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Abstract. In this paper, we use properties of nilpotent rings to reprove

an old theorem of R. Gilmer which classifies finite commutative primary

rings having a cyclic group of units.

Introduction

The following properties of primary rings are required for our
proof (see [8]). A finite ring R is primary if its set of zero divisors
forms an additive group, or equivalently, if it is an ideal. If we
denote the set of zero divisors of the primary ring R by M , then
M is the unique maximal ideal of R and hence is the Jacobson
radical of R, and is therefore nilpotent. This implies in particular
that M i ⊃ M i+1 for each non-zero M i. The quotient field R/M
is a finite field called the residue field. Thus R/M is the Galois
field GF(pt) of pt elements, where p is a prime and t a positive
integer. The quotient spaces M i/M i+1 may be regarded as vector
spaces over the residue field R/M via the action defined by

(r + M)(m + M i+1) = rm + M i+1,

for r ∈ R and m ∈ M i. Moreover, |R| = ptk for some positive
integer k. Finally, in case R is commutative, the group of units
is the direct product of the p-subgroup 1 + M and a cyclic group
of order pt − 1, that is, R∗ = (1 + M)× Cpt−1, where Cs denotes
the cyclic group of order s. Thus the group of units of a finite
commutative primary ring is cyclic if and only if the p-subgroup
1 + M is cyclic.
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In [4], it is shown that to determine the structure of the
group of units of a finite commutative ring, it is sufficient to con-
sider the primary case. In what follows, we show how the prop-
erties above can be used to obtain in a straightforward way yet
another proof of the main result in [4], namely, the theorem which
classifies finite commutative primary rings having cyclic groups
of units. We remark that a number of interesting, elementary
proofs of this result have been obtained by Ayoub, [1], Pearson
and Schneider, [7], Eldridge and Fisher, [3].

The following easily proved result is also needed.

Lemma Let n and r be positive integers and let p be a prime

integer. If p is odd, then pn−r+1 divides the binomial coefficient
(

pn−1

r

)

provided that 1 < r ≤ n − 1. If p = 2, the same result is

true if 2 < r ≤ n − 1.

Proof. We use an easily proved property of binomial coefficients,
namely, that

b

(

a

b

)

= a

(

a − 1

b − 1

)

.

Thus for r ≥ 1, we have

r

(

pn−1

r

)

= pn−1

(

pn−1 − 1

r − 1

)

.

It follows that pn−r+1 divides
(

pn−1

r

)

unless pr−1 divides r. But
as r < pr−1 if r > 1 and p is odd, and r < 2r−1 if r > 2, the
required result is clear.

We proceed to the proof of the main result of the paper.

Theorem Let R be a finite commutative primary ring with iden-

tity. R has a cyclic group of units if and only if R is isomorphic

to precisely one of the following:

• GF(pk), where p is a prime;

• Zpk , where k ≥ 2 and p is an odd prime;

• Z4;

• Zp[X ]/(X2), where p is a prime;

• Z2[X ]/(X3);
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• Z4[X ]/(2X, X2 − 2).

Proof. It is a routine exercise to check that each of the rings above
is primary and has a cyclic group of units, and that no two are
isomorphic.

Let us assume that R is a finite commutative primary ring
whose set of zero divisors is M , say, and let the characteristic of
R be pl, where p is a prime and l ≥ 1. We also assume that
the group of units R∗ is cyclic. This is equivalent to saying that
the p-subgroup 1 + M is cyclic. Since 1 + M is a multiplicative
p-group, we may suppose that

1 + M ∼= Cpn ,

for some n ≥ 0. Assume further that the residue field R/M has
order pk for some k ≥ 1. Now |M | = |1 + M | = pn and so
|R| = pk+n and Mn+1 = 0 by the nilpotency of M . If M = 0,
then R ∼= GF(pk), which is the first case above.

Suppose next that M 6= 0. We consider the different pos-
sibilities for the integer n. This will force certain restrictions on
the characteristic pl and hence on l. Consider first the case that
n = 1. Then M2 = 0. Since in this case M = M/M2 is a vector
space over the residue field, we must have

pr ≤ |M | = p.

Thus r = 1, and hence |R/M | = p and |R| = p2. Since R has
characteristic pl, M ⊇ pZpl and so p = |M | ≥ pZpl = pl−1.
It follows that l ≤ 2 and thus the characteristic of R must be
p or p2. If the characteristic is p2, then clearly R ∼= Zp2 . If
the characteristic of R is p, choose x ∈ M , x 6= 0. Then x2 ∈
M2 = 0. The set {1, x} is evidently linearly independent over
Zp and therefore forms a basis of R, as |R| = p2. Thus we have
R ∼= Zp[X ]/(X2) in this case.

Suppose now that n ≥ 2. In this case |M | ≥ p2. We claim

that if l = 1, there exists an element x ∈ M with xpn−1

6= 0. For

suppose that zpn−1

= 0 for all z ∈ M . Then the binomial theorem
implies that

(1 + z)pn−1

= 1 + zpn−1

= 1,
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and this contradicts the fact that the multiplicative group 1 + M
is cyclic of order pn. Thus our claim is established. As M is

nilpotent, the powers x, x2, . . . , xpn−1

are linearly independent
over Zp. It follows that

pn = |M | ≥ ppn−1

and therefore n ≥ pn−1. We deduce that n = p = 2. In particular,
M3 = 0 and |R| = 8. Now x2 6= 0 and x3 = 0. The linear inde-
pendence of 1, x and x2 over Z2 now implies that R ∼= Z2[X ]/(X3).

Suppose next that l ≥ 2. For convenience we will first
consider the case that p is an odd prime. Since p1 ∈ M , we have
pi1 ∈ M i for each positive integer i. Now if x ∈ M ,

(1 + x)p
n−1

= 1 + pn−1x +

(

pn−1

2

)

x2 + · · · + xp
n−1

.

Now the Lemma implies that

(

pn−1

r

)

xr ∈ Mn+1 = 0

for 2 ≤ r ≤ n − 1. Since p divides
(

pn−1

n

)

, we also have

(

pn−1

n

)

xn ∈ Mn+1 = 0

and thus
(1 + x)pn−1

= 1 + pn−1x.

Hence l ≥ n, since otherwise pn−11 = 0 and then the exponent of
1 + M is less than pn, contrary to assumption.

Consider now the principal ideal pR generated by p and sup-
pose that M 6= pR. Consider the additive group homomorphism
f : R → R given by f(x) = pn−1x. If M 6= pR, then |pR| ≤ pn−1

and so |pn−1R| ≤ p since piR ⊃ pi+1R by the nilpotency of M .
Thus

|R/ ker f | = |pn−1R| ≤ p
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and it follows that | ker f | ≥ pn+r−1 ≥ pn since r ≥ 1. But now as
ker f ≤ M , we deduce that ker f = M and hence pn−1x = 0 for
all x ∈ M , a contradiction to our earlier work. It follows therefore
that M = pR. Since M i/M i+1 is at most one-dimensional over
R/M (it is generated by pi + M i+1) and since M l−1 6= 0 and
M l = plR = 0, we have

|R| = prl = pn+r.

Since l ≥ n and Mn+1 = 0, either l = n or l = n + 1. If l = n,
then nr = n + r and so n = r = 2. But then |M | = p2 and
so M2 = 0. This would again force the exponent of 1 + M to
be less than p2, contrary to assumption. Hence l = n + 1. This
implies that (n + 1)r = n + r and therefore r = 1. Now we obtain
|R| = pn+1 and R ∼= Zpn+1 .

Finally we consider the case that l ≥ 2 (and hence n ≥ 2)
and p = 2. It follows from the Lemma that for x ∈ M ,

(1 + x)2
n−1

= 1 + 2n−1x + α2n−2x2,

where α is an odd integer. Thus l ≥ n − 1, since otherwise we
obtain a contradiction. As in the previous paragraph, we consider
the two cases M = 2R and M 6= 2R. Now if M = 2R, an
identical argument to that used in the previous paragraph shows
that R ∼= Z2n+1 . But the group of units of Z2n+1 is cyclic only if
n+1 ≤ 2. Thus n = 1, which is contrary to our hypothesis. Thus
M 6= 2R.

We now examine the situation when M 6= 2R. Suppose that
n ≥ 3. Again by the nilpotency of M ,

M ⊃ 2R ⊃ 2M ⊃ 22M ⊃ . . .

and so |2iM | ≤ 2n−i−1. Thus 2n−1M = 0 if n ≥ 2. Similarly,
2n−2M2 = 0 for n ≥ 3. Thus for n ≥ 3 and for every x ∈ M , we

see from the expansion above that (1+x)2
n−1

= 0, a contradiction.
It follows therefore that n = 2. Since l = n − 1 or n, we must
have l = 2. It follows then that 2M = 0, |M2| = 2, M ⊃ 2R ⊃ 0,
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and |M | = 4. Hence r = 1. Moreover, x6 = 0 for some x ∈ M .
Now M/M2 is a one-dimensional vector space over Z2 with basis
vector x + M2 and M3 = 0. If 2 ∈ M \ M2, then 2 ≡ x mod M2

and so x2 = 0, which is not true. Hence 2 ∈ M2 and so x2 = 2.
Hence 2x = 0 and x2 − 2 = 0. It now follows that

R ∼= Z4[X ]/(2X, X2 − 2).

Since we have considered all cases, the theorem is proved.
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