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Algebraic Aspects
in the Classification of C�-Algebras

FRANCESC PERERA

Abstract. We survey some recent results concerning the use
of non-stable K−theoretic methods to efficiently analyse the

ideal structure of multiplier algebras for a wide class of C∗-
algebras having real rank zero and stable rank one. Some

applications of these results are delineated, showing a high
degree of infiniteness of these objects.

Introduction

In the classification of C∗-algebras, K−Theory plays an eminent
rôle which was already apparent from Elliott’s pioneering work on
AF−algebras. In a rather expository manner, we start by recalling
in Section 1 the concepts of K0(A) (along with its order structure)
and K1(A), for a C∗-algebra A. After a brief overview on the classi-
fication in general in Section 2, we turn our attention to non-stable
K−Theory and its relation with ordered monoids. This is accom-
plished in Sections 3 and 4. Thus, for a wide class of non-unital sim-
ple C∗-algebras with real rank zero and stable rank one, we obtain
a representation of the monoid of isomorphism classes of projections
of their multiplier algebras (Theorems 4.2 and 4.3). With this repre-
sentation at hand, the lattice of order-ideals in this monoid, known
to be crucial for understanding the ideal structure of the multiplier
algebra, can be analysed in detail. We show in Section 5 how a rich
ideal structure in the multiplier algebra emerges in terms of the scale
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and its topological properties. The techniques introduced can also
be used in Section 6 to compute the stable rank of the multiplier al-
gebra and to examine the more general concept of extremal richness,
a notion recently introduced by Brown and Pedersen in [15].

1. Construction of K−Theory for C∗-algebras.

In this section, we shall describe the construction of the K−groups
for a given C∗-algebra A, with special emphasis on K0, since this will
be more relevant for our later discussion. (A much more complete
discussion can be found in [9], [56] or [39].)

Let A be a (unital) C∗-algebra. We say that two projections (i.e.
self-adjoint idempotents) p and q in A are Murray-von Neumann
equivalent provided that there exists an element w in A such that p =
ww∗ and w∗w = q. Denote by M∞(A) the directed union of Mn(A)
under the maps Mn(A) → Mn+1(A) given by x 7→ diag(x, 0). We say
that two projections p and q in M∞(A) are Murray-von Neumann
equivalent if they are equivalent in a suitable matrix algebra over A.
It is easy to see that Murray-von Neumann equivalence is indeed an
equivalence relation among projections in M∞(A).

For a projection p in M∞(A), denote by [p] its equivalence class,
and denote by V (A) the set of all equivalence classes of projections
in M∞(A). This is an abelian monoid under the operation [p]+[q] =
[diag(p, q)]. In constructing K0, we form a group out of V (A). Since
projections in A need not satisfy any cancellation law, we define
the cancellative monoid V (A)c associated to V (A) by moding out
by the following equivalence relation: x ∼ y in V (A) if and only if
x + z = y + z, for some z in V (A). Now the addition in V (A)c is
defined by x + y = x + y. This new monoid is (by construction) a
cancellative one, so after adding formal inverses to the elements of
V (A)c, we define the Grothendieck group of A, denoted by K0(A),
as the abelian group

K0(A) = {x− y | x, y ∈ V (A)} .

Not only is the abelian structure of K0(A) relevant for the clas-
sification programme but it is also its order structure. The op-
eration in V (A) defines a natural (translation-invariant) preorder-
ing by setting x ≤ y if x + z = y, for some z in V (A). This
preordering is referred to as the algebraic preordering. Now we
equip K0(A) with an order structure by taking as positive cone
K0(A)+ = {x− y | x ≤ y in V (A)}. Note that the order in K0(A) is
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partial (that is, K0(A)+ ∩ (−K0(A)+) = {0}) whenever A is stably
finite, meaning that xx∗ = 1 implies x∗x = 1, for any x in Mn(A)
and any n.

A relevant concept for the order structure is that of an order-unit:
if G is a partially ordered abelian group with positive cone G+, we
say that a non-zero element u in G is an order-unit provided that
for any x in G there exists n in N such that x ≤ nu. If A is a C∗-
algebra, the class of the unit 1A is an order-unit for K0(A) (and also
for V (A)).

To construct K1 we use unitaries (or invertibles). A unitary in
a C∗-algebra A is an element u in A satisfying uu∗ = u∗u = 1.
Let Un(A) denote the unitary group of Mn(A) and let Un(A)0 be
the connected component of the identity in Un(A). Then K1(A) is
constructed as the inductive limit of the quotients Un(A)/Un(A)0,
under the maps Un(A)/Un(A)0 → Un+1(A)/Un+1(A)0 given by u 7→
diag(u, 1).

If A is non-unital, we first construct the minimal unitization Ã,
which is isomorphic to A+ := A ⊕ C, equipped with the pointwise
sum and multiplication given by the rule

(a, λ)(b, µ) = (ab + λb + µa, λµ) .

The natural map π : A+ → C induces a group homomorphism π∗ :
K0(A+) → K0(C) = Z. Then, we define K0(A) = Ker(π∗). As to
K1, we just set K1(A) = K1(A+).

Both K0 and K1 are half-exact functors. Thus, given a C∗-algebra
A and a closed (two-sided) ideal I, the natural inclusion and quotient
maps induce abelian group sequences:

Ki(I) → Ki(A) → Ki(A/I) ,

for i = 0, 1, which are exact in the middle. The lack of exactness
at the endpoints can be measured by the so-called index and expo-
nential maps, which turn out to link both sequences and yield the
famous cyclic 6-term-exact sequence (see, e.g. [9], [56]):

K0(I) → K0(A) → K0(A/I)

↑ ↓

K1(A/I) ← K1(A) ← K1(I)
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2. Some applications of K−Theory to the classification
of C∗-algebras.

The common belief is that applications of K−Theory to the study of
C∗-algebras started with the work of G.A. Elliott on the classification
of AF algebras (now already a classic result) [22]. If A is a complex
∗−algebra, we say that A is ultramatricial if A = ∪nAn, where
A1 ⊆ A2 ⊆ A3 ⊆ . . . and each An is finite-dimensional of the form

An = Men,1(C)× . . .×Men,kn
(C) ,

for some natural numbers ei,j .
We say that A is AF (‘approximately finite-dimensional’) if A con-

tains an ultramatricial dense *-subalgebra. Equivalently, A is AF if
A = C∗-lim−→ An, where each An is finite-dimensional. The classifica-
tion result for AF algebras is the nicest possible one in that we are
not only able to give a complete isomorphism invariant, but also to
compute its range. To this end, we need some more definitions.

We say that a monoid M satisfies the Riesz Decomposition Prop-
erty (or that M is a Riesz monoid) provided that, whenever x ≤
y1+y2 in M , then there exist elements xi in M such that x = x1+x2

and xi ≤ yi for all i (see [57]). Accordingly, we say that a partially
ordered abelian group G is a Riesz group provided that its positive
cone G+ satisfies the Riesz Decomposition Property. Finally, we say
that a partially ordered abelian group G is unperforated if nx ≥ 0
implies x ≥ 0 for x in G and n in N (see, e.g. [32]).

Theorem 2.1. (Elliott, [22]) Let A and B be ultramatricial complex
∗−algebras. Then A ∼= B if and only if K0(A) ∼= K0(B) as ordered
groups with order-units, if and only if the AF algebras determined
by A and B are isomorphic.

If A is ultramatricial, then K0(A) is a countable Riesz, unperfo-
rated group. Conversely, if G is a countable Riesz unperforated group
with order-unit u, then there exists a unique ultramatricial algebra
A and an ordered group isomorphism K0(A) ∼= G sending [1A] to u.

The next instance of interest was directed to understanding the
intrinsic nature of an AF algebra. Different constructions suggested
that the only obstructions for being AF were of K−theoretic nature
and consisted of:

(1) having non-vanishing K1 (while AF algebras have trivial
K1) ;
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(2) having torsion on K0 .
The efforts have been therefore concentrated on studying a new in-
variant, K∗ := K0⊕K1, and considering eventually the trace space of
the algebra. This Classification Programme, known as “Elliott’s Pro-
gramme”, addresses the class of separable, nuclear C∗-algebras with
real rank zero (which properly contains the class of AF algebras),
with possibly some finiteness conditions such as stable finiteness.

The notion of real rank for a C∗-algebra was developed by Brown
and Pedersen in 1991 (see [14]) as a non-commutative dimension
theory for C∗-algebras (more suitable than the topological stable
rank – see below), in the sense that the real rank of a commutative
C∗-algebra A = C(X) is exactly dim X, the covering dimension of
the space. The class of C∗-algebras best understood so far is the
class of “zero-dimensional” ones: we say that a unital C∗-algebra A
has real rank zero, and we write RR(A) = 0, provided that every
self-adjoint element can be approximated arbitrarily well by self-
adjoint, invertible elements. In case A is not unital, we say that
A has real rank zero provided that the minimal unitization Ã of A
has real rank zero. A number of equivalent formulations include the
following result (see [17], [11], [14], and also [46]):

Proposition 2.2. A C∗-algebra A has real rank zero if and only if
for any self-adjoint element x in A there exists a sequence of com-
muting projections en in xA such that x = lim

n
enx.

Before attempting a large scale classification result, the first task
consisted of generalizing the class of AF algebras in a natural way.
Näıvely, an AF algebra can be written as an inductive limit of alge-
bras of the form:

Men,1(C(∗))× . . .×Men,kn
(C(∗)) ,

where C(∗) = C(∗,C) = C. One first step is to generalize this to
other spaces, thus taking into account the class of AH algebras over
a compact Hausdorff space X, which are limits (in the category of
C∗-algebras) of algebras of the form

Men,1(C(X))× . . .×Men,kn
(C(X)) .

As follows from work of Elliott and Evans ([26]), the irrational
rotation algebras Aθ are AH algebras over the circle which are not
AF (since K1(Aθ) = Z2). Recall that given an irrational θ, the
irrational rotation algebra Aθ is defined as the universal C∗-algebra
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generated by unitaries u and v such that uv = e2πiθvu. (Other
examples of simple algebras arise from the work of Goodearl, see
[36].) The next theorem is an amalgamation of various results that
can be found in [25], [54], [29].

Theorem 2.3. If all the involved spaces are either circles (Elliott),
graphs (Su), or spheres (Elliott, Gong, Lin, Pasnicu), and if the
limit has real rank zero, then K∗ = K0⊕K1, endowed with a certain
order, is a complete isomorphism invariant.

In all of the cases above, the group K∗, endowed with a certain
order, satisfies a weaker form of unperforation (that allows torsion).
In the simple case, this is equivalent to asking for strict unperforation
on V (A) (see Section 3).

These results still leave (at least) three open questions:

(1) is K−Theory a complete invariant for AH algebras?
(2) decide whether a stably finite, separable, nuclear C∗-algebra

with real rank zero is AH .
(3) what can we say if the limits above don’t have real rank

zero?

In recent years, striking progress has been made towards the solution
to these questions. Also, the class of inductive limits considered has
been considerably enlarged. Some of these recent results can be
found in [20], [27], [12], [28] (see also [10]).

3. Non-stable K−Theory. Multiplier algebras.

Despite these good results, it might happen that K−Theory alone
is not powerful enough for such a classification purpose. For exam-
ple, Goodearl constructed in [36] a separable unital and stably finite
C∗-algebra with real rank zero, and with the same K−Theory as an
AF , but without being AF itself. (That C∗-algebra is not AH ei-
ther, so that gives a negative answer to our second question above.)
This strongly suggests that stable finiteness might be too mild a
hypothesis, hence a somewhat stronger requirement, such as stable
rank one, seems to be needed. We say that a unital C∗-algebra A
has (topological) stable rank one, in symbols sr(A) = 1, provided
that the invertible elements of A are dense in A. In case A is not
unital, then we say that A has stable rank one if Ã has stable rank
one (see [52]). As the notation indicates, there are higher values
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of stable rank, which have different implications in K−Theory. We
shall address this issue later in Section 6.

In the presence of real rank zero, stable rank one can be read in
K0(A) by saying that the monoid K0(A)+ is exactly V (A). This
is equivalent to having cancellation on V (A) (see [11, Proposition
III.2.4]). We can take this as a motivation to study the monoid
V (A) rather than K0(A) for C∗-algebras that might not have stable
rank one; in fact, the construction of K0(A) involves a stabiliza-
tion procedure that “disguises” relations among projections. An-
other fact supporting this point of view is that, if only real rank
zero is assumed on A, then V (A) is a Riesz monoid (by a result of
Zhang, in [60]). However, this property can be lost in the passage
to K0(A), as in fact is in some of the examples obtained by Good-
earl ([36]). This is the general idea behind what has been lately
called Non-stable K−Theory, developed and used in the 80’s and
90’s by several authors, among them Ara, Blackadar, Brown, Good-
earl, Mathieu, O’Meara, Pardo, Pedersen, Rørdam. This new setting
raises the question of determining the exact nature and properties of
relations of order and equivalence among projections. One important
ingredient is the somewhat technical notion of strict unperforation.
In detail, an abelian monoid M is said to be strictly unperforated
if whenever nx + z = ny, for some x, y and z in M with z 6= 0
and n in N, then x + w = y, for some w 6= 0. If A is a simple C∗-
algebra, then V (A) is strictly unperforated if and only if K0(A) is a
weakly unperforated group (see [9], [24], [35]). There are no exam-
ples known among simple C∗-algebras with real rank zero and stable
rank one such that V (A) is not strictly unperforated, being therefore
quite a natural condition to require (since it holds conceivably in all
cases). We remark that, for a unital simple C∗-algebra A with real
rank zero, V (A) is unperforated if and only if A has (stable) strict
comparability (see [48, Corollary 3.10]), in the sense of [8].

The class that we will subsequently focus on will be the class N of
all simple, σ−unital, non-elementary C∗-algebras A with real rank
zero, stable rank one and with V (A) strictly unperforated. This class
strictly contains the class of AF algebras, for which a considerable
amount of work has been done in recent years.

We do not assume the algebras A in our class to be unital. In
fact, nowadays, and usually under a growing K−theoretic influence,
the interest is centered on non-unital C∗-algebras and hence in their
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unitizations. From this point of view, the multiplier algebra of a C∗-
algebra has taken an increasingly important rôle (see, for example,
[18]).

The multiplier algebra M(A) of a C∗-algebra A can be character-
ized in several ways. It is the largest unital C∗-algebra that contains
A as an essential ideal. If we represent A acting non-degenerately
on a Hilbert space H, then M(A) is the idealizer of A inside B(H).
That is,

M(A) = {x ∈ B(H) | xA, Ax ⊆ A} .

The corona algebra is defined as the quotient M(A)/A. Among the
most basic examples of multiplier algebras we have that M(C0(X)) =
Cb(X) = C(βX) (where βX is the Stone-Čech compactification of
X); if H is a Hilbert space, then M(K(H)) = B(H).

In this last example, the Calkin algebra B(H)/K(H) is simple,
and that both B(H) and K(H) have real rank zero. For the wide
class of σ−unital C∗-algebras A having real rank zero and stable rank
one, a sufficient condition to ensure that their multiplier algebras
M(A) have real rank zero is that K1(A) = 0, as proved by Lin in
[44, Theorem 10]. In general, though, it is not true that if a (non-
unital) C∗-algebra A has real rank zero, then its multiplier algebra
M(A) also has real rank zero, even if K1(A) = 0 and the condition of
stable rank one is dropped (see [45]). The vanishing of K1 is merely
a necessary condition for M(A) to have real rank zero in case A is
stable (see [61]).

The study of multiplier algebras has been a common objective
pursued by several authors, among them Ara, Brown, Elliott, Good-
earl, Higson, Lin, Mathieu, Rørdam and Zhang (see, [21], [23], [13],
[41], [58], [59], [60], [42], [43], [38], [53], [62], [63], [64], [35], [2]).

Concentrating on the multiplier algebra of a C∗-algebra A in
the class N defined before, we wish to measure its complexity by
analysing the intricacy of its ideal structure. The problem we will
focus on (in the next two sections) is the following:

Question: What are the ideals of M(A)/A, for A in N?
In some of the known results (especially for AF algebras) concern-

ing the lattice of ideals, no attention seems to have been directed to
giving an effective description of this lattice. One of our objectives is
to provide a technique which helps to accomplish such a description.
This is based on formulating the problem in a more general context,
of a monoid-theoretical nature, and work it out with that level of
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generality. One benefit of this approach is that we obtain simpler
proofs and get some intuition on how a global picture of the ideal
structure of M(A) could be delineated. Further applications of our
techniques can be found in (non-commutative) Ring Theory: this
general framework allows to give a rather satisfactory description of
multiplier rings of von Neumann regular rings (see [3], and also [4]).

4. Using monoids to identify ideals.
Representation results.

Let M be an abelian monoid. As in Section 1, we endow M with the
algebraic preordering. An order-ideal of M is a submonoid S of M
such that, whenever x ≤ y, and y ∈ S, then x ∈ S (see [5]). Given
an order-ideal S of a monoid M , we can form the quotient monoid as
in [5], moding out by the following equivalence relation: if x, y ∈ M ,
write x ∼ y if and only if there exist elements z and w in S such
that x + z = y + w. Denote by M/S the quotient modulo ∼, and
define an addition of equivalence classes by [x] + [y] = [x + y], for x
and y in M . Observe that if I is a closed ideal of a C∗-algebra A,
then V (I) is naturally an order-ideal of V (A). We shall use L(M)
to denote the lattice of order-ideals of M , and Lc(A) to denote the
lattice of closed ideals of A. Results due to Zhang allow to show the
following:

Theorem 4.1. ([60, Theorem 2.3]) Let A be a σ-unital (non-unital)
C∗-algebra with real rank zero. Then the map that assigns to each
closed ideal I of M(A) the order-ideal V (I) of V (M(A)) furnishes a
lattice isomorphism between Lc(M(A)) and L(V (M(A))).

In view of this result, we center our efforts in studying the lattice
L(V (M(A))), and to do so we first relate the monoid V (M(A)) to
the monoid V (A). The underlying idea is the following: if p is a
projection in M(A), we look at the projections in A that lie “below”
p in a suitable sense. A precise formulation of this is given by the
notion of an interval in a monoid (see [33], [37]).

An interval in an abelian monoid M is a non-empty subset I of
M that is upward directed and order-hereditary (that is, whenever
x ≤ y and y ∈ I, then x ∈ I). If there exists an increasing sequence
(xn) in M such that I = {x ∈ M | x ≤ xn for some n}, then we say
that I is countably generated (see [48]).
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Define D(A) = {[p] ∈ V (A) | p is a projection in A}, for any C∗-
algebras A. If A has an approximate unit consisting of an (increas-
ing) sequence of projections (en), then D(A) is an interval, countably
generated by the sequence ([en]).

Assume now that A is σ−unital, with real rank zero and stable
rank one. If e is a projection in Mn(M(A)), for some n in N, denote
by

θ(e) = {[p] ∈ V (A) | p is a projection in eMn(M(A))e} .

Taking into account the fact that the hereditary subalgebra eMn(A)e
of Mn(A) is σ−unital ([35, Lemma 1.3]), with an increasing approx-
imate unit (en) consisting of projections ([61, Proposition 1.2]), we
see that θ(e) is countably generated. In fact,

θ(e) = {[p] ∈ V (A) | p . ek for some k} .

The monoid-theoretic version of [35, Theorem 1.10] gives us the
following:

Theorem 4.2. ([50, Theorem 2.4]) Let A be a σ−unital C∗-algebra
with real rank zero and stable rank one. Then there exists a monoid
isomorphism from V (M(A)) onto the abelian monoid WD

σ (V (A))
whose elements are those countably generated intervals I in V (A)
for which there exist n in N and a countably generated interval J in
V (A) such that I +J = nD, where D = D(A). This isomorphism is
defined mapping every [e] in V (M(A)) to θ(e), and it is normalized
by θ(1M(A)) = D.

This result constitutes the first step towards the analysis of the
monoid V (M(A)), for a C∗-algebra A in the class N introduced in
the previous section. Recall that one technical assumption for A in
this class consists of requiring that V (A) is strictly unperforated.
This provides a useful tool to analyse the ordering on the monoid
via the natural representation on the state space which we describe
below.

Let K be a compact convex set. As usual, cf. [32], we use Aff(K)
to denote the group of all affine continuous real-valued functions on
K. We denote by LAff(K) the monoid of all affine and lower semi-
continuous functions on K with values in R∪ {+∞}. Let LAffσ(K)
be the submonoid of LAff(K) whose elements are pointwise suprema
of increasing sequences of affine continuous functions on K. The use
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of the superscript + (respectively, ++) will always refer to positive
(respectively, strictly positive) functions.

Let M be a monoid, and let u in M be an order-unit. A (nor-
malized) state on M is a monoid homomorphism s : M → R+

such that s(u) = 1. We denote the set of (normalized) states by
Su := St(M, u). There is a natural representation map, given by
evaluation:

φu : M → Aff(Su)+, φu(x)(s) = s(x) .

Let A be a C∗-algebra in N , and fix a non-zero element u in
V (A) (which will be an order-unit since A is simple). Let d =
supφu(D(A)), and note that d ∈ LAffσ(Su)++. We define the fol-
lowing semigroup:

W d
σ (Su) = {f ∈ LAffσ(Su)++ | f + g = nd

for some g in LAffσ(Su)++ and n in N} .

Consider now the set V (A) t W d
σ (Su), where we use t to denote

disjoint union of sets. We endow this set with a monoid structure
by extending the natural operations in both V (A) and W d

σ (Su), and
by setting x + f = φu(x) + f , for x in V (A) and f in W d

σ (Su).
It is not difficult to see that this is a well-defined operation, that
x + f ∈ W d

σ (Su) and that d is an order-unit of M tW d
σ (Su).

The next result is the key we need in order to effectively examine
the ideal structure of multiplier algebras of C∗-algebras lying in the
class N . Its proof uses Theorem 4.2 as an important ingredient.

Theorem 4.3. ([50, Theorem 3.9]) Let A be a C∗-algebra in N .
Fix a non-zero element u in V (A) and set d = sup φu(D(A)). Then
there is a monoid isomorphism

ϕ : V (M(A)) → V (A) tW d
σ (Su) ,

such that ϕ([p]) = [p] if p ∈ A and ϕ([p]) = sup{φu([q]) | [q] ∈
V (A) and q . p}, if p ∈ M(A) \A. This isomorphism is normalized
by ϕ([1M(A)]) = d.

The function d in the previous result is referred to as the scale of
the algebra A (cf. [41], [42]). This important fact provides a (rather
systematic) procedure to analyse the lattice of ideals of multiplier
algebras. It is in fact our next purpose to exploit this technique, that
allows for new results as well as new insights into work previously
done for AF algebras.
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5. Ideals in multiplier algebras.

In the current section, we wish to examine the interplay between the
topological properties of the scale d and the algebraic information
of M(A)/A. It is natural to split our study into four cases, namely
distinguishing whether the scale is continuous, finite, bounded or
unbounded. By definition, and in contrast with [41], we say that A
has finite scale provided that d|∂eSu

is a finite function. Observe that
this is different than requiring d be globally finite, since this would
immediately imply that d is globally bounded (see, e.g. [50, Lemma
4.4]). This shows how a new ideal structure, previously unknown
even for AF algebras, opens up.

The question of determining when the corona algebra is simple has
been considered in different instances (e.g. [41], [60], [42]), and was
completely solved in case A is simple and separable ([42, Theorem
2.10]).

Theorem 5.1. ([42]) If A is a (non-unital) simple and separable
C∗-algebra, then M(A) has a unique smallest closed ideal L(A) that
properly contains A. Moreover, M(A)/A is simple if and only if A
is elementary or if the scale is continuous.

To illustrate the use of our techniques, we outline a proof of this
result in case A belongs to the class N (see also the proof of [50,
Proposition 4.1]). Fix any non-zero element u in V (A). Let L(A) be
the unique closed ideal of M(A) such that V (L(A)) is isomorphic to
L := V (A)tAff(Su)++ under the isomorphism given in Theorem 4.3
(and using Theorem 4.1). Since sr(A) = 1 and V (A) 6= 0, we see that
K0(A) is non-zero and partially ordered, whence Su = St(V (A), u)
is non-empty. Thus L properly contains V (A). Now, if I is any
order-ideal that properly contains V (A), pick an element f in I such
that f /∈ V (A), and take any g in Aff(Su)++. Since f is lower
semicontinuous and g is continuous, there is a natural number n
such that g ¿ nf . Writing f = sup fm, where (fm) is an increasing
sequence in Aff(Su)++, if follows by compactness (of Su) that there
exists l in N such that g ¿ nfk for all k ≥ l. Thus nf − g =
supk≥l(nfk − g) ∈ LAffσ(Su)++, and therefore g ≤ nf in W d

σ (Su).
Since I is an order-ideal, we conclude that g ∈ I whence L ⊆ I.

Finally, observe that M(A)/A is simple if and only if L(A) =
M(A), that is, Aff(Su)++ = W d

σ (Su). And this is clearly equivalent
to continuity of d. This completes the proof of the theorem.
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The next result deals with the algebras with finite scale, and at
the same time answers (in the affirmative and in a wider context)
the following question posed by Goodearl in 1996 ([35, Section 16]).
Recall that a closed ideal I in a C∗-algebra A is said to be stably
cofinite provided that A/I is a stably finite C∗-algebra.
Question: Let A be a C∗-algebra in N such that RR(M(A)) = 0.
Let I be the smallest stably cofinite closed ideal of M(A). Is I =
L(A)?

Theorem 5.2. ([50, Theorem 4.7]) Let A be a separable C∗-algebra
in N . Then A has finite scale if and only if V (M(A))/V (L(A)) is
cancellative. If, further, RR(M(A)) = 0, then A has finite scale if
and only if sr(M(A)/L(A)) = 1.

In [7, Theorem 4.8], Blackadar characterized those AF algebras
with bounded scale. The same criterion holds in our setting, thus
extending Blackadar’s result:

Theorem 5.3. (cf. [50, Theorem 5.7]) Let A ∈ N . Then A has
bounded scale if and only if A is algebraically simple.

Now we wish to study the lattice of ideals of M(A) for algebras
with unbounded scale. To this end, we say that a state s in Su is
infinite provided that d(s) = ∞.

We first consider the case when there are finitely many infinite
extremal states. Observe first of all that we are restricting our at-
tention only to the extreme boundary. Secondly, we are not requiring
that the extreme boundary is finite but that there is a finite number
of extreme points satisfying a given property. The case where A is
AF and its state space is finite was considered by Elliott, Lin, Hig-
son and Rørdam among others ([23], [41], [38]). In particular, Lin
showed that in that situation the ideal structure of M(A)/A can be
completely described. A similar model can be adopted in our current
setting, in that our methods completely describe the ideal lattice of a
quotient of M(A)/A, giving a new insight into Lin’s work, as follows.

Proposition 5.4. ([50, Proposition 6.1]) Let A be a separable C∗-
algebra in N . There exists a unique closed ideal Ifin(A) that properly
contains A and it is maximal among the ideals I of M(A) such that
V (I)/V (L(A)) is cancellative. It can be characterized by the property

V (Ifin(A)) = V (A) t {f ∈ W d
σ | f|∂eSu

is finite} .
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If, further, M(A) has real rank zero, then Ifin(A)/L(A) is the largest
closed ideal of stable rank one in M(A)/L(A).

Recall that a projection p in a C∗-algebra A is said to be infinite
provided there exists a projection q in A such that q < p and q ∼ p.
A simple C∗-algebra A is said to be purely infinite if every non-zero
hereditary subalgebra contains an infinite projection (see [19], and
also [58]).

Theorem 5.5. (see [50, Theorem 6.3, Proposition 6.5, Theorem
6.6]) Let A be a separable C∗-algebra in N . Fix a non-zero element
u in V (A). Let ℵ be the cardinal of infinite extremal states in Su.

(a) If ℵ = n < ∞, then M(A)/Ifin(A) has exactly 2n closed
ideals, of which exactly n are maximal, and exactly n are
minimal.

(b) If ℵ is infinite, then M(A)/Ifin(A) contains at least ℵ max-
imal different closed ideals.

Moreover, for any such ideal J/Ifin(A), the non-zero projections in
M(A)/J are infinite; and if J is maximal, then M(A)/J is a purely
infinite simple C∗-algebra.

Despite these positive results, the intricacy of the ideal lattice of
M(A) is far from being completely understood. There are exam-
ples of C∗-algebras A in N (even among AF algebras) such that
M(A)/L(A) contains an uncountable family of different (proper)
closed ideals that form a chain with respect to inclusion (in fact,
these ideals can be parametrized by the open interval (0, 1)) – see
[50, Theorem 6.8]. We give another example below that exhibits a
similar behaviour.

The representation technique can be refined if the extreme bound-
ary of Su is a compact Hausdorff space. This occurs in several in-
stances, and also allows for some new constructions. In this partic-
ular situation, restriction of the functions in W d

σ (Su) to the extreme
boundary of Su yields a monoid isomorphism:

V (M(A)) ∼= V (A) tW d
0 (Su) ,

where now W d
0 (Su) consists of all f ∈ L(∂eSu)++ with the property

that f+g = nd0 for some n and some g in L(∂eSu)++, L(∂eSu) is just
the semigroup of lower semicontinuous functions on ∂eSu with values
on R∪{+∞}, and d0 is the restriction of d to the extreme boundary
of Su. What is noticeable about this fact is that the information
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is now stored in the continuity, rather that in the affinity of the
functions involved.

For algebras with bounded scale, a especially rich ideal structure
has been discovered in [35, Corollary 16.7]. We take this opportunity
to offer an example showing that a similar pattern is also present in
the unbounded scale situation. Although the existence of the family
of ideals announced in the example below can be drawn from results
in [49], our computations provide a direct approach and give a better
description of the ideal structure.

If X is a locally compact topological space and f ∈ Cb(X,R),
then f can be uniquely extended to a function fβ in C(βX,R), by
[31, Theorem 6.5]. In fact, this extension defines a ring isomorphism
between Cb(X,R) and C(βX,R), by [31, 6.6 (b)].

Example 5.6. There exists a non-unital, simple, separable AF al-
gebra A whose multiplier algebra M(A) contains uncountably many
maximal closed ideals between L(A) and Ifin(A).

Proof. The method of proof used is partially based on that of [35,
Example 7.3, Corollary 7.4] (see also [50, Example 4.6]). Let X =
[0, 1], and let G be a countable dense subgroup of C(X,R) that
contains the constant function 1. We equip G with the strict order,
so that G+ = {f ∈ G | f À 0} ∪ {0}. Let M = G+, a cancellative
simple monoid that satisfies the Riesz decomposition property and
is conical (that is, the set of non-zero elements in M is closed under
addition). Note that 1 is an order-unit for M . Set S1 = St(M, 1),
and note that ∂eS1 is homeomorphic to X. Let d : X → R++∪{+∞}
be the lower semicontinuous function defined by d(x) = 1/x, for all
x in X. Since ∂eS1 is a compact space, we can extend d to an affine
and lower semicontinuous function on S1, which we call d again (see
[35, Lemma 7.2]). Let D = {f ∈ M | f ¿ d}. Then D is a non-
zero interval such that sup φ1(D) = d. By the non-unital version
of Elliott’s Theorem (see [22]), there exists a (non-unital) separable,
simple AF algebra A such that K0(A) ∼= G, and this isomorphism
takes D(A) to D. Therefore V (A) = K0(A)+ ∼= M , and so by the
remarks preceding this example we have a monoid isomorphism

ϕ : V (M(A)) ∼= V (A) tW d
0 (S1) .

Denote Ifin = ϕ(V (Ifin(A))) and L = ϕ(V (L(A))). With this no-
tation, we have

Ifin = M t {f ∈ W d
0 (S1) | f(0) < +∞} and L = M t C[0, 1]++.
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Let Ib(A) be the unique closed ideal of M(A) with ϕ(V (Ib(A))) =
M t Eb, where Eb = {f ∈ W d

0 (S1) | f is bounded}. Evidently then
L ⊆ Ib ⊆ Ifin.

Let f ′ in C[0, 1]++ be a continuous function such that f ¿ d.
Set f(x) = f ′(x) if x 6= 0 and define f(0) = ε < f ′(0). Then the
function g := d−f is lower semicontinuous and strictly positive, and
f + g = d. Thus f ∈ W d

0 (S1), and this shows that the inclusion
L ⊆ Ib is strict.

Now, set d′(x) = d(x) if x 6= 0, and d(0) = 1. Then d′ ∈ L[0, 1]++

and satisfies d + d′ = 2d. Hence the inclusion Ib ⊆ Ifin is also strict.
It is clear that Ifin is a proper order-ideal of M tW d

0 (S1).
We now describe the quotient Ib/L. Denote by ι : {0} t Eb → Ib

the natural inclusion. Observe that ι({0} t C[0, 1]++) ⊂ L, and
hence we can define a monoid homomorphism:

ι : ({0} t Eb)/({0} t C[0, 1]++) → Ib/L ,

in the natural way. It is easy to see that ι is indeed an isomorphism.
Denote by B = Cb((0, 1],R) the ordered vector space of all bound-

ed, real valued, continuous functions defined on (0, 1] and let C =
{f ∈ B | lim

t→0
f(t) = 0}, which is a convex subgroup of B. Define

ς : ({0} t Eb)/({0} t C[0, 1]++) → B/C

by setting ς(0) = 0 and ς([f ]) = [f|(0,1] − f(0)]. Note that ς is a
monoid homomorphism, and that ς(x) = 0 if and only if x = 0.
We now show that ς is injective. Assume that f, g ∈ Eb for which
there exist functions h1, h2 in C such that f|(0,1] − f(0) + h1 =
g|(0,1] − g(0) + h2. Since (f − f(0) − g + g(0))|(0,1] = h2 − h1 and
lim
t→0

(h2 − h1)(t) = 0, we see that in fact f − g is continuous on [0,1].

Thus, there exist continuous functions l1 and l2 in C[0, 1]++ such
that f−g = l2−l1. Therefore [f ] = [g] in ({0}tEb)/({0}tC[0, 1]++),
so ς is injective, as claimed.

Let f ∈ Eb. We claim that f|(0,1]−f(0) ∈ B++C. Define an upper
semicontinuous function g on [0, 1] by g(0) = f(0) and g(x) = 0 for
x 6= 0. Then g ≤ f and hence by the Sandwich Theorem (e.g. [30,
1.7.15]) there exists a function h in C([0, 1],R) such that g ≤ h ≤ f .
Note that f(0) = h(0). Let k := h|(0,1] − h(0). Then k ∈ C and
(f|(0,1]− f(0))− k = f|(0,1]−h|(0,1] ≥ 0, whence (f|(0,1]− f(0))− k ∈
B+, establishing the claim. Therefore

ς(({0} t Eb)/({0} t C[0, 1]++)) ⊆ (B+ + C)/C .
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To see that in fact we have equality, take h in B+. Then there exists
f in L[0, 1]++ such that f|(0,1] = h + 1 and f(0) = 1. Since h ≤ m
for some m in N and d ≥ 1, there exists a natural number n such
that f ¿ nd. Define g(x) = (nd − f)(x) if n 6= 0 and g(0) = ∞.
Then g ∈ L[0, 1]++ and f + g = nd, whence f ∈ W d

0 (S1). Note that
in fact f ∈ Eb and ς([f ]) = [f|(0,1] − 1] = [h].

We have proved that the monoids Ib/L and (B++C)/C = (B/C)+

are isomorphic. Recall that B is isomorphic to C(β(0, 1],R) by ex-
tending each function f in B to fβ . If x ∈ β(0, 1], define Ix = {f ∈
B | fβ(x) = 0}. Then (Ix)x∈β(0,1] is a family of different maximal
ideals of B, by [31, Theorem 7.2]. Moreover C ⊆ Ix for any element
x in β(0, 1] \ (0, 1]. Finally, note that β(0, 1] \ (0, 1] is uncountable.
Indeed, since (0, 1] ∼= R+ ∼= R−, we have that

β(0, 1] \ (0, 1] ∼= βR+ \ R+ ∼= βR− \R− ,

and
βR \ R ∼= (βR+ \ R+) ∪ (βR− \R−) ,

according to [31, 6.10]. Finally, [55, 4.45] ensures that βR \ R
is uncountable. Therefore the group B/C contains uncountably
many different maximal ideals, which have the form Ix/C, where
x ∈ β(0, 1] \ (0, 1]. Consequently, (Ix/C) ∩ (B/C)+ are different
maximal ideals of the monoid (B/C)+, which correspond to ideals
of Ib/L (under ι ◦ ς−1), and this finishes the proof. ¤

6. Applications: stable rank and extremal richness.

In this final section, we will show further applications of the tech-
niques and results in the previous sections.

The first application refers to the computation of stable rank.
If A is a (unital) C∗-algebra, denote by Lgn(A) = {(a1, . . . , an) |
n∑

i=1

Aai = A}, where n ≥ 1. The (topological) stable rank of A is

the smallest integer n such that Lgn(A) is dense in An (or ∞ if no
such n exists). We write sr(A) = n. If A is non-unital, then by
definition sr(A) = sr(Ã) (see [52]). This number is of importance in
K−Theory since it gives an estimation of the smallest n such that
K1(A) can be “generated” by Un(A) (cf. [6]).

A well-known result of Rieffel ([52, Proposition 6.5]) ensures that
whenever a unital C∗-algebra A has two isometries with orthogo-
nal ranges, then sr(A) = ∞. This happens, for instance, when
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A = B(H), where H is an infinite dimensional separable Hilbert
space. Zhang showed ([58, Corollary 1.6]) that this is also the case
for M(A)/A, where A is σ−unital with real rank zero and continu-
ous scale. These phenomena would seem to preclude any stable rank
finiteness conditions either on M(A) or on M(A)/A. We show that
this is not the case in general, and that the scale of A is again the
main tool that provides enough information to compute the stable
rank. In particular, our techniques give a partial negative answer to
the following:

Question: (Rieffel, 1983) Are there finiteness conditions to be
imposed on M(A) (or on A itself) such that sr(M(A)) = sr(A)?

The key to the result that we present below is separativity. This is
a weak cancellation condition that can be defined in a purely monoid-
theoretical setting: an abelian monoid M is said to be separative if
whenever a+a = a+b = b+b, for a and b in M , then a = b (see [16]).
A C∗-algebra A is called separative if the corresponding monoid V (A)
is a separative monoid (see [5]). (It is also said that A has stable
weak cancellation.) The importance of this condition relies on the
fact that it provides a key to a number of cancellation problems in
(non-commutative) Ring Theory and also in Operator Algebras (see
[5]). In fact, there are no examples known of C∗-algebras with real
rank zero whose V (A)’s are not separative. Finding such an example
is one major challenge in the area.

In [5] Ara, Goodearl, O’Meara and Pardo proved that if A is a
unital separative C∗-algebra A with real rank zero, then the only
possible values for sr(A) are 1, 2 or ∞. We make use of this result
in the proof of the following:

Theorem 6.1. ([50, Theorem 7.5]) Let A be a separable C∗-algebra
in N . Then V (M(A)) is separative. If, further, M(A) has real rank
zero, then sr(M(A)) = 2 if and only A has finite but not continuous
scale, and sr(M(A)) = ∞ otherwise.

Corollary 6.2. ([50, Corollary 7.6]) Let A be a separable C∗-algebra
in N . Assume that RR(M(A)) = 0. Then sr(M(A)) = 2 if and only
if sr(M(A)/A) = 2.

So far, multiplier algebras have appeared to us as rather infinite
objects from various points of view. In particular, we see from the
last results that their stable rank will never be equal to one. The
rest of the section deals with the concept of extremal richness, which
may be regarded as a generalized stable rank one. This notion was
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introduced by Brown and Pedersen in [15] with the objective of ex-
tending the theory and results for stable rank one C∗-algebras to the
infinite case. A unital C∗-algebra A is extremally rich provided that
the quasi-invertible elements are dense in A. Here, an element x in A
is quasi-invertible if, by definition, x ∈ A−1E(A)A−1, where E(A) is
the set of extreme points of the closed unit ball of A. By [47, Propo-
sition 1.4.7], we have E(A) = {x ∈ A | (1 − x∗x)A(1 − xx∗) = 0}.
Extremal richness is well-behaved under the passage to quotients,
hereditary subalgebras (in particular, ideals), formation of matrices
and other natural constructions (see [15]). We shall consider the
following problem:

Question: Are M(A) or M(A)/A extremally rich?
This question was previously considered by Larsen and Osaka in

[40], for a variety of classes of C∗-algebras. For example, they proved
that, if A is a purely infinite simple C∗-algebra (σ−unital and non-
unital), then M(A) is extremally rich. In case A is simple, separable
and AF , and if it has a finite number of extremal (semifinite) traces,
of which at least two are infinite, then M(A)/A is not extremally
rich. If, on the other hand, A has only one infinite extremal trace,
then M(A)/A is extremally rich.

Our methods allow to solve this problem within our class N , thus
enlarging the number of instances where extremal richness of the
multiplier and corona algebras can be analysed. The approach to this
problem combines the analysis of extremal richness under extensions
(see [15] and [40]) with the description of the ideal structure of M(A)
given in the previous sections.

We shall use the notation LQTd(A) to denote the convex set of
densely defined, lower semicontinuous quasitraces on A. Denote by
K(A) the minimal dense ideal of A (see [47, Theorem 5.6.1]). If p is
a non-zero projection of A, then denote by

Qp = {τ ∈ LQTd(A) | τ|K(A)+ < ∞ and τ(p) = 1} ,

which is a weak∗ compact set if A is simple. If moreover A is
σ−unital and has real rank zero, then the natural map

α : Qp → St(V (A), [p]), α(τ)([q]) = τ(q) ,

is an affine homeomorphism. This is the semifinite version of Blacka-
dar-Handelman’s Theorem in [11, Theorem III.1.3] (see [50, Theorem
5.6] for a proof of how this case is obtained from the unital case.). We
say in this context that a quasitrace τ in Qp is infinite provided that
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sup τ(q) = ∞, where q runs over the set of projections of A (equiv-
alently, its corresponding state under the map α described above is
infinite, in the terminology of the previous section). In particular,
all the results in Section 5 can be rephrased making reference only
to quasitraces on A, instead of states on V (A). Observe in the next
results that again we are not requiring any finiteness assumption on
the cardinality of the extremal quasitraces.

Theorem 6.3. ([51, Theorem 2.12]) Let A be a separable C∗-algebra
in N , and let p be a non-zero projection in A.

(a) If A has finite scale and RR(M(A)) = 0, then M(A)/A is
extremally rich .

(b) If A has at least two infinite extremal quasitraces in Qp, then
M(A)/A is not extremally rich. In particular, M(A) is not
extremally rich .

Theorem 6.4. ([51, Theorem 3.12, Corollary 3.13]) Let A be a sep-
arable C∗-algebra in N such that RR(M(A)) = 0, and let p be a
non-zero projection in A. Suppose that A has exactly one infinite
extremal quasitrace τ in Qp. Then M(A)/A is extremally rich if and
only if the complementary face of {τ} in Qp is closed. If, further,
∂eQp is compact, then M(A)/A is extremally rich if and only if {τ}
is an isolated point in ∂eQp.

By adapting an argument of [40] to our setting, we conclude that
M(A) is never extremally rich, for a C∗-algebra A in the class N
(see [51, Proposition 3.14]).
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