the Cabal has
been playing around with the definitions and has been looking at
variants of determinacy with different sets of possible moves (ADg)
and variants of determinacy for games of different transfinite lengths
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[38, 34], they didn’t give up the general perfect information struc-
ture.! A reason for this is that a lot of the techniques used by the
Cabal are based in the fact that perfect information strategies come
from trees (in the sense that will be made clear in an example in
Section 1.2), and Cabal-style set theory tends to view tree represen-
tations as a necessary condition for a set to be tractable.?

The game theoretic axiom that has played the central réle in this
development is the Aziom of Determinacy AD introduced by My-
cielski and Steinhaus in their [32]. We shall define this axiom in
Section 2 and give an overview of its consequences in Section 3.

There is little if any interaction between the communities of game
theorists outside of set theory and the Cabal-style set theorists.
Cabal-style set theorists rarely know more than the average math-
ematician about applied game theory and only few applied game
theorists know that Cabal-style set theory even exists.

In this paper, we shall extend results from Cabal-style set theory
to a broader class of games, namely to a type of stochastic games
that is used in statistics and that we shall call Blackwell games. We
shall describe how results of Cabal-style set theory can be reproduced
with game theoretic axioms from statistics.

One of the objectives of this paper is to make the existence of a
beautiful set theoretic structure theory connected to game theoretic
axioms known to a broader public, and thereby to incite the devel-
opment of more connections between Cabal-style set theory and the
brands of game theory in several areas similar to the results men-
tioned in this paper.

1.2. Mathematizing Games. Historically, set theory and the math-
ematization of games has been connected from the very beginning.
In a first mathematical analysis of the game of chess which was pub-
lished in a paper entitled Uber eine Anwendung der Mengenlehre auf
die Theorie des Schachspiels [45], Zermelo essentially argued that one
of the two players has an (at least) drawing strategy.

10t Steel’s discussion of possible variations of determinacy axioms in [38,
p. 96-97].

2“[Tree representations] are important in Descriptive Set Theory because they
provide the only known general method which will take arbitrary definitions in
a given logical form of sets of reals, and produce definitions of members of those
sets.” [37, p. 107].
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We will not discuss Zermelo’s original work, but rather a modern
version of the argument that one of the players has a drawing strat-
egy (a Gale-Stewart analysis via tree labelling), and point out how
this can be seen to be an “Anwendung der Mengenlehre”:

Since a position in the game of chess is determined by the distri-
bution of 13 types of pieces® to 64 squares, we can also view chess
positions as natural numbers between 0 and 13%4.% If you have two
such natural numbers n and n*, the rules of chess describe whether
n* can be reached from n in a single move: n* has to be a position in
which all but at most two pieces are in the same board position and
the board position changes have to follow the rules of chess. More-
over, if n* is reachable from n in a single move, we can uniquely
determine the player that made the move from n to n*. Let us write

6o *

Reachwuite(n*,n) for “n* is reachable from n by a single move of
player WHITE” and Reachgiack(n*,n) for “n* is reachable from n
by a single move of player BLACK”.

Look at sequences S = (n;;i € N) of chess positions. If for
all k£ we have either Reachwnre(ng+1,nx) or Reachgack (k+1, k)
depending on whether k£ is even or odd (we shall call this condition
the legality condition), then S is an infinite run of a chess game in
which no player violates any rules. Since every chess game that is
won by either player ends in a violation of a chess rules (note that
it is a chess rule that you may not move your King into a check
position), we shall call those sequences a Draw. On the other hand,
if we have a sequence such that for some k£ this condition is not met,
we shall call it a Win for WHITE if the least such £ is odd and a
Win for BLACK if it is even.

That way, we partitioned the set of all infinite sequences of posi-
tions into three subsets: the set D of Draws, the set W of Wins for
WHITE and the set B of Wins for BLACK.

In this mathematized setting for the game of chess, we can easily
say what it means for player WHITE to have a drawing strategy: a
drawing strategy is a function that assigns to each finite sequence

3The types of pieces are: No piece, white and black King, white and black
Queen, white and black Knight, white and black Bishop, white and black Rook,
and white and black Pawn.

4Lots of these positions are not chess positions that can be achieved without
rules violations, e.g., every position that contains two Kings of the same colour
etc. Cf. [1, p. 171-172] for a discussion of the real complexity of the game tree
of chess.
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(no, .. .,nek) of chess positions of even length that satisfies the le-
gality condition a new position nsi41 such that the extended se-
quence (ng,...,nakt1) still satisfies the legality condition. Playing

according to such a function (assuming it exists) will guarantee that
—regardless of what BLACK plays— the result will either be an infinite
sequence satisfying the legality condition (i.e., a Draw) or a sequence
in which BLACK is the first to violate the legality condition, hence
an element of . Similarly, we define a drawing strategy for BLACK
and see that if BLACK follows such a strategy, the outcome will be
either in D or in B.

Note that you can view the set P of finite sequences of positions as
a graph G = (V, E) with V := P and E is the set of (p, p*) such that
p* is a extension of p by one position n* such that n* is reachable from
the last position of p by a legal move of the appropriate player. This
graph is actually a tree, and we can see strategies as subtrees of this
tree of a very specific kind: A strategy for WHITE is a subtree that
has a single successor for nodes of even depth and a full branching
into all possible successors for nodes of odd depth (and dually for
BLACK).

After this preparatory work, we can restate the determinacy of
the game of chess in a precise way:

Theorem 1.1. Either WHITE or BLACK has a drawing strategy.

Proof. We look at the set P of all finite sequences of positions and
colour this set with three colours, WHITE, GREY and BLACK, in
a recursive process. Any finite sequence p of positions carries the
information which player has to move next: if p has even length,
WHITE has to move, if p has odd length, BLACK has to move.

If p € P is a finite sequence of positions that doesn’t satisfy the
legality condition, check who violates it first. If BLACK violates it
first, colour p WHITE, if WHITE violates it first, colour p BLACK.

Suppose you have already coloured all elements of a subset P* ;
P. Take some p € P\ P*. If WHITE has to move from p, and p has
the property that there is a position p* with Reachwnte(p*,p) and
p* is already coloured WHITE, then we colour p WHITE as well. If,
on the other hand, p has the property that for all positions p* with
Reachwuite(p*, p), p* is already coloured BLACK, then we colour p
Brack as well. Then we colour positions p € P\ P* such that
BLACK has to move from p dually.
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These rules describe a recursive process that allows to subse-
quently colour more and more positions in P, until you reach a point
in the recursion where no p € P\ P* satisfies the conditions to get
a colour anymore. When you reach that point (a fized point of the
recursion), you stop the recursion and colour all remaining positions
GREY.

This recursion is possibly transfinite: In general, if there are infin-
itely many possible moves in each step, it is easy to construct games
such that you need more than w steps to reach the fixed point of the
recursion. This is where set theory enters the picture — the proof of
the existence of a fixed point and the fact that transfinite recursions
work are part of (elementary) set theory. (Note that since there
are only at most 1354 chess positions, the tree for chess is finitely
branching and therefore the recursion is not transfinite in this case:
a standard recursion over natural numbers is enough.)

When the whole set P is coloured, it is easy to see that the colour
of the empty sequence & determines the value of the game.

Suppose the empty sequence is WHITE. We think of the elements
of P labelled not only by WHITE, GREY, and BLACK, but also by
the ordinal oy, of the stage of the transfinite recursion in which p was
coloured.

If some sequence of positions p received the colour WHITE and
it’s of even length, then there is some immediate extension of p
that received the colour WHITE at some earlier stage. If it received
the colour WHITE and it’s of odd length, then all immediate legal
extensions must have received the colour WHITE at an earlier stage.

Thus, we can define a strategy for WHITE by demanding that if
he has to play at p, he should play an extension ¢ such that ¢ was
coloured at an earlier stage than p.

Clearly, this strategy makes sure that for each run, the sequence
of ordinals a, is a descending sequence of ordinals and each p in the
run is coloured WHITE. Every descending sequence of ordinals hits 0
after finitely many steps. Thus the run of the game hits a sequence
p that has been coloured WHITE at stage 0 of the recursion, i.e.,
BLACK has violated some rule.

This is where set theory enters the proof: we are using the well-
foundedness of the sequence of stages of the transfinite construction
to prove that the strategy is winning.
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Similarly, if the empty sequence is BLACK, BLACK has a winning
strategy.

If the empty sequence is GREY, both players can guarantee that
the sequence stays legal for infinitely many steps and thus create a
Draw.

These three possibilities together prove the theorem. g.e.d.

The mathematization of a concrete game has succeeded in prov-
ing an abstract theorem. (Of course, so far without practical conse-
quences, since the colour of the empty sequence is unknown to even
the fastest computers.®)

1.3. Stochastic Games. Stochastic games have been used in sta-
tistics for a long time.

Before we go into the discussion, let us clarify our usage of the
terms “stochastic game” and “imperfect information game” in this
paper. In the game theoretic literature, “stochastic game” normally
means a game in which the players move simultaneously and in each
round an additional random event influences the outcome that is
known to both players (e.g., games involving a roll of dice in each
round)®, whereas “imperfect information game” is understood (fol-
lowing Aumann and Maschler) to mean games in which players play
simultaneously and are not completely informed about the whole
game situation (e.g., card games with undisclosed hands).

We, on the other hand, take “stochastic game” and “imperfect
information game” to be terms of the most general kind. When we
say “stochastic game” we just mean a game involving any form of
randomization, when we say “imperfect information game” we mean
any game in which players have to move without knowing the entire
situation.”

One particular application of stochastic games is to regard a two-
player game interpreted by imagining player I to be a statistician
trying to set up his empirical experiment in an optimal way and
player II to be nature trying to fool him. The analysis of stochastic

5¢f. [1, p. 171-172].

6T his use of “stochastic game” follows Shapley [36].

"In this sense, our pBI-AD is a stochastic game axiom but no imperfect infor-
mation game axiom, while our BI-AD is both. (For definitions, cf. Section 2.)
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games provides methods of defining optimality of tests and setups of
experiments.®

As we said, the set theoretic analysis of infinite games in the tra-
dition of the Cabal dealt mostly with perfect information games. In
the 1960’s, there were some investigations of the foundations of sto-
chastic games by David Blackwell [3] who proved that if the payoff
set of a certain game modelled with probability measures is a count-
able unions of closed sets, then one of the players can approximate
an optimal strategy. Such a result corresponds to a proof of deter-
minacy in the context of perfect information games; in fact, we shall
call such a property “Blackwell Determinacy” later on (cf. Section 2).

Not much happened in the research of the foundational aspects
of infinite stochastic games for almost three decades® while the ap-
plications of these games became more and more important.

Recently, Blackwell himself in an extended abstract [4] revived
the interest in the foundational questions about games of this sort.
In particular, he asked whether all Borel sets have the determinacy
property described. Soon thereafter, Marco Vervoort, Tony Martin
and Itay Neeman [41, 42, 25, 43, 27], solved some of these funda-
mental questions'® and started to build a basic knowledge about the
set theoretic behaviour of imperfect information games.

The interest in foundational questions about imperfect informa-
tion games in general and stochastic games in particular seems not
just to be a question of the foundations of mathematics. Theoretical
Computer Science has used both the stochastic or randomized view-
point and the game viewpoint very effectively over the last decades,
and a thorough understanding of the connections between perfect
information game theory and the imperfect information variants is
essential for further progress in the analysis of the use of games in
Computer Science: Most of the techniques from Computer Science
for perfect information games break down when you apply them to
more general games.

1.4. Objective and Prerequisites of this Paper. This paper is a
survey and research announcement that does not attempt to provide
a general development of imperfect information games. In the paper,

8Cf. [5] and [9].

9There were results extending Blackwell’s result by Orkin [35] and Maitra,
and Sudderth [24].

10T particular, Martin in [25] solved Blackwell’s question about Borel sets.
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we are connecting a very special kind of imperfect information games
(later called Blackwell games) to the vast knowledge of set theoretic
structure that is gained from game theoretic axioms about perfect
information games.

We shall be dealing with two axioms of Blackwell Determinacy
pBI-AD and BI-AD which are stochastic and imperfect information
analogues of the Axiom of Determinacy AD.!*

It is known that AD implies BI-AD and that BI-AD implies pBI-AD
(Theorem 2.1), and Tony Martin [25] has conjectured that AD and
BI-AD are equivalent. Part of that conjecture is settled, as Martin,
Neeman and Vervoort [27] have shown that pBI-AD, BI-AD and AD
have the same consistency strength!?, but the question of equiva-
lence is still open. Equiconsistency of two theories does not imply
that both theories have the same structural consequences for the set
theoretic universe. Thus, it is a first and very important step towards
proving Martin’s conjecture to show that the powerful combinato-
rial and structure-theoretic consequences of AD hold under either
pBI-AD or BI-AD.

In this survey, we describe how to get the strong partition prop-
erty of N; and further consequences for the infinitary combinatorics
of projective ordinals from BI-AD, and an interesting definability hi-
erarchy of sets of reals under the assumption of pBI-AD. Since we
cannot assume that the reader is familiar with the concepts from
the determinacy context, we shall give an introduction with many
definitions. The reader interested in details and proofs should con-
sult [23].

We shall be using the standard notation of set theory: w is the
set of natural numbers, w<% the set of finite sequences of natural
numbers, and w® the set of infinite sequences of natural numbers. If
r € w¥, we write z[n to denote the unique n-tuple that has the first
n entries of x.

We shall be talking about Jonsson cardinals, Rowbottom cardinals
and measurable cardinals. All of these are large cardinal notions,

L1BI-AD has been introduced by Vervoort in [41].

12wo theories T and S are said to be equiconsistent if they prove the same
consistency statements, i.e., if the sets {U ; T'+ Cons(U)} and {U ; S + Cons(U)}
are the same. By Godel’s incompleteness theorem, the consistency strength
hierarchy is an interesting and non-trivial measure of logical strength for axiom
systems.
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ordered according to increasing logical (consistency) strength. More
about these large cardinal notions can be found in any set theory
textbook, e.g., [12]. The same is true for descriptive complexity
classes. We mention X}, TT, and Al in this survey. Definitions and
basic properties can be found in modern set theory textbooks.

2. DEFINITIONS

As we mentioned, Blackwell determinacy has its roots in the game
theory of imperfect information games of statistics. A very simple
prototype of this kind of games is the well-known game of Scissors-
Paper-Stone: Two players simultaneously chose one of the three sym-
bols SCISSORS, PAPER and STONE and evaluate their (random) out-
come using the rules “SCISSORS cut PAPER”, “PAPER wraps STONE”
and “STONE blunts SCISSORS”.

Compared to the tree representation of the set of finite sequences
P in the chess example, the simultaneity of the moves eliminates
both the chance of representing strategies as trees and the chance
of the existence of a winning strategy: Player II doesn’t have any
knowledge of player I’s move before he announces his move. In other
words: He has imperfect information about the game situation.

If mathematized, this uncertainty can be expressed by different
means: we can use the extensive game form (due to von Neumann,
Morgenstern and Kuhn [21]) to keep as close to the game represen-
tation from Section 1.2, or we can use randomization, as we shall do
in the following.

In this paper, we shall not actually be mainly dealing with sto-
chastic games in full generality, not even with Blackwell’s “Games
with Slightly Imperfect Information”. Instead we assign probabili-
ties to moves in perfect information games, thereby moving from the
game tree of moves to a game tree of probabilities.

Although these games are not imperfect information games in our
sense, experience shows that they do seem to capture the (main part
of the) set theoretic strength of imperfect information games.

We look at infinite games of the following type: we have two
players, let’s call them player I and player II, and a fixed payoff set
A C w¥. The players play infinitely often natural numbers, player I
begins with ag, player IT answers with a1, then player I plays a, and
so on. After infinitely many rounds of the game, they have produced
a sequence {a; ; 1 € w) € w* which they compare to the payoff set A.
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If {a; ; 1 € w) € A, then player I wins, otherwise, player IT wins. We
shall be using the standard notation for infinite games: If z € w*
is the sequence of moves for player I and y € w“ is the sequence
of moves for player II, we let = *x y be the sequence constructed by
playing z against y, i.e.,

| z(k) ifn=2E,
(@ xy)(n) := { y(k) ifn=2k+1.

Conversely, if z € w* is a run of a game, then we let x1 be the
part played by player I and zy1 be the part played by player II, i.e.,
z1(n) = x(2n) and z11(n) = 2(2n+1). We shall extend this notation
to sets of reals X C w* in the obvious way: Xj:= {z;; z € X} and
Xn:={zn; z € X}

As usual in set theory, we shall be working on Baire space w* with
the standard topology generated by the basic open sets [s] := {z €
w¥ ; s C z} for finite sequences s € w<“.!3 Tt is well-known that
this topological space is homeomorphic to the irrational numbers, so
we feel safe to call its elements real numbers.

As mentioned, we cannot model strategies in imperfect informa-
tion games by trees of positions. Instead, our stochastic games are
normally modelled by assuming that the players have a tree of prob-
ability measures in mind according to which they randomize their
moves. Let us denote by wPve" the set of finite sequences of natural
numbers of even length, by w94 the set of such sequences of odd
length, and by Prob(w) the set of probability measures on w.

We call a function o : w¥Ve® — Prob(w) a mized strategy for player
I and a function o : w®99 — Prob(w) a mized strategy for player II.

Let us describe two particularly interesting types of mixed strate-
gies:

A mixed strategy is called Blackwell strategy if it doesn’t depend
on the moves in the same turn, i.e., if s and ¢t have the same longest
even subsequence, then we have o(s) = o(t). Blackwell strategies
correspond to infinitely repeated games of the Scissors-Paper-Stone
type: Since o may use only information up to the last completed
turn, it simulates that the moves of players I and II are revealed
simultaneously. This is what Blackwell calls “Games with Slightly
Imperfect Information” in his [4] and what we shall call Blackwell
Games.

13This is the same as the product topology of the discrete topology on w.
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A mixed strategy o is called pure if for all s € dom(o) the measure
o(s) is a Dirac measure, i.e., there is a natural number n such that
o(s)({n}) = 1.1

If 0 and 7 are strategies for player I and II, respectively, then they
completely describe a play of the game between these two players:
Player I chooses his first move ag according to the probability mea-
sure o(( )), then player IT looks at ag, consults his strategy about the
measure 7({ag)) and plays according to that probability measure.

Let

o(s) if Ih(s) is even, and

v(o,7)(s) 1= { Tgsg if lhgsg is odd.

Then for any s € w<*, we can define

lh(s)—1

por(ls]) == I vlo:7)(s1)({si})-
i=0

This generates a Borel probability measure on w* which can be seen
as a measure of how well the strategies o and T performs against each
other. If B is a Borel set, uy ,(B) is interpreted as the probability
that the result of the game ends up in the set B when player 1
randomizes according to ¢ and player II according to 7.

Note that if o and 7 are both pure, then y, , is a Dirac measure
concentrated on the unique real that is the outcome of this game
denoted by o * 7.

To see the working of mixed strategies in an example, let A :=
{zn;n € w} be a countable set of elements of 2¢ with the prop-
erty that the semidiagonal function n — x,(2n) is not computable.
Player II clearly wins the game with payoff A by playing 1 — z,,(2n)
in his nth move, but this winning strategy is not computable. On the
other hand, player I can guarantee that he wins with probability 1
by following the computable randomized strategy that plays 0 with
probability 1 and 1 with probability 1 in every step. If you call this
strategy 7, then (regardless of what strategy o player I follows) pyr
is an atomless measure and hence A has measure 0.

In a trade-off, Player II traded his guarantee to “win always” with
a complicated strategy for a guarantee to “win with probability 1”
with a simple strategy.

MThis is a rather odd (but equivalent) way of stating the definition of a
strategy in the sense of Section 1.2.
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This example gives us the important notions of a winning strategy
and a strongly optimal strategy: We call a pure strategy o for player
I (7 for player II) a winning strategy if for all pure counterstrategies
T (0), we have that o x7 € A (0 x7 ¢ A). For any mixed strategy o
(for player I) or 7 for player IT we can define a measure for its quality
(the value of the strategy) by

vali' (o) := inf{p, . (A); 7 is mixed strategy for player II}, and

valii(r) == sup{py . (A); o is mixed strategy for player I}."

A strategy for player I is now called strongly optimal for A if
valf‘(o) = 1, and and a strategy 7 for player II is called strongly
optimal for A if val{j(r) = 0.

It is not obvious that it is reasonable to expect that there are
strongly optimal strategies. In order to see that we can (under
the right set-theoretical assumptions), we have to use the Vervoort
Strong Zero-One Law [43, Theorem 5.3.4] and a Transfer Theorem
of the present author [22, Corollary 4.3].

If we restrict ourselves to Blackwell strategies o and 7, we cannot
expect that the values converge to either 0 or 1. But it is easy to see
that if you define the value sets for player I and player II by

Vi(A) := {val{*(¢) ; o is a Blackwell strategy for player I}, and

Vii(A) := {val{;(r); 7 is a Blackwell strategy for player II},

then Vi1(A) lies entirely above Vi(A) in the sense that for all v €
V11(A) and v* € V1(A) we have v > v*.

If now these two sets Vi(A4) and Vi1(A) touch each other in a
point p (depicted in Figure 1), then the outcome of the game is
stochastically determined in the following sense: both players can
approximate the outcome that player I wins with probability p. In
this case, we call the payoff set Blackwell determined.

In the other case, when the sets Vi(A4) and Vi1(A) don’t touch
each other, then the interval between the supremum v~ of Vi(A)
and the infimum v of Vjj(A) is an area of indeterminacy: Player
I can bound his chance of winning from below by v~ and player II
can bound player I’s chance of winning from above by vT, but since

15Here, ut denotes outer measure and p~ denotes inner measure with respect
to p in the usual sense of measure theory. If A is Borel, then pt(A) = u=(A) =
wu(A) for Borel measures p.
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Vi 1

FIGURE 1. Value sets V| and V]j touch each other: The
outcome is stochastically determined if both players ap-
proximate optimal play

FIGURE 2. Value sets Vi and Vi1 don’t touch: The
payoff set is not Blackwell determined

these are not the same number, the real outcome can be somewhere

in the interval (as depicted in Figure 2).

We are now in a position to define three different determinacy
axioms:

The Aziom of Determinacy AD says: For every set A there is
either a winning strategy for player I or a winning strategy for player

IT in the game with payoff set A.

The Aziom of perfect information Blackwell Determinacy pBI-AD
says: For every set A there is either a strongly optimal strategy for
player I or a strongly optimal strategy for player IT in the game with

payoff set A.
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The Aziom of Blackwell Determinacy BI-AD says: Every set A C
2¢ is Blackwell determined.!®

What is the relationship between our three determinacy axioms?
Theorem 2.1. (a) AD implies BI-AD, and (b) BI-AD implies pBI-AD.

Proof. (a) is an instance of the main theorem of [25], and (b) is
proved in [22] using the Vervoort Strong Zero-One Law [43, Theorem
5.3.4].

Instead of showing these two technically involved results, let us
sketch the considerably easier concatenation of these two results: AD
implies pBI-AD:'7

For each mixed strategy 7 for player II there is a probability mea-
sure v, on the set of (codes of) pure strategies with the property
that for all Borel sets X,

o (X) = / o n (X) doy ()

(and similarly for a mixed strategy for player I). This measure has
been introduced by Marco Vervoort [41] and shall be called the Ver-
voort code of T.

Let o be a pure winning strategy for player I, then for all pure
strategies T, py . Witnesses that player I wins with probability 1
against 7. Let us now show that ¢ also wins against 7 with proba-
bility 1.

Since we assume AD, all sets are universally measurable, so we
can look at the function m — s »(X) which is a constant function
equal to 1. Thus, because of the defining property of the Vervoort
code, this means that j, - must witness that player I also wins with
probability 1 against 7. q.e.d.

As already mentioned, Tony Martin [25] conjectured that the con-
verse of Theorem 2.1 (a) also holds.

Up to now, this question is not solved, but we shall get a rich
structure theory of the ordinals up to N, ; that is usually seen as

1674 ig important that BI-AD is defined on subsets of 2¢ instead of w*. It
is easy to construct a very simple (clopen) subset of w® that is not Blackwell
determined: {z € w* ; (0) > z(1)}. For more on this, cf. [22, Observation 2.3].

17Note that this implication is not trivial: a strongly optimal strategy has to
be good against all mixed strategies, whereas a winning strategy only has to win
against pure strategies.
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being very characteristic of AD and thus can serve as an indication
that Martin’s conjecture is true.

3. CONSEQUENCES OF AD

In this section, we shall give the reader who is not an expert in
descriptive set theory an overview of the rich theory that can be
developed under the assumption of the Axiom of Determinacy. The
reader who is interested in more details should read [12, §§27 & 28].

We have to start with a problem for the whole enterprise: Gale
and Stewart [7, Theorem 1] have shown that the Axiom of Deter-
minacy is incompatible with the Axiom of Choice AC, hence ZFC
proves —AD.

This may be a seemingly insurmountable problem for true believ-
ers in the Axiom of Choice: why would they bother with an axiom
that contradicts one of the more important axioms of set theory?

Yet, even those true believers in the Axiom of Choice investigate
models of AD with a lot of interest. Why is this so?

Under certain richness assumptions for the universe we will always
find very natural models of AD, so it makes a lot of sense to study AD
because the world of functions and sets definable in real parameters
might behave much more like an AD-model than like an AC-model
(cf. [12, Corollary 32.14]):

Theorem 3.1 (Woodin). Assume that there are w Woodin cardinals
and a measurable cardinal above them. Then L(R) = ZF + AD.

An even more pressing reason to develop the theory of AD than
Theorem 3.1 is the fact that models of AD and knowledge about their
structure and their properties figure prominently in all of higher set
theory. As soon as the richness of the set theoretic universe under
investigation is beyond a certain point, there will be an abundance
of models of AD and their distribution in the hierarchy of models is
connected with metamathematical properties of the universe. This is
a point that cannot be discussed in this paper since it would involve
a discussion of metamathematics beyond the horizon of this article.

In 1962, Mycielski and Steinhaus in their [32] started to investi-
gate the Axiom of Determinacy (at that time still called “Axiom of
Determinateness”) because of its beautiful and strong consequences.
The theory of AD has become one of the most intriguing parts of set
theory, with surprising properties and an enormous amount of prov-
able structure: Under AD, all sets are Lebesgue measurable, have
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the property of Baire, the perfect set property, and we even retain a
large enough fragment of the Axiom of Choice (namely AC,(R)) to
develop the basic theory of the real numbers and prove the standard
theorems of analysis and topology.!®

The basic theory for the rest of this survey will be ZF 4+ DC (the
Principle of Dependent Choices).

3.1. Infinitary Combinatorics. The investigation of infinitary
combinatorics under AD started in 1967, when Bob Solovay proved
that the first uncountable cardinal N; is a measurable cardinal under
AD (again, this result violates the Axiom of Choice).

Let A < k be regular cardinals. We define the A-closed unbounded
filters C on & by

Cr={XCk;ICE€CCN{{<K; cf(§) =2} CX)},
where C,, is the usual closed unbounded filter on «.

Definition 3.2. Let k be a cardinal. We say that x has the strong
partition property if kK — (k)® holds, and that x has the weak parti-
tion property, if for all A < k, K — (k)* holds.

Both the weak and the strong partition property of any cardinal
severely violate the Axiom of Choice, and they are extremely strong
combinatorial properties.'?

Even the weak partition property implies a very specific kind of
measurability. Kleinberg has shown in [19], that if an uncountable
k has the weak partition property, then for every infinite regular
A < &, the filter C)} is a k-complete ultrafilter on &.

In the late 60es and early 70es, Tony Martin, Robert Solovay
and Ken Kunen were able to develop a rich theory of combinatorial
structure on w; under the assumption of AD. Of their theorems, the
following two will be of most interest to us:

Theorem 3.3 (Solovay’s Lemma). Assume AD. Then for every
A Cwy there is a real © € w* such that A € L[z].

18¢r. [33, 30, 31, 6].

193im Henle called the strong partition property “one of the most powerful
partition properties known to man [8, p. 151]”. The Erdés arrow notation x —
(A)#* means: For every colouring F' : [k]* — 2 there is a homogeneous set H of
cardinality ), i.e., all elements of [H]* have the same F-colour. Here [X]# is the
set of subsets of X with cardinality p.
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Theorem 3.4 (Martin). Assume AD. Then Ry has the strong par-
tition property.

Kleinberg was able to use the strong partition property in [20]
to get very strong consequences. In order to describe Kleinberg’s
result, we need to use the notions of Jonsson cardinals, Rowbottom
cardinals and measurable cardinals. As mentioned in Section 1.4, we
shall not define these notions but refer the reader to [12].%°

For the formulation of the following theorem we use the following
convention: If U is a o-complete ultrafilter on an ordinal @ and f
is another ordinal, then 5®/U is a well-ordered structure. We will
identify this structure with the unique isomorphic ordinal v, and
write /U = 1~.

Definition 3.5. Let x be a cardinal with the strong partition prop-
erty and g a normal measure on k. We then define a sequence of
well-ordered structures (k# ; n < w) as follows:

o k| =k,

* K4y = (k4)"/p, and
o k! :=sup{kt ; n € w}.

n

This sequence is called the Kleinberg sequence derived from p.

Theorem 3.6 (Kleinberg). Let k be a cardinal with the strong par-
tition property and U be a normal ultrafilter on k. Let (k; ; i < w)
be the Kleinberg sequence derived from U. Then

(a) for all natural numbers n € w, Kk, < Kny1,
(b) k1 and k2 are measurable,
(¢c) for alln > 2, cf(ky) = Ka,

20For the purpose of the present paper, it is sufficient to know that the
existence of Jénsson cardinals, Rowbottom cardinals or measurable cardinals is a
strong richness assumption on the set theoretic universe. Their existence cannot
be shown in ZFC and moreover, even the consistency of their existence cannot be
shown in ZFC. (Statements like this are called Large Cardinal Azioms or Strong
Azioms of Infinity.) In terms of consistency strength, the theory ZFC+ “there
is a measurable cardinal” is strictly stronger than ZFC+ “there is a Rowbottom
cardinal”, this in turn is strictly stronger than ZFC+ “there is a Jénsson cardinal”,
and this is strictly stronger than ZFC alone. The fact that some & is measurable,
Rowbottom or Jénsson tells us a lot about the combinatorics of .

The pattern of cardinals described in Corollary 3.7 is highly characteristic of
AD-models in the sense that it is extremely hard to produce patterns like this
from any other assumption, even those with very high consistency strength. For
more about this, cf. [2].
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(d) kn is a Jonsson cardinal, and
(e) sup{kn ; n € w} is a Rowbottom cardinal.

Moreover, if k¥ /U = k7, then kpi1 = (nn)+ for alln € w.

Now Martin’s Theorem 3.4 and Kleinberg’s Theorem 3.6 give us
immediately a second measurable ko above N; and a sequence of
Jénsson cardinals beyond N;. It is natural to ask whether we can
compute the exact position of these additional large cardinals. Using
Solovay’s Lemma 3.3, we can see that X; and the measure C,,, satisfy
the “moreover” part of Kleinberg’s Theorem 3.6.

Corollary 3.7. Assume AD. Then Ry and R, are measurable, N,
for 3 <n < w is Jonsson, and N, is Rowbottom.

The first uncountable cardinal N; is not the only cardinal with
the strong partition property under AD. We define the projective
ordinals by

6; := sup{¢ ; ¢ is the length of a prewellordering of w® in Al}.
A lot was known about the projective ordinals in the 1970s (cf. [14]):

Fact 3.8. Let n be a natural number. Assume AD. Then:
(a) (Martin, Kunen 1971) all 83 are measurable,
(b) (Martin, Kunen 1971) d] = Xy, 85 = Ny, 85 = R, 1, and
6411 = NerQa
(c) (Martin 1971) for all a < w; the partition relation &5, ,; —
(83,41)® holds,

Since the values of 61, 6%, 6%, and 6}1 were known, the next open
question was the value of 8. This was the content of the First Victo-
ria Delfino Problem and was solved by Steve Jackson who computed
0% (cf. [10] and [11]), and proved that all odd projective ordinals
have the strong partition property, and all even projective ordinals
have the weak partition property.

Theorem 3.9 (Jackson). Assume AD. Then
6% == Nww‘”+1,
and 6% has the strong partition property.

Starting from this, Jackson developed his description theory that
helped developing a combinatorial theory of the projective ordinals
and even beyond.
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3.2. The Lipschitz Hierarchy. Let A and B be subsets of w“. We
define the Lipschitz game as follows:2!
Let

LA,B = {l‘ € wY ; —|(1‘1 €A g€ B)}
The game with payoff set L4 p is called the Lipschitz game for A

and B.
This game give rise to the relation of Lipschitz reducibility:

A<, B :<= player II wins the Lipschitz game for A and B
<= there is a Lipschitz function f with f='” B = A.

As usual, the equivalence relation =, is defined by

A=/ B:<— A<,;B& B <, A.

The equivalence relations give rise to a degree structure. We call
a set d of subsets of w* Lipschitz degree if it is closed under =,.
If d is a Lipschitz degree, then we shall call

d:={B; JAcd(B=,w“\A)}

the dual of d. We call d selfdual if d = d, i.e., [A]s is selfdual if
A =y w“’\A.

We write @, ., 4i for J,,c, (n)"An.

The work of William Wadge, Tony Martin, Donald Monk, John
Steel and Robert Van Wesep has established that the Lipschitz de-
grees exhibit a very characteristic global structure theory under the
Axiom of Determinacy (again, violating the Axiom of Choice). These
results form one of the most fundamental framework for Cabal style
Descriptive Set Theory.

The most prominent of these properties are:
Fact 3.10. Assume AD. Then the Lipschitz hierarchy has the fol-
lowing properties:

(a) The Lipschitz degree are semi-linearly ordered, i.e., for every
two degrees d and e, we either have d <; e, or e <; d, or the
set of <, predecessors and <y successors of d and e coincide
andd = e.

21The Lipschitz game was introduced by William Wadge [44, 40].
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(b) The relation <; is wellfounded. Together with the semi-linear
ordering principle this means that we can assign an ordinal
rank to each Lipschitz degree. (A non-selfdual degree and its
dual get the same ordinal rank.)

(c) The Lipschitz degrees whose ranks are of uncountable co-
finality are nonselfdual, all others (except for the first two
degrees) are selfdual.

4. THE RESULTS AND BEYOND

We have been able to show most of the prominent and characteristic
features of AD that we listed in Section 3 under the weaker assump-
tion of BI-AD or even pBI-AD. These results are (apart from an
early result about Lebesgue measurability by Vervoort [41]) the first
known consequences of BI-AD that contradict the Axiom of Choice
and that give a global structure to the family of sets of real numbers.

Why is it hard to transfer the proofs of these results from an AD
setting to an BI-AD setting?

The main problem in proving these results is that a winning strat-
egy o (say, for player I) gives us a function f, : w¥ — w* that guar-
antees that for all # € w*, we have f,(z) € 4.2 On the other hand,
a strongly optimal strategy o gives only a function assigning to = a
measure /i, , that gives the set A measure one, but we seem to be
lacking a way of picking an element of A using that measure as input
data.??

In a special type of games in which a prewellordering is used to
evaluate the quality of the moves of both players (we shall call them
games using boundedness), we can replace the use of the function
fo in a way that still works in the Blackwell context. We call this
technique the simulation technique. The simulation technique will
in general work under the assumption of pBI-AD (and doesn’t need
BI-AD).

Let A C w® be a set of reals and < any prewellordering of w*.

Also fix a mixed strategy o for player I and a mixed strategy 7 for
player II.

22By fo(z) := o * 7 where 7 is the trivial strategy playing z digit by digit
regardless of the moves of player I.
23Compare this to Steel’s quote about tree representations in Footnote 2.
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Let Us! == {u; 1 < w} and USM := {u; 211 < un}. Using
this notation, we define the <-pseudoimage of A under o (under 7):

VT (A) = (o1 5 32 € A (17 . (UF") > 0)}, and

\I!;H(A) ={an; Jz€A (NZT(UEH) >0)}.
If o is a pure strategy, then the pseudoimage is just the closure of the
usual image (of the projection of f, to the first component) under
>. Suppose (as is true in our special cases) that our payoff set A has
the property

if € A and 21 < 2, then 2z * z11 € A.
Then the pseudoimage of any nonempty set under a pure winning
strategy is contained in A.

Some weak version of this is retained for strongly optimal strate-
gies:
Proposition 4.1. Let < be a prewellordering of w*, and Y an ar-
bitrary nonempty set of reals.

(i) If o is a strongly optimal strategy for player I for the set A,
then

\II‘;I(Y) N{zr; €A zn €Y} #0.
(ii) If 7 is a strongly optimal strategy for player II for the set A,
then
\I—';H(Y) N{zn; v € A,z €Y} #0.

Proof. For notational simplicity, we shall just show (i).
Let y € Y. Since o is strongly optimal, we know that

1 = p,,({m;z€Aznely)
= Hay(A).

Let now a1 € {21; z € A, 211 € Y} with such that the <-rank of z;
is minimal. Clearly,

Moy (U =1,
and so z1 € $Z'(Y). g.ed.

We will now show an example of a use of the pseudoimage. Note
that the statement of the following observation follows trivially from
the fact that in this game, player I cannot have a pure winning
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strategy and the proof of Theorem 2.1. Nevertheless, we’ll prove it
here for expository reasons.
Fix a bijection 8 : w? — w. For any element of Baire space,

T € w*, we can define a relation R, on the natural numbers by
nRym <= z(B(n,m)) = 1.

Let WO be the set of codes of countable ordinals, i.e., the set of
x € w® such that R, is a wellorder. For z € WO, let ||z|| be the
order type of (w, R,.).

Observation 4.2. Define the set A as follows:
r€EA: < 1€ WO & (.T]] ¢WO \Y ||£CI|| > ||$]]||)
Then player I cannot have a strongly optimal strategy.

Proof. If ¢ is any strongly optimal strategy for player I, then \IJ‘QI (w®)
is a 3] subset of WO (this uses a theorem of Tanaka [13]). By the
standard Boundedness Lemma [12, Proposition 13.4], there is an or-
dinal @ < w; such that ||y|| < « for all reals y € ¥2'(w*”). But then
let player II play a code w for a. By Proposition 4.1,

‘I";I({w}) N{zr; z € Az =w} # 0,

but this is impossible since for all y € \I!‘L’I({w}), we have ||y|| < [Jw||,
soy*xw ¢ A. q.ed.

The proof of Observation 4.2 is an extremely simple but generic
example of how the simulating technique works in games where we
have a natural prewellordering evaluating which player wins. Using
these techniques, we can prove the following theorems:

Theorem 4.3. Assume BI-AD. Then Ry has the strong partition
property, and for all natural numbers n, the odd projective ordinals
6§n+1 have the countable partition property: for all a < w1y, the
partition relation 83,1 — (83,,1)® holds.**

Theorem 4.4. Assume pBI-AD. Then for every A C w; there is a
real © € w* such that A € L[z].

24The countable partition relation for odd projective ordinals is provable
under the assumption of pBI-AD. The proof of the strong partition property
of N; also works under the assumption of pBI-AD except for a use of “All sets
of reals are Lebesgue measurable” of which we don’t know how to prove it in
ZF + pBI-AD.
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Theorem 4.3, Theorem 4.4, and Kleinberg’s Theorem 3.6 allow us
to deduce:

Corollary 4.5. Assume BI-AD. Then X; and N5 are measurable,
R, (for 3 < n < w) is Jonsson and has cofinality No, and R, is
Rowbottom.

That the cardinals between N, and R4 are singular is important,
because we can use that and Theorem 4.3 to compute 6% to be N, 41:
we have 83 < N, and since 835 > 83 = Ry is regular by virtue of
Theorem 4.3, ¥, is the only possible choice left for d3.

In addition to that, we can define a Blackwell Lipschitz hierarchy
by setting

A <y B : <= player II has a strongly optimal strategy for Ly g,

defining a notion of Blackwell Lipschitz degree [A]pis as above, and
prove the following result about the derived degree structure:

Theorem 4.6. Assume pBI-AD. Say that a Blackwell Lipschitz de-
gree d is called a successor degree if there is a degree p <pye d such
that there is no e with p <y € <gi¢ d. We say that d is of countable
cofinality if there is a sequence ([An]Bie ; n € w) without a greatest

element such that
A =By EB Ay

new
Then the Blackwell Lipschitz degrees are semi-linearly ordered,
and every successor degree is a selfdual degree and the nonselfdual
degrees are exactly the first two degrees and the nonsuccessor degrees
which are not of countable cofinality.

Together, Theorems 4.3, 4.4, and 4.6 show the analogues of The-
orem 3.3, Theorem 3.4, (5) of Fact 3.8, and (1) and (3) of Fact 3.10.
Most of these properties are very characteristic for AD-situations and
can be counted as evidence that BI-AD might imply AD.

But there are many things left open: We couldn’t show most of the
general theory of the projective ordinals (Fact 3.8), in particular the
measurability of the even projective ordinals and the computation of
;. What seems to be missing here is a version of the Moschovakis
Coding Lemma [29, 7D.5] that allows us to view subsets of &% as
sets of reals of a tractable complexity. The proof of the Moschovakis
Coding Lemma uses games which can not be dealt with by a use of
the simulation technique.
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Likewise, the wellfoundedness of the Blackwell Lipschitz hierarchy
has not yet been shown.

As described earlier, the main problem with simulating proofs un-
der pBI-AD is that there is no way to pick winning outcomes from the
assignment of a measure that guarantees a win with probability 1. In
other words: We are missing a principle that allows a parametrised
choice of an element of the payoff set A given that the opponent fol-
lows a fixed real. In unpublished work (2001), the present author has
identified such a principle called the Parametrised Choice Principle
PCP of which he could show that (in the theory ZF + DC + pBI-AD)
PCP and AD are equivalent.

Thus, PCP can be seen as the difference between AD and pBI-AD.
If we could show PCP from pBI-AD, Martin’s conjecture would be
proved.
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