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Rank Rigidity and Symmetry

J.-H. ESCHENBURG

ABSTRACT. Symmetric spaces form a subject of central im-
portance in geometry. We report on a class of theorems
characterizing Riemannian symmetric spaces of higher rank.
These theorems shed light on various aspects of these spaces
and bring together very different geometric theories: Rie-
mannian manifolds of nonpositive curvature, spherical Tits
buildings and submanifold geometry. In particular, we put
emphasis on the third aspect which is related to isotropy or-
bits of symmetric spaces.

1. THE DESARGUESIAN PROPERTY

There are several theorems in geometry where a lower bound on a
certain dimension (“rank”) together with other geometric properties
determines a space uniquely up to automorphisms (“rigidity”). The
automorphism group of such a space is very large; in fact rigidity
is proved by detecting sufficiently many automorphisms. The rank
assumption is remarkable; it contradicts our feeling that higher di-
mension should imply more flexibility and less rigidity. However the
geometric assumptions yield more and more substructures as the
rank grows, and these are used for the rigidity proof. A classical
example is the theorem of Desargues in n-dimensional projective ge-
ometry P":
(K): Desargues, Kolmogoroff [K]:
If P™ is connected and compact with n > 3, then P” is
projective n-space over R, C or H

(false for n = 2).

The theorem can be proved by showing that the automorphisms
fixing an arbitrary hyperplane act transitively on its complement.
The hyperplane can be viewed as hyperplane “at infinity”, so its
complement is affine space A™. For any two points p,p’ € A" we
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may define the translation sending p to p’ provided that the “small”
Desargues theorem is satisfied: If the lines k,l, m are parallel then
alld’, b||b" = cl|d (Fig. 1).

!/

PI

Figure 1: Translations and Desargues’ property

But the Desarguesian property does not follow from the axioms of
projective geometry in dimension 2; there are many projective planes
lacking this property (cf.[Sal]). However, it does follow in dimension
n > 3: If the three parallel lines &, [, m are not complanar, the two
triangles abe and a’'b’c’ in Fig. 1 are lying in two different parallel
planes. Thus the lines ¢ and ¢’ do not intersect inside A™, but on
the other hand they lie in a common plane (spanned by the parallel
lines k and m), so they must be parallel. This is a model case for
the use of substructures (planes in this case) and their intersections
in order to construct automorphisms.

Projective geometry was put in a much broader context by J. Tits
[Ti], leading to a far reaching generalization of (K) (cf. (A) in Ch.
3): A spherical building of rank n is a simplical complex of dimen-
sion n — 1 such that any two simplices are lying in a common finite
subcomplex called appartment. Each appartment is a triangulation
of the (n — 1)-sphere being invariant under a group of hyperplane
reflections, the Weyl group, which acts simply transitively on the
set of (n — 1)-simplices (“chambers”) of the appartment. Any two
appartments are isomorphic, and two such isomorphisms differ by a
Weyl group element. Simplices which are equivalent under such an
isomorphism are said to have the same type. In the case of P”| the
(n — 1)-simplices are the full flags

point p C linel C plane E C ... C P"

and the faces are the corresponding subflags of all possible types
(Fig. 2),
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Figure 2: Flag simplex

while the appartments are the formed by all flags corresponding to
the faces of a fixed projective n-simplex in P? (Fig. 3).

Figure 3: Appartments of P3

2. SYMMETRIC SPACES

A Riemannian manifoldis, roughly speaking, a metric space which
is locally approximated by euclidean geometry (on the tangent space)
and where distance globally is measured by arc length of curves.
Shortest curves are called geodesics. The deviation of Riemannian
from euclidean geometry at any point 2 is measured by a quantity
R(z) called curvature tensor from which the notion of sectional cur-
vature (sc) is derived. E.g. we have sc > 0 (resp. sc < 0) iff the
distance between two geodesics emanating from a point z near z
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does not grow more (resp. less) than proportional to the distance
from z (Fig. 4).

Figure 4: Distance of geodesics

Globally, the most important difference to euclidean geometry is the
path dependence of the parallel displacement of vectors in Riemann-
ian geometry. The phenomenon is measured by the holonomy group
which consists of the parallel displacements along all loops starting
and ending at a fixed point z; this is a group of linear transformations
on the tangent space at z.

A symmetric space (cf. [Hg], [E1]) is a Riemannian manifold X
which has an isometric point reflection (“symmetry”) o, at any point
z € X. So there are plenty of isometries which turn X into a ho-
mogeneous space, i.e. the group of isometries acts transitively on
X. Locally, symmetric spaces are characterized by the constancy
of the curvature tensor R, more precisely, R is invariant under all
parallel displacements. This partially explains the importance of
these spaces for Riemannian geometry. Examples include euclidean
n-space, spheres, Grassmannians (cf. Fig. 5)

Figure 5: Symmetry of Grassmannians

and compact Lie groups (with o;(y) = zy~'z). Symmetric spaces
always come in “dual” pairs X, X*:

X compact, sc > 0 +— X* noncompact, sc <0
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E.g. the dual of the sphere is hyperbolic space, the dual of the Grass-
mannian of n-planes in R™** is the set of “spacelike” n-planes with
respect to the indefinite inner product of index k on R?** and the
dual of a compact Lie group G is G°/G where G° is the complexifica-
tion of G. The irreducible symmetric spaces of noncompact type are
precisely the coset spaces X = G/K where G is a simple noncom-
pact Lie group (the identity component of the isometry group of X)
and K 1ts maximal compact subgroup. Hence irreducible symmetric
spaces are labeled by the simple noncompact Lie groups.

The geometry of a symmetric space X = G/K of noncompact
type can be understood best by looking at the unit 2-disk (Poincaré)
model of the hyperbolic plane (Fig. 6).

Figure 6: Hyperbolic plane

In general, X is diffeomorphic to the open n-disk, and there is a
canonical way of attaching an (n—1)-sphere X to X, using geodesic
rays emanating from any point of X; two geodesic rays starting
at different points define the same point of X, if they have finite
distance from each other. The geodesics in the hyperbolic plane
(orthocircles in Fig. 6) have to be replaced by r-dimensional totally
geodesic euclidean subspaces (called flats) where r > 1 is called the
rank of the symmetric space. Any two points in X = X U X
are joined by a common flat. Two flats can join at X, but the
possible set of intersection is not arbitrary. In fact, there is a G-
invariant decomposition of X, forming a spherical building of rank
r, whose appartments are the flats at X, and two flats may join
at X only along entire simplices of the building. E.g. the bulding
of projective geometry P"~! is associated to the symmetric space

SL(n,R)/SO(n).
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A major role i1s played by the isotropy group K which replaces
the rotations in euclidean space and which for irreducible symmetric
spaces happens to agree with the holonomy group at the base point.
In euclidean space, we may turn around and look in every direction
we like, so the isotropy orbits are spheres. But in a symmetric space
of rank r, the isotropy group must preserve the set of r-flats through
the base point. In fact K acts transitively on this set, and a K-
orbit intersects each flat a finite number of times, and each time
perpendicularly (Fig. 7).

orbit Orbit (3-dim)
27505  VSI.750,

Figure 7: Isotropy orbit and flat

The isotropy action of a symmetric space, viewed as a linear action
on the tangent space of the base point, is also called s-representation.
The principal orbits of this action are examples of isoparametric
submanifolds (cf. Ch. 4). Any K-orbit, when projected to X by
the geodesic rays from the base point, is invariant also under the
noncompact group G acting on Xo, hence a so called R-space (a
compact homogeneous space with an effective transitive action of a
noncompact Lie group). It can be viewed as the set of all simplices
of a fixed type in the spherical building associated to X; in fact it
intersects any of these simplices precisely once. Some of these orbits
are again symmetric spaces, so called eztrinsic symmetric spaces or
symmetric R-spaces (cf. [F], [EHL1]); in the case of P”, these are
the one-step flag manifolds, the Grassmannians. Most symmetric
spaces occur in this way. It is due to this fact that spheres and
projective spaces allow a transitive action by a noncompact Lie group
(conformal and projective groups).
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3. SOME RANK RIGIDITY THEOREMS

(A): Tits [Ti], Burns-Spatzier [BSI1]:
If a locally connected irreducible compact spherical building

has rank r > 3, then it is associated to a symmetric spaces of
rank r

(false for r = 2).
(B): Berger [Be], Simons [Si]:

If the holonomy group of a locally irreducible Riemannian
manifold acts with cohomogeneity (codimension of the maxi-

mal orbits) k > 2 then it is locally symmetric of rank k
(false for k =1).

(C): If a complete locally irreducible Riemannian manifolds has
rank r > 2, i.e. r is the largest number such that any two
points can be joined by an r-dimensional complete locally eu-
clidean and totally geodesic submanifold (“flat”), then it is
locally symmetric of rank r, provided that additionally one of
the following properties holds:

(a): Ballmann [B], Eberlein [Eb], Burns-Spatzier [BS2]:
s¢ < 0 and finite volume,

(b): Heber [Hb]:
sc < 0 and homogeneity,

(¢): Molina-Olmos [MO]:
All flats are compact,

(d): Samiou ([Sa], also cf. [EO]):

All pointed flats are congruent under the isometry group.

((a)-(c) are false for r = 1. Also for r > 2 the statement is false
without additional assumptions, even for homogeneous spaces,

cf. [SS].)
(D): Thorbergsson [Th], Olmos [02]:

A closed, irreducible, substantial isoparametric submanifold
of codimension k > 3 in euclidean n-space is a principal orbit
of the isotropy representation of a symmetric space of rank k

(false for k = 2).

There are many more such theorems which all shed light on differ-
ent aspects of symmetric spaces. (A) is the direct generalization of
(K) and is proved by constructing the analogue of the translations.
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In (B) the holonomy group is assumed to be small, so it has many
invariants, and eventually it is shown that R is holonomy invariant,
in fact parallel. (A) and (B) are the main tools for the proofs of
(C) and (D). In fact, (A) is used by [BS2], [Hb], [Th] while (B) and
related tools occur in [B], [Eb], [MO], [Sa], [ES] and [O2]. However,
the interdependence of (A) and (B) is not clear. We will now concen-
trate on a new proof of (D) (joint work with E. Heintze, cf. [EH2],
[E2], [HL]) which uses submanifold theory. It is based on ideas of
[O2] but avoids the classification of Dadok [D] used in [Th] and [02].

4. ISOPARAMETRIC SUBMANIFOLDS

An n-dimensional submanifold M = M"™ C R"t* has a tangent
space 7, = 7, M and a normal space v, = v, M at any point p € M
(Fig. 8).

Figure 8: Tangent and normal spaces

A normal vector field £ on M is called parallel if 0, € 7, for all
v € 7,. The self adjoint linear map (9¢), on 7, (the shape opera-
tor) measures how the normal space v, changes when p is moved; its
eigenvalues are the principal curvatures. A (closed irreducible sub-
stantial) submanifold M™ C R"** is called isoparametric (cf. [Se],
[PT]) iff any normal vector can be extended to a parallel normal field
&, and the eigenvalues of (9¢), are independent of p. There are two
classes of examples known:

I: Principal orbits of s-representations (s-orbits),
II: hypersurfaces in spheres related to Clifford representations

(cf. [FKM]).
The classification depends on the codimension k:

k = 1: only spheres (cf. [Se])
k = 2: open conjecture: only I and 1T 7
k> 3: only T by (D).
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Isoparametric submanifolds behave in many ways like principal
group orbits. They generate families of submanifolds My = {p +
&p; p € M} where { is any parallel normal field, and these foliate the
whole space R?t%. In fact M¢ is again isoparametric and diffeomor-
phic to M for most £, but not for all; some singular Mg have lower
dimension, like singular group orbits. However what is special to
isoparametric submanifolds and not true for arbitrary group orbits
(in fact by [D] this holds only for s-orbits): the normal spaces are
common to all leaves Mg, and two normal spaces may intersect only
in points of singular leaves. Fig. 9 gives a picture in the (however
non-substantial) situation where M is a planar circle in 3-space:

Figure 9: Common normal spaces

How does k > 3 imply homogeneity? The main idea is again
to pass to substructures, namely the fibres of the projections onto
singular leaves: m = m¢ : M — Mg, m¢(p) = p+ & where My = S
is singular. Let ¢ = n(p) € S and F = 77'(q) = M Nv,yS the fibre
through p (Fig. 10).

Figure 10: Projection onto a singular leaf
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(In the P3-case, M corresponds to the full flag manifold and S to
a partial flag manifold, say the set of all planes, and = maps a flag
(p,l, E) onto E. Then F corresponds to the flags inside the plane

We show first that F' is totally geodesic in M, i.e. any geodesic in
F 1s a geodesic also in M. A curve in a submanifold is a geodesic
iff its second derivative is always in the normal space. Now F is
the intersection of M with the linear space v,S, thus a geodesic p(t)
in F satisfies p” € v, F Nv,S. But since M is isoparametric, v, M
lies in v,S with orthogonal complement 7, ' (cf. Fig. 10). Hence
vp FNvyS =v,M, and p(t) is a geodesic in M as well.

— T ¢ w S

Figure 11: Horizontal lifts

Thus 7 : M — S is a projection (submersion) with totally geo-
desic fibres. This implies homogeneity of the fibres as follows. Take
any two points gg,q1 € S and connect them by a smooth curve
c:[0,1] = S. Let F; = n='(¢;). For any p € Fy there is a unique
curve ¢, on M starting from p and being a lift of ¢, i.e. mo ¢, = ¢,
such that ¢, (t) is perpendicular to the fibre over ¢(t) at all ¢ (hori-
zontal lift, cf. Fig. 11). Thus we have defined a map h. : Fy — Fi,
p = ¢,(0) = é,(1). Now 7 has geodesic fibres iff all A, are isometries
(cf. Fig. 11). In particular, all closed curves in S starting and ending
at ¢ € S give rise to isometries of the fibre F' over ¢, turning F into a
homogeneous space. In fact, these isometries form the normal holo-
nomy group of S describing parallel displacements of normal vectors
on S, and by an observation of Olmos [O1] (which is related to (B)
but much simpler), the action of the normal holonomy group is al-
ways an s-representation. If k > 3, there is a whole hierarchy of such
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fibrations m¢, becoming more and more singular. In fact, for any
two “simply” singular normal vectors &1,&2 € v, M we find a “dou-
bly” singular £ € vp M such that the fibres I, Fo, ' of ¢, , me,, me
through p satisfy Fy, F» C F. This makes the s-orbit structures on
Fy and Fy compatible and eventually leads to an s-orbit structure
on M. (Technically, the curvature tensor of the corresponding sym-
metric space is constructed on R”** using the curvature tensors on
the various normal spaces v,S; these are given by Olmos [O1].)

5. INFINITESIMAL RANK RIGIDITY

There is yet another classical rank rigidity theorem which seems
to be of very different type:

(L): (Liouville) ([L], cf. [Sp])

If U,V are open subsets of the n-sphere S™ with n > 3 and
¢ : U — V is a smooth conformal diffetomorphism, then ¢ is the
restriction to U of an element of the conformal diffeomorphism
group of S™ (which is Ot (n+1,1))

(false for n = 2).

Unlike in (A)-(D), the geometric assumption here is infinitesimal:
The derivative of ¢ must be a conformal linear map (orthogonal up
to rescaling). Recently, Liouville’s theorem was generalized and put
in the framework of symmetric R-spaces by W. Bertram [Bt]. We do
not know if (L) can be also related to (A)-(D). But we could prove
a rigidity theorem of a similar type whose proof is closely related to
(B) and (D) (cf. [E3]). The map ¢ is replaced by a submanifold M

of a symmetric space, and the assumption on the derivative of ¢ is
turned into a condition for the tangent and normal spaces of M:

(E): Let X be an irreducible symmetric space of compact type
and M C X asubmanifold having totally geodesic tangent and
normal subspaces of X at any of its points. Suppose further
that all tangent subspaces are irreducible and of rank r > 2.
Then M is an extrinsic symmetric isotropy orbit in X .

(false for r = 1).
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