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An Extension of a Commutativity Theorem of
M. Uchiyama

W. J. RICKER AND M. VATH

ABSTRACT. M. Uchiyama identified a necessary and suffi-
cient condition for two nonnegative bounded operators to
commute. We give a sufficient condition which apparently
requires less.

Throughout, let X be a Hilbert space. By £(X) we denote the
bounded linear operators on X, and by £5(X) the (real) subspace
of selfadjoint operators. We order £5%(X) by the usual cone of non-
negative (definite) operators. In [5], M. Uchiyama established the
following result.

Theorem 1. Two nonnegative operators Ay, As € £(X) commute
if and only if forn =1,2,...

AT As + A AT > 0. (1)

The condition (1) is of some interest, because it can be written in
terms of the Weyl calculus. Recall that the Weyl calculus is a way of
forming functions of several (not necessarily commuting) selfadjoint
operators [1, 4]. For the particular case of operators A, Ay € £52(X)
the Weyl calculus for the pair A := (45, As) assigns to the monomial
p(w1,22) := 272k the operator

n+k\ !
Wal(p) = ( ) ZATr(l) o An(nak)s

n

where the sum is taken over all functions 7: {1,...,n+k} — {1,2}
which attain the value 1 precisely n times (there are (n;’;k) such func-
tions), i.e. the calculus “symmetrices” polynomials. For the partic-
ular monomials p,, of degree n which are defined by pg(zg,z1) =1
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and pp,(z1,22) 1= x?ilxg, the above formula becomes

n—1

1
Walpa) = - 3 AbA A7 F,

n
k=0

from which it follows that

(n+1D)Wa(ppt1) — (n— 1) A1 Wa(pn—1)A1 = AT As + A3 AT
or, similarly, that
2(n 4+ 1D)Wa(pni1) — nAIWA(pn) — nWa(pn) Ay = AT Ay + As AT

These identities express the left-hand-side of (1) in terms of Wa (pr)
and A;. Note that the operators Wa(p,) are all selfadjoint (this
follows from the above formulae and is also a general property of the
Weyl calculus of a real function [1]).

In a similar manner, one can write down other recursion formulae
for Wa(p,) which, by insertion into the above formulae, give many
other expressions for ATAs + A3 A} in terms of Wa(p,) and Aj.
A typical sample of a commutativity result in terms of the Weyl
calculus (using the above formulae and Theorem 1) is as follows.

Corollary 1. Let Ay, Ay € £(X) be nonnegative. Then AjAs =
As Ay if and only if

n—1
Wa(pn >
A(p +1)_n+1

The main interest of (1) is that it implies A1 4y = AsA;. We
intend to prove commutativity in the situation that one does not
know (1) a priori in full strength or perhaps not for all indices n. Of
course, as a conclusion one then obtains that (1) actually holds for
allm = 1,2,.... Let us first give an example which shows, even if
X is finite dimensional, that it is not sufficient to verify (1) for any
fixed finite family of indices n.

A1WA(pn_1)A1, (77,1172,)

Example 1. Consider X := C? and the noncommuting nonnegative
matrices Ay 1= (§9) (1 # ¢ > 0) and Ay := (% }). Since the (1,1)-

entry of AV Ao+ A AT = Cﬁ,inl cn; ! ) is nonnegative for every n, this

matrix is nonnegative if and only if its determinant —(¢™)?+6¢" —1 is
nonnegative. Clearly, for any NV, there exists ¢ # 1 but “close to 17
such that ATAy + A2 ATY > 0 for n = 1,..., N, although A; Ay #
A A;.
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Example 1 demonstrates impressively that Theorem 1 above is an
“asymptotic” result: The “closer” the operators are to commuting
(i.e. the closer c is to 1), the larger n must be chosen so that AT Az +
A AT 2 0.

To obtain the announced generalization of Theorem 1, we need the
associativity of the standard calculus for bounded normal operators.
This property is probably known; since we could not find a reference,
a short proof is included.

Proposition 1. Let A € £(X) be normal and o(A) denote the spec-
trum of A. If f: 0(A) — C and g: o(f(A)) — C are bounded Borel
functions, then the standard calculus for normal operators satisfies

9(f(A)) = (9o f)(A). (2)

Before we turn to the proof, a comment on the right-hand-side
of (2) is in order. Since only o(f(A)) C f(o(A)) (see e.g. [2, Sec-
tion X.2, Corollary 9]), it is not the case, in general, that g o f is
defined on o(A). However, the set where it is not defined is only a
null set with respect to the resolution of identity of A, i.e. the right-
hand-side of (2) is well-defined by extending g to an arbitrary Borel

function on a Borel set containing f(o(A)), if necessary.

Proof. Let P denote the resolution of the identity of A. Then f(A) =
fa(A) fdP and supp(P) = o(A); to see this let f be the identity
function on o(A) in [2, Section X.2, Corollary 9(iii)]. The resolu-
tion of the identity Py of f(A) is given by Ps(B) := P(f~*(B)),
see e.g. [2, Section X.2, Corollary 10]. Analogously, the resolution of
the identity of g(f(A)) is then given by (Py),, where (Pf)q(B) :=
P(f~Yg7*(B))) = P((go f)"Y(B)) =: Pyos(B). The same result
holds, of course, for any extension of g to a bounded Borel function
on a Borel set containing f(o(A)). Applying [2, Section X.2, Corol-
lary 10] to go f, where g denotes another such extension, we find that
the resolution of the identity of go f is given by Pgor = (Pf)e = (Pf)qg
(in particular, (go f)(A) = fa(A) id d(Ps)g = g(f(A))). Accord-
ingly, g(f(A)) is independent of the choice of the extension g, and
so go f = go f except possibly on a P-null set and thus, (go f)(A)
is defined and equal to (go f)(A4) = g(f(A)). O

If we combine Proposition 1 with the fact that the inverse of any
Borel function is automatically a Borel function (because it maps
Borel sets onto Borel sets [3, §39, V, Theorem 1]), we obtain:
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Proposition 2. Let A € £(X) be normal. If f: 0(A) — C is
an injective, bounded Borel function, then an operator B € £(X)
commutes with A if and only if it commutes with f(A).

Proof. Let f~1 denote a left-inverse (extended to a Borel function
on f(o(A))). Recall that any bounded operator that commutes with
A also commutes with f(A), because it commutes with each spectral
projection. Hence, if B € £(X) commutes with f(A), then it also
commutes, in view of Proposition 1, with g(f(4)) = (go f)(A) =

id(A) = A. O

By a fractional power A% of a nonnegative operator A € £(X),
we mean the operator f(A) with f(z) = z* (o > 0) in the sense of
the standard calculus. Note that this is the “right” definition for the
power, since Proposition 1 implies (A%)% = A*+5,

Corollary 2. Let Ay, Az € £(X) be nonnegative. Then A1Ay =
Ao Ay if and only if AYAS = ASAS for some, and thus all, (not
necessarily integer) powers a, 3 > 0.

For an operator A € £%(X), it will be convenient to use the
notation

min A := mino(4) = | iI”l£1 (Az, ) .

We are now in a position to formulate the main result.
Theorem 2. Two nonnegative operators Ay, As € £(X) commute

if and only if there are constants € > 0, j € N, £ >0, and ¢,d > 0
such that, for all n = j,24,37,... we have

(d+2min A2)cn+z min(Af'kAg + Ay ATR 4 dA?'k) (Z) eken=k > 0.

k=1
3)
In this case, each summand in (3) is actually nonnegative for each
choice of the constants j € N, £ >0, and ¢,d > 0.

Proof. If Aj Ay = As Ay, then min(A$As+ A2 AS) > 0 for any « > 0,
and so (3) follows for any choice of the constants. Conversely, assume
that (3) holds. Put By := eA{ + ¢l and By := Ay + $1. Then,
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(B{)"Bs + By(B{)" = B{" By + B> B{"

n .

=Y (J;‘) (ATFAg + ApATF + dATF) eI r
k=0

> (dI +245)"

Jjn .
+3° (f) min (A{F Ay + AgASF 4 dALH) Tkt
k=1
>0 for all n.

Theorem 1 then implies BI By, = BB’ which, in view of Corol-
lary 2, is equivalent to B; By = By B; and thus to A{Ag = Ay AY or
to AlAQ = AQAl. O

Corollary 3. Let Ay, Az € £(X) be nonnegative. Then A1Ay =
A Ay if and only if there exist N € N and d > 0 such that the
selfadjoint operators

A?AQ"‘AQA?“FdA? = (TL-F].)WA (anrl)—(n—l)A1WA(pn,1)A1+dA7ll,

for n = N,2N,3N,..., are nonnegative. In particular, A1As =
As Ay if (1) holds for all except possibly finitely many numbers n.

Proof. Apply Theorem 2 with { = N. O

Note, for ||A1|| < 1 (which one can arrange by appropriate scal-
ing), that the numbers min (A{ A + A2 AT + dA§) which occur in (3)
always have a lower bound which is independent of a. However, it
appears that by applying only this fact and straightforward estimates
to (3), one cannot generalize Corollary 3 to the situation when one
does not have a priori information about these numbers in some
infinite arithmetic sequence of a’s. However, in finite dimensional
spaces one can use a different argument to obtain commutativity.

Theorem 3. Let X be finite dimensional, and let A1, Ay € £(X) be
nonnegative. Then A1As = As Ay if and only if there is some d > 0
and an unbounded subset S C [0,00) such that

AT Ay + Ay AT + dAT >0 (€ §). (4)
In this case, (4) actually holds for S = [0,00) and each d > 0.
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Proof. By considering an appropriate basis in X, we may assume
that A; is represented by a diagonal matrix. Then the entries of
the matrix M(a) := AYAs + A A + dAS are sums of terms of the
form ¢*d where ¢ > 0 and d € R are independent of a. Recall that
M(a) > 0 if and only if all the minors of M («) are nonnegative.
But, the minors of M(«) are sums (or differences) of products of
entries of the matrix M (), i.e., they have the form (after elementary
manipulations) Zszl cpdy with 0 < dy < --- < dg and ¢ # 0
independent of «. If dg > 1, then the sign of this expression is the
sign of ¢k for all sufficiently large a.. If dx < 1, then the sign of this
expression attains the sign of ¢; for all sufficiently large o. In all
cases, the minors of M («) do not change their sign for sufficiently
large a, i.e. M(a,) > 0 for some sequence «,, — oo if and only if
M (a) > 0 for all sufficiently large a. Hence, the statement follows
from Theorem 2. O

We do not know whether Theorem 3 also holds in general Hilbert
spaces X. At least, there cannot be a counterexample which consists
of an (infinite) diagonal matrix A; and a “block matrix” As.

Corollary 4. Let Ay, Ay € £(X) be nonnegative. Assume that there
is some finite dimensional subspace U C X which is invariant under
Ay and As and such that the restrictions satisfy A1 As|y # AsA1|u-
Then, for any d > 0 and any unbounded S C [0,00), the relation (4)
fails.

Proof. For each sufficiently large a > 0, the restriction of B, :=
AT A+ As AY +dAS to U fails to be nonnegative by Theorem 3. So,
the extension B, cannot be nonnegative either. (I
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