
Irish Math. Soc. Bulletin 49 (2002), 71–82 71

Students Meeting Advanced Mathematics
for the First Time:

Can Mathematics Education Research Help?

MARIA MEEHAN

Abstract. In this article, a brief survey is presented of some
results from the mathematics education research literature,
relating to difficulties students have when meeting advanced
mathematics for the first time.

1. Introduction

In the spring semester 2002, I was assigned to teach a course called
Introduction to Analysis to a class of 32 second year Arts students,
who were taking Mathematical Studies as one of their degree subjects.
Mathematical Studies is a three year degree course in UCD, and any
student who achieves at least 50% as their final overall mark will
graduate with an honours degree.

Introduction to Analysis is taught over twelve weeks, with three
one hour lectures and one one hour tutorial each week. Topics such
as the real numbers, sequences, series and power series are covered.
The students taking the course would already have taken a first
year course in Calculus, and a one semester, second year course in
Calculus of Several Variables.

In the fourth week of the course, I introduced the class to the
definition of a convergent sequence of real numbers. Aware that
there would probably be cognitive difficulties with this concept, I
spent quite a lot of time on it. We looked at the sequence (an) where
an = 1/

√
n. We wondered about how “far out in the sequence” we

would have to go until we reached a term aN , so that this term and
each one after it would lie within 1/10 of zero. Then we changed
the 1/10 to 1/50 and wondered about how this would change our

Summary of a talk on the same subject delivered at the Annual Meeting of
the IMS in Cork in September 2002.



72 Maria Meehan

answer. Then we replaced the 1/50 with ε where ε > 0, and tried to
answer the question in general.

We looked at many other examples and proved some of the al-
gebraic limit properties. We discussed bounded sequences, mono-
tone sequences, subsequences and Cauchy sequences. The Mono-
tone Convergence Theorem and the Bolzano-Weierstrass Theorem
were proved and the connection between Cauchy sequences and con-
vergent sequences was studied in detail. This material was covered
in approximately 12 lectures and to emphasise the importance of the
definition of a convergent sequence, I usually started each of these
lectures by writing the definition on the board.

However, in a class test a few weeks later, when asked to state
the definition of a convergent sequence of real numbers, less than
one-third of the class stated it correctly! These students had been
working hard, had been participating in lectures and tutorials and
had given no indication that they didn’t understand this concept.
In fact, it seemed that they felt they did understand. Each student,
apart from one, reproduced something that looked like the definition
(ε, N, “for every ”, “there exists” and “|an − l| < ε” appeared in
various combinations). Also, when asked for examples of sequences
which are, or are not, convergent, bounded or monotone, most of
the students who couldn’t state the definitions correctly, could still
present examples. Similarly, when given true or false statements
concerning combinations of these concepts, many could choose the
correct answer and provide counterexamples where appropriate. If a
proof was required, it seemed that a number of students were relying
on memory (if they had seen the result before) to reproduce it. A
few more relied on “proof by example”.

However tempting it might have been to assign blame to the stu-
dents, I didn’t really believe that the class was at fault. I didn’t
believe that the blame lay entirely at my feet either. It just seemed
that the class and myself were thinking very differently about the
subject. A lot of pedagogical questions occurred to me, but the one
which I really wanted some insight to was:

Why do students seem to regard definitions as irrelevant?

Aware of the emerging research in the area of third level mathematics
education, I wondered if the answer to my question lay here.

Research on mathematics education at the undergraduate level
is in its infancy. Most of the major articles in the area have been
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written in the 1990s, with just a few before that [7]. Can this new
research help the third level lecturer in mathematics? The lecturer
who turns to research in mathematics education expecting to be
told the correct way to teach a class or a particular topic will be
disappointed [7]. There are no proofs and no definitive answers,
but one of the things that research in this area can do, is give the
lecturer some insight into the difficulties that the student encounters.
I needed some light shed on how students react to definitions in
advanced mathematics, and despite being a relatively new field, I was
delighted to find that some excellent studies have been undertaken
on this very topic.

2. Concept Image and Concept Definition

Perhaps the most well known study relating to definitions in ad-
vanced mathematics, is the paper by David Tall and Shlomo Vin-
ner [10]. In this paper, the authors make the distinction between the
formal definition of a mathematical concept, and the image that an
individual has in his or her head relating to the concept. The term
concept definition is used to refer to the mathematical definition of
a concept. Moore [6] describes it as “a formal verbal definition that
accurately explains the concept in a noncircular way”. The term
concept image is used to describe “the total cognitive structure that
is associated with the concept, which includes all the mental pic-
tures and associated properties and processes” [10]. Everything that
a person knows about a concept, be it conscious or unconsious, cor-
rect or incorrect, is included in the concept image. Of course the
concept definition may or may not be a part of the concept image.

Tall and Vinner point out that only a certain portion of the con-
cept image may be evoked at any given time. They refer to this as
the evoked concept image. They note that a concept image may con-
tain conflicting pieces of information. The individual may remain
unaware of this, unless the conflicting pieces are evoked simulta-
neously, in which case they become cognitive conflict factors. The
conflict must then be resolved by the individual and the concept
image adjusted. For instance, studies have shown [11] that many
students believe incorrectly that a convergent sequence can “never
reach” its limit. This may be part of a person’s concept image, while
simultaneously the person may correctly believe that the sequence
(an), where an = (−1)2n, converges to 1. If both of these facts are
evoked simultaneously, cognitive conflict is likely to occur.
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Many of our third level students will have met concepts like func-
tions, limits, differentiation and continuity informally in their sec-
ondary education. It is most likely that formal definitions of these
concepts will not have been presented to the student. This is not a
criticism of the curriculum. Indeed, most would agree that it is a
positive thing that students meet these concepts informally before
being exposed to the rigour of the formal definition. In fact, Burn
[3] notes that most advanced mathematical theory is presented in
textbooks and journal articles in the sequence definition, theorem,
proof, corollary. He argues that the mathematician most likely came
to the result in the reverse order:

The research mathematician may come to his results
starting from some special cases, which will appear as
corollaries in the final version, from which he gets the
idea, which is worked with until he has a proof. Then
the theorem is what has been proved. At this point, he
formulates his definition so as to make the theorem and
proof as neat as possible. (Burn, [3])

Therefore in many cases, it makes sense for our students to be
familiar with certain concepts before they encounter the formal def-
inition.

Tall and Vinner were interested in trying to study the concept
images students had of certain mathematical concepts. Vinner [11]
notes that if you want to find out if a person knows a particular con-
cept definition, you simply ask them to state it. However to study
a person’s concept image, the researcher must ask indirect ques-
tions which will expose certain parts of the image. Several studies
are described in [10,11] which attempt to investigate how individual
concept images differ from the formal theory. The authors attempt
to study the concept images that students have of functions, contin-
uous functions, limits of functions, limits of sequences and tangents
to a graph of a differentiable function. I will very briefly mention
some of the results here. (The interested reader will find excellent
descriptions of the results in [10,11].)

As mentioned above, Tall and Vinner found that many students
believe that a convergent sequence “must not reach its limit” and is
necessarily monotonic. In relation to continuous functions, a popular
concept image was that a continuous function must be given by one
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formula only. For example a function such as

f(x) =
{

0, x < 0
x2, x ≥ 0

would not be considered continuous. In [11], a study is described
where 278 first year university students were presented with graphs
of three functions: g(x) = x3, h(x) =

√
|x| and the function f above.

They were asked to state whether they thought it was possible to
draw a tangent to each of these graphs at the point (0, 0). If, in their
opinion it was possible, they were then asked to specify how many
tangents there were (one, two, three, infinitely many) and to sketch
them. The notions that a tangent can “only cut the curve at one
point” and that a tangent “can’t intersect the curve” were prevalent.
The tangent had been defined in class as either the limit of secants
or as a line having a common point with the function graph whose
slope is the derivative at this particular point. 41% of students gave
one of these definitions when asked, whereas 35% gave descriptions
that suit the tangent to a circle. The concept image of tangent to a
circle was so strong for some students that the actual definition of
tangent to a curve seemed superfluous.

3. Concept Image Formation Using the Concept
Definition

In the studies in [10,11], the students had informally met a lot of
the concepts before being introduced to the formal definition. In
[4], Randall Dahlberg and David Housman attempted to study how
students initially develop an understanding of a formal concept. In
other words, when presented with a new concept definition for the
first time, they essentially wanted to observe how the concept image
was formed (if at all). 11 students from Housman’s university took
part in the study. Of these 10 were seniors and one was a junior,
and 10 were mathematics majors, with one being a computer sci-
ence major. Based on their previous mathematical performance the
students represented four ability groups.

Each student was interviewed individually, and throughout the
interview the student was encouraged to state or write whatever he
or she was thinking. The interviewer could then attempt to moni-
tor when a learning event had occured, that is, “when the student
communicates and applies a new understanding of the concept” [4].
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At the start of the interview, the student was presented with the
definition page. On this page was the following definition:

A function is called fine if it has a root (zero) at each integer.

The authors found that four basic learning strategies emerged: ex-
ample generation, reformulation, decomposition and synthesis, and
memorisation. Many of the better students used example generation
— they tried to find examples of fine functions. Graphs of the con-
stant zero function and a sinusoidal graph, which crossed the x-axis
at each integer, were some of the examples given. Three students
restated the definition, with a reformulation such as f(n) = 0, for
all n ∈ Z being given. Some of the weaker students “broke down”
the definition, tried to examine each of the separate parts, and then
put the meaning together at the end. Finally, some students wrote
nothing down and when prompted, said they usually just memorised
definitions without really understanding them.

At this point in the interview the students were presented with
a generation page which encouraged them to give an example of a
function which is fine, one which is not, and also to state in their
own words what a fine function is. Essentially, the student was
being encouraged to generate examples and reformulate. Dahlberg
and Housman found that those who employed example generation
initially, switched to reformulation and vice versa, with additional
learning events occuring. Most of those who had initially employed
one of the other two learning strategies didn’t seem to experience
any further learning events.

In the remainder of the interview, each student was given a ver-
ification page and conjecture page. The verification page contained
examples of functions, and the student had to decide which of these
were fine. Statements about fine functions appeared on the conjec-
ture page, and the student had to determine the validity of each of
these. Overall the authors found that example generation played a
significant role in the development of the concept image.

Students who consistently employed example generation
had more learning events, were able to encapsulate more
examples into their concept image of fine function, and
were more able to use these examples than those who
primarily used other learning strategies. (Dahlberg and
Housman, [4])
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4. Example Generation

Clearly the more examples one has of a concept, the better informed
the concept image will be. If a person has many (correct) examples
of a concept in his or her concept image, then it seems likely that
the concept image will be more in line with the formal theory. As
mathematicians we know that examples play an important role in
mathematical research. Very often ideas come from observing and
working with examples of various concepts. In addition, when intro-
duced to a new concept or theory we often try to find examples which
will aid our understanding. We should therefore try to emphasise the
importance of examples to our students.

Frequently, lecturers and textbooks when presenting a new topic,
give a few “well-worn” examples of a concept and leave it at that.
Do students interpret these as being more “correct” examples than
those which they generate themselves? Do they try to generate their
own? Are we denying them the opportunity to expand their concept
images by not encouraging them to generate their own? Do they
find it difficult to generate examples?

In [5] Orit Hazzan and Rina Zazkis analyse the approaches that
students take, and the difficulties they encounter, when asked to give
an example of a mathematical entity. The following are two of the
tasks they presented to students:

(A) Give an example of a 6-digit number divisible by 17.

(B) Give an example of a function whose value at x = 3 is −2.

They note that such tasks could be thought of as “inverses” of those
students are normally asked to do: show that 163, 710 is divisble by
17; show that f(3) = −2 if f(x) = 2x− 8.

Several approaches were observed. Random trial and error was
a common one. For example with (A), several students randomly
picked 6-digit numbers and checked if they were divisble by 17. An-
other approach related to this is informed trial and error. For exam-
ple on finding that a random 6-digit number has remainder 2 when
divided by 17, the student subtracted 2 from the random number to
obtain the example. It was also noted that a common approach was
to design an algorithm. When asked to give 5 additional examples
of functions that satisfied (B), the authors observed that students
were anxious to find an algorithm to produce the examples.
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Hazzan and Zazkis also observed that very few students gave
“trivial” examples. For example, 170, 000 is an example of (A). The
authors note that this may be because the student feels that a 6-
digit number should contain a variety of digits or that the lecturer is
expecting something more. Another observation was that students
were anxious to check their answers. For example, if 17 was multi-
plied by 9, 630 to obtain 163, 710, the tendency was then to check the
divisibility of this number by 17. Finally, the authors note that the
fact that there is no unique example of (A) or (B) caused some dis-
comfort. This may be that students have been conditioned to expect
one correct answer to a problem. Thus while generating examples
may be second nature to the mathematician, it can be a difficult
task for students and one worth engaging them in.

5. From Definition to Proof

On completing a course such as the Introduction to Analysis men-
tioned in Section 1, we generally expect that the successful student
will not only be familiar with certain concepts and their definitions,
but will also be able to reason using definitions. As lecturers in ad-
vanced mathematics, we expect our students to be able to present
proofs relating certain concepts. Even with a well developed concept
image, this can prove difficult for the student.

Lara Alcock and Adrian Simpson describe in [1] some responses of
Real Analysis students from the University of Warwick, when faced
with proving that a convergent sequence (an) is bounded. They first
recount the response of a student, Wendy, who tries to “generalise
from a prototype”. When trying to prove the result, the student
seems to be arguing from examples of monotonic sequences. The
authors note that it is not clear whether she feels that all convergent
sequences are monotonic, or whether she deems them more impor-
tant than other convergent sequences. This may be because many
of the examples she would have seen of convergent sequences, would
have been monotonic.

Secondly they describe the approach of a student, Cary, who tries
to “abstract properties from a prototype”. Cary appreciates that
not all convergent sequences are monotonic and seems to have a
richer concept image of convergent sequence than Wendy. However,
when trying to prove the result, it seems that he tries to extract the
properties of convergent sequence from the examples in his concept
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image. It doesn’t occur to him, until prompted, to use the definition.
(Note that this is how the research mathematician might reach a
conclusion, and the authors argue that this type of thinking is to be
encouraged.)

Alcock and Simpson observe that Wendy’s situation could im-
prove if she had a better awareness of examples of convergent se-
quences. They argue that “such an awareness should make her less
likely to overgeneralize from a restricted range of cases, and more
likely to recognize the potential pitfalls of relying on relatively fixed
images”. Cary is in a better situation than Wendy, in that he has a
good awareness of examples of convergent sequences, but still needs
to make that final step and refer to the definition.

The authors suggest promoting the use of collaborative work in
class. They note that the feedback, challenge and debate experienced
in group work, may result in the individual student being more crit-
ical of his or her own work. This may help a student like Wendy
to have a better idea of what objects belong to a given category.
They also suggest reversing some of the usual tasks that students
are given. Rather than ask the student to demonstrate that a given
object belongs to a given category, ask him or her to provide exam-
ples of a given category. Students like Cary may then be better able
to see the link between the definition and examples.

6. Conclusions

I return to the question posed in Section 1:
Why do students seem to regard definitions as irrelevant?

In everyday life we very rarely use formal definitions to understand
the world around us. We know what is meant by “car”, “shoes” and
“cat” because we have seen enough examples of these concepts. Is it
even possible to formally define these? In many instances in everyday
life we work from “prototypical examples”. If someone told me that
they owned a cat, I would automatically think small and furry (pet
cat), and not big and ferocious (wildcat). Thus in everyday life,
one could say that we work and argue and make decisions from the
prototypical examples we have in our heads.

In mathematics, concepts are precisely determined by their def-
initions. No one example of a concept is better than another. We
know exactly what objects belong to a given category. We make our
arguments based on definitions. Compared with the way we think
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in everyday life, one might conclude that thinking mathematically
does not come naturally!

Think about a student taking an “everyday life” approach to the
concept of convergent sequence. The student develops a concept
image of convergent sequence which is likely to contain examples of
convergent sequences. These examples will probably have come from
the lecturer or textbook. In the “everyday life” approach, the defi-
nition may now be thrown away since the image is formed. Vinner
[11] uses the “scaffolding metaphor”: once the building is up, the
scaffolding can be removed.

Vinner [11] claims that “one of the goals of teaching mathemat-
ics should be changing the thought habits from the everyday life
mode to the technical mode”, although he recognises the difficulty
in this. One suggestion is that, if possible, the mathematical defini-
tion should be acquired in the everyday life mode by using examples
to build up the concept image. The formal definition can then be
presented (or perhaps if it is not too difficult, the student could be
asked for his or her definition). Vinner notes that if the student is
taking an advanced mathematics course, where ultimately he or she
will have to use the definition in reasoning and proofs, one must do
more than simply introduce the formal definition. The conflicts be-
tween the concept image and formal theorem need to be addressed
and discussed in detail (see Section 2). He also suggests that the
student must be given tasks which require the formal theory, and
can’t be answered by only consulting the concept image (this is one
for the imaginative lecturer).

Throughout this survey of the literature we have seen the role
played by examples in helping the student understand a concept.
In Section 2, we saw how the concept image and formal theory can
diverge. One could use the results (and examples) in [10,11] to expose
cognitive conflicts factors, which may help to realign the concept
image and the formal theory. We noted in Section 3 that example
generation is a habit that is worth encouraging in our students. This
can prove difficult for the student as discussed in Section 4, but by
“reversing” the tasks usually assigned and asking students to “give
an example of . . .”, we can hopefully encourage this practice. In
Section 5, many of these themes and suggestions appeared again.

In the business world there is an expression “analysis by paral-
ysis”. When I first read the papers discussed in this article, I was
slightly overwhelmed at the task facing me as a lecturer. How could
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I possibly present a lecture in advanced mathematics which would
encompass all the above suggestions and which would ensure that my
students wouldn’t make the mistakes or fall into the traps described
above? Paralysis set in.

On reflection, I think it is impossible. However at least now I am
more aware of the pitfalls and plan to make some changes in the
order that I present the material, in the type of questions I ask, and
I intend to encourage group work in class. And next semester, if one
third of my second year Introduction to Analysis class correctly state
the definition of a convergent sequence, I’ll be over the moon!!

References

[1] L. Alcock and A. Simpson, Two components in learning to reason using
definitions, Proceedings of the 2nd International Conference on the Teaching
of Mathematics (at the Undergraduate Level), 2002, CD-Rom.

[2] L. Alcock and A. Simpson, The Warwick analysis project: practice and
theory, in D. Holton (ed.), The Teaching and Learning of Mathematics at
University Level — An ICMI Study, Kluwer Acad. Publ., Dordrecht, 2001,
99–111.

[3] R. Burn, The genesis of mathematical structure, in P. Kahn and J. Kyle
(eds.), Effective Learning and Teaching in Mathematics and its Applications,
Kogan Page Ltd., London, 2002, 20–33.

[4] R.P. Dahlberg and D.L. Housman, Facilitating learning events through
example generation, Educational Studies in Mathematics, 33 (1997), 283–299.

[5] O. Hazzan and R. Zazkis, Constructing knowledge by constructing examples
for mathematical concepts, Proceedings of the 21st International Conference
for the Psychology of Mathematics Education, Vol. 4 (1997), 299–306.

[6] R.C. Moore, Making the transition to formal proof, Educational Studies in
Mathematics, 27 (1994), 249–266.

[7] A.H. Schoenfeld, Purposes and methods of research in mathematics
education, in D. Holton (ed.), The Teaching and Learning of Mathematics at
University Level — An ICMI Study, Kluwer Acad. Publ., Dordrecht, 2001,
221–236.

[8] A. Selden and J. Selden, The role of examples in learning mathematics,
http://www.maa.org/t and l/sampler/rs 5.html.

[9] D. Tall, The psychology of advanced mathematical thinking, in D. Tall
(ed.), Advanced Mathematical Thinking, Mathematics Education Library,
Kluwer Acad. Publ., Dordrecht, 1991, 3–21.

[10] D. Tall and S. Vinner, Concept image and concept definition in mathe-
matics with particular reference to limits and continuity, Educational Studies
in Mathematics, 12 (1981), 151–169.



82 Maria Meehan

[11] S. Vinner, The role of definitions in the teaching and learning of math-
ematics, in D. Tall (ed.), Advanced Mathematical Thinking, Mathematics
Education Library, Kluwer Acad. Publ., Dordrecht, 1991, 65–81.

Maria Meehan,

Department of Mathematics,

University College Dublin,

Belfield, Dublin 4

maria.meehan@ucd.ie

Received on 20 November 2002.


