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Abstract. Let || - || be an arbitrary norm on a Banach space E. Let
B be the open unit ball of E for the norm || - ||, and let f : B — E
be a biholomorphic convex mapping such that f(0) = 0 and df(0) is
identity. We will give an upper bound of the growth of f.

1. Introduction

Let A = {z € C: |z| < 1} denote the open unit disc in the complex
plane C. Let f : A — C be a biholomorphic convex mapping with
f(0) =0 and f’(0) = 1. Then the following inequality holds :

If(z)] <

, for all z € A.
11|
It is natural to consider a generalization of the growth theorem
above to C". Let  be a domain in C™ which contains the ori-
gin in C". A holomorphic mapping f : @ — C" is said to be
normalized, if f(0) = 0 and the Jacobian matrix Df(0) at the
origin is identity. Let B™ denote the Euclidean unit ball in C™.
Let f : B" — C" be a normalized biholomorphic convex map-
ping. Then C. H. FitzGerald and C. R. Thomas [4], T. Liu [11]
and T. J. Suffridge [12] extended the upper bound above for the
growth of f to B" in C™ by using different methods and showed
that

[EIP n
If(2)]]2 < ———— for all z € B",
1—lz[l2
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where || - |2 denotes the Euclidean norm. Let

n

By={z=(a1,-..,) €C": |lzlly = QO lil?)/? < 1}

i=1
for p > 1 and
D(Pl,...,Pn) = {z = (Zl,...,Zn) S Cc" - |z1|P1 +...+|znlpn < 1}

with p1,..., pn > 1. S. Gong and T. Liu [7] gave the upper
bound above for the growth of normalized biholomorphic convex
mappings on B, and D(p1,...,p,) and H. Hamada [8] proved a
similar result on the unit ball in C" with respect to an arbitrary
norm. In this paper, we give the upper bound for the growth of
a biholomorphic convex mapping on the unit ball in a complex
Banach space as follows.

Main Theorem Let E be a complex Banach space with norm
Il - ||. Let B be the open unit ball of E for the norm || - ||, and
let f : B — E be a biholomorphic convex mapping such that
f£(0) =0 and df(0) is identity. Then

2]

I < T

for all z € B.

2. Notation and preliminaries

Let U be an open set in a complex normed space E and let F' be
a complex Banach space. Let f be a holomorphic mapping from
U to F. Then the following equation holds in a neighbourhood V'
ofzinU forx €U :

f(z)=>_ Pu(z - ), (2.1)

_df(=), 1
YT 20T g

%f(w +Cy)dC
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for any y € E \ {0} such that  + Cy € U for all ( € C with
[¢| < 1. The series (2.1) is called the Taylor expansion of f by
n-homogeneous polynomials P,, at x.

Let E be a complex Banach space with norm || - ||. Let B
be the open unit ball of E for the norm || - ||, and let f: B — E
be a biholomorphic mapping. A biholomorphic mapping f is said
to be convex if f(B) is convex.

The following theorem (the Maximum Modulus Principle)
is well-known (see, for example, Dunford and Schwartz [3]).

Theorem 2.1 Let E be a complex Banach space with norm || - ||.
Let A be the unit disc in C, and let f : A — E be a holomorphic
mapping. If there exists a point (o € A such that ||f(¢o)|| =
sup{||f(Q)|l : ¢ € A}, then ||f({)|| is constant on A.

3. Proof of Main Theorem

Let A be the unit disc in C. We take a fixed boundary point
w € dB. Let f(z) = Y.°7, Pu(2) be the expansion of f by n-

n=1
homogeneous polynomials P, in a neighbourhood V of 0 in F.

Then we have f(z) =z 4 Y., Pa(2). For ¢ € A,

F(Qw) = Cw+ Y ¢ Po(w). (3.1)
n=2
Let m > 2, m € Z be fixed. Let a = exp(2ry/—1/m). Then
m—1 m—1
F(¢makw) = > {¢ra w+Z (¢ k)" Py (w)}
k=0 k=0 n=2
m—1 oo m-—1
# a®) w+Z( a*™)¢m Py (w)
k=0 n=2 k=0
= mZCijm(w)
j=1

This is holomorphic with respect to ¢ € A. Since f(B) is convex,
we have

m—1
%kz_%fﬁaw € 1(B).
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m—

F(¢dFw)

k=0

-1 L
m
Then A(¢) is holomorphic on A. By the conditions on f,

F7H2) = 2+ O([12[).

We have
1O Pjm(w))
=1
=Y I Pjm(w) + O Y ¢ P (w)|)
j=1 j=1

= (P (w) +O(¢[*).

Theref o hol hi ing f Ad f
erefore c is a holomorphic mapping from A into E. If ¢ > 0

()
¢

is sufficiently small,

set {¢:|¢] <1—¢}. Since h(A) C B, by Theorem 2.1, we obtain

is continuous and holomorphic on the
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for all m > 2. Then we have

1F ()l < NIl + 11 ¢ Paw)|

n=2

SEE
n=2

_ L
T

_ ligw]
T [[¢ull

IN

and the proof of the Main Theorem is complete. m
Let D be a bounded convex balanced domain in a complex
Banach space E. The Minkowski function Np(z) of D is defined
by
Np(z) =inf{a >0:z € aD}

for all z € E. Then Np(z) is a norm on E. By the Main Theorem,
we obtain the following corollary.

Corollary Let D be a bounded convex balanced domain in a
complex Banach space E. let f : D — E be a biholomorphic
convex mapping such that f(0) = 0 and df (0) is identity. Then

ND(Z)
Np(f(2)) < Wp(z)

for all z € D.
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