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Abstract. We construct examples where an annihilating polynomial

produced by considering étale algebras improves on the annihilating

polynomial got in [1] by considering Galois numbers.

1. Introduction

Throughout this paper, K is a field of characteristic not equal to 2.
The Witt ring W (K) of K is an integral ring and we may consider
polynomials with integer coefficients evaluated at an element ϕ of
K. We say a polynomial p ∈ Z annihilates ϕ if p(ϕ) = 0 in
W (K).

During the last decade or so, several examples of annihilat-
ing polynomials have appeared in the literature. First, Lewis [7]
found a monic polynomial pn which annihilates any quadratic form
of dimension n. At about the same time, Conner [2], using differ-
ent methods, gave a polynomial qn of lower degree which annihil-
ates trace forms of dimension n. Beaulieu and Palfrey improved
on Conner’s results in [1]

Let L/K be a finite separable field extension, let N be the
normal closure of L over K, and let G = Gal(N/K) be the Galois
group of N over K. Using an isomorphism between the Burnside
ring of finite G-sets and the Grothendieck ring of the category of
étale K-algebras (following an approach of Dress) it was shown in
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[8] that a certain polynomial pL annihilates 〈L〉, the class of the
trace form of L over K, in the Witt ring W (K). This approach,
via étale algebras, enabled one to recover the annihilating poly-
nomials of Conner [2] and of Beaulieu and Palfrey [1] for trace
forms of field extensions. Furthermore, it was possible to recover
the polynomials of Lewis [7] which annihilate quadratic forms in
general.

This paper provides examples which show the results in [8]
are an improvement on those in [1]; for a complete exposition of
the theory, see [8].

Important terms are defined below. However, the treatment
is by no means complete, and for further information on quadratic
forms and the Witt ring one should see [9]; for field theory see [4]
or [5]; and for background on étale algebras see [6, Ch. V].

2. Quadratic forms and the Witt ring

We define the Witt ring of the field K.

Definition 2.1 A bilinear form on a finite-dimensionalK-vector
space V is a map b : V −→ K such that:

b(x+ x′, y) = b(x, y) + b(x′, y)

b(x, y + y′) = b(x, y) + b(x, y′)

b(αx, y) = b(x, αy) = αb(x, y)

for all α ∈ K and all x, x′, y, y′ in V . We say a bilinear form b is
symmetric if b(x, y) = b(y, x) for all x, y ∈ V .

Definition 2.2 A quadratic form on a finite-dimensional K-
vector space V is a map ϕ : V −→ K such that:
(i) ϕ(αv) = α2ϕ(v) for all α ∈ K and all v ∈ V ;
(ii) the map : V × V −→ K : (v, w) 7→ ϕ(v + w) − ϕ(v) − ϕ(w) is
bilinear.

Remark 2.3 There is a one-one correspondence between symmetric
bilinear forms and quadratic forms over K (when K has charac-
teristic not equal to 2).
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Definition 2.4 Two bilinear forms b1 : V1 −→ K and b2 : V2 −→
K are said to be isometric (written b1 ≃ b2) if there is a vec-
tor space isomorphism γ : V1 −→ V2 such that b2(γ(x), γ(y)) =
b1(x, y) for all x, y ∈ V1. The isometry class of a form is the set
of all forms isometric to it.

The (orthogonal) sum of forms, b1 ⊥ b2 is defined in the obvious
way via the direct sum of vector spaces

(b1 ⊥ b2)((x1, x2)(y1, y2)) := b1(x1, y1) + b2(x2, y2).

The (tensor) product of forms, b1 · b2 or b1 ⊗ b2 is defined in a
natural way on the tensor product of vector spaces V1 ⊗K V2:

(b1 ⊗ b2)((x1 ⊗ x2), (y1 ⊗ y2)) := b1(x1, y1)b2(x2, y2).

Remark 2.5 If b is a bilinear form on V and B = {e1, . . . , en} is
a basis for V , then B := (b(ei, ej)) = (bij) is called the matrix of
b with respect to the basis B. B is symmetric if and only if b is
symmetric. Then, writing

x =
n∑

i=1

eixi, y =
n∑

i=1

eiyi,

we have b(x, y) = xtBy. It can easily be shown that, provided
charK 6= 2, any symmetric bilinear form b over K can be put in
diagonal form (represented by a diagonal matrix) i.e. b : V −→ K
is isometric to a form

Kn −→ K : (x1, . . . , xn) 7→ a1x
2
1 + · · · + anx

2
n

for some elements a1, . . . , an in K. The standard notation for
such a diagonal form is

〈a1, . . . , an〉.

We write n× 〈a〉 for the n-dimensional form 〈a, a, . . . , a〉.
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Definition 2.6 A bilinear form b : V −→ K is said to be iso-
tropic if b(v, v) = 0 for some v ∈ V , v 6= 0. Otherwise b is said
to be anisotropic.

A bilinear form b : V −→ K is hyperbolic if it is isometric to
some even-dimensional form

〈1,−1, 1,−1, . . . , 1,−1〉.

The 2-dimensional form 〈1,−1〉 is called a hyperbolic plane. Thus
a hyperbolic form is (isometric to) a sum of hyperbolic planes.

Theorem 2.7 [Witt Cancellation Theorem] If ϕ, ψ1 and ψ2 are
symmetric bilinear forms with ϕ ⊥ ψ1 ≃ ϕ ⊥ ψ2, then ψ1 ≃ ψ2.

Let S be the set of all isometry classes of non-singular sym-
metric bilinear forms over K. Let the Grothendieck group G(K)
be the quotient of the free Abelian group on S by the subgroup
generated by elements of the form

{ϕ1 ⊥ ϕ2} − {ϕ1} − {ϕ2}

(where {ϕi} is the isometry class of the form ϕi, i = 1, 2). Then
addition in G(K) will correspond to the orthogonal sum of forms,
i.e.

{ϕ1 ⊥ ϕ2} = {ϕ1} + {ϕ2}.

It follows from the Witt Cancellation Theorem that the
mapping S −→ G(K) : ϕ 7→ {ϕ} is injective.

We now make G(K) into a ring, the Witt-Grothendieck ring

Ŵ (K), by using the product of forms. Then Ŵ (K) is a commut-
ative ring with identity and it can be shown that the additive

subgroup H of Ŵ (K) generated by all the hyperbolic forms is an

ideal of Ŵ (K).
Then the Witt ring of K, W (K), is defined to be the

quotient ring Ŵ (K)/H . It can be shown that the set of non-zero
elements of W (K) is in one-one correspondence with the set of
isometry classes of non-singular anisotropic forms.
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Since in characteristic not 2 there is a one-one correspond-
ence between symmetric bilinear forms and quadratic forms, we
may also regard the Witt ring as a quotient of the completion of
the additive Abelian group of isometry classes of quadratic forms.

3. Étale algebras and G-sets

A finite-dimensional commutative K-algebra A satisfying the
equivalent conditions in the following proposition is called étale:

Proposition 3.1 Let A be a finite-dimensional commutative K-
algebra. Then the following are equivalent:
(i) The symmetric bilinear form T : A×A −→ K induced by the
trace T (x, y) = TrA/K(xy) for all x, y ∈ A is non-singular;
(ii) A is isomorphic to a direct product L1×· · ·×Lr for some finite
separable field extensions L1,. . . , Lr of K (and in particular is a
direct product of copies of K when K is itself separably closed).

Definition 3.2 For a finite group G, let Ĝ be the category of
G-sets, whose objects are G-sets (finite sets on which G acts by
permutations from the left) and whose morphisms are G-maps,
i.e. for any two G-sets S and T we have

HomG(S, T ) = {ϕ : S −→ T | ϕ(gs) = gϕ(s) for all s ∈ S, g ∈ G}.

The set Ω(G)+ of isomorphism classes of G-sets has the structure
of a commutative semi-ring with cancellation (with addition and
multiplication being given by disjoint union and Cartesian product
respectively of G-sets). We define the Burnside ring Ω(G) to be
the ring completion via the usual Grothendieck construction.

For a G-set S, let [S] denote the element in Ω(G) represen-
ted by S.

Henceforth G will be the Galois group of a Galois extension
N of K. Let ÉtK,N be the category whose objects are étale K-
algebras A for which A ⊗K N is isomorphic to a direct product
of a finite number of copies of N , and whose morphisms are K-
algebra homomorphisms. Let Ω(K,N) be the Grothendieck ring

of ÉtK,N .

Remark 3.3 Ω(G) and Ω(K,N) are isomorphic because the

categories Ĝ and ÉtK,N are anti-equivalent via the functors
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Ĝ −→ ÉtK,N : S 7→ HomG(S,N) and ÉtK,N −→ Ĝ : A 7→
HomK−Alg(A,N) (under this correspondence simple G-sets–i.e.
indecomposable G-sets–correspond to simple algebras i.e. fields,
disjoint union of G-sets corresponds to direct product of algebras,
and Cartesian product of G-sets corresponds to tensor product of
algebras).

Example 3.4 If H is any subgroup of a finite group G, then the
set G/H of left cosets xH ⊆ G, where x ∈ G, is naturally a G-set,
with the action G×G/H −→ G/H defined by (g, xH) 7→ gxH .

Definition 3.5 Let S and T be G-sets, and let U be a subgroup
of G. Let

SU = {x ∈ S : gx = x for all g ∈ U}.

We define
ϕT (S) = |HomG(T, S)|

and
ϕU (S) = |SU | = |HomG(G/U, S)|.

Remark 3.4 A simple G-set is a set of left cosets G/U with the
natural left action, U being a subgroup of G. The G-sets G/U
and G/V are isomorphic if and only if U and V are conjugate
subgroups. Since ϕU = ϕT for T = G/U and ϕT1∪̇T2

= ϕT1
·ϕT2

, it
is enough to work only with the invariants ϕU (resp. the invariants
ϕT ). We pass freely between notations.

Lemma 3.7 For any two simple G-sets S and T with S ∼= G/U
we have

ϕS(S) = |AutG(S)| = [NG(U) : U ]

and
ϕS(S) | ϕT (S).

4. Annihilating polynomials

Let L/K be a finite separable field extension, with [L : K] = n.
Then (see [4, Theorem 13.6]) L is a simple extension of K and we
may write L = K(ϑ1).
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Let f ∈ K[t] be the minimal polynomial of ϑ1 over K and
let N be the normal closure of L over K. Then we may take N to
be the splitting field of f over K and we may write f as a product
of linear polynomials in N [t], namely,

f =

n∏

i=1

(t− ϑi).

Let G be the Galois group Gal(N/K) of N over K and let H
be the subgroup of G whose fixed field is L, by the usual Galois
Correspondence.

Definition 4.1 Let E be an extension field ofK withK ≤ E ≤ N .
We define

ϕE(L) := number of components of E ⊗K L isomorphic to E.

Now E ⊗K L is an étale K-algebra (étale algebras remain étale
under extension of scalars) and, denoting by (f) the ideal in K[t]
generated by f ,

E ⊗K L ∼= E ⊗K
K[t]

(f)
∼=
E[t]

(f)
,

which, by the Chinese Remainder Theorem, decomposes into a
Cartesian product of field extensions of K, corresponding to the
factorization of f into a product of irreducibles in K[t]. Since
E[t]/(t − α) is isomorphic to E for any α ∈ E, we get, for each
root ϑi of f in E, a component of E ⊗K L which is isomorphic to
E.

Let R = {ϑ1, ϑ2, . . . , ϑn} ⊆ N . Then basic Galois theory
shows that

ϕE(L) = |R ∩ E| = number of roots of f which lie in E

= number of monomorphisms L −→ E.

We note that if E 6⊆ L, then ϕE(L) = 0. Also, ϕN (L) = n, since

N ⊗K L ∼=

n∏

i=1

N.
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Let V be the subgroup of G with E = NV (that is, E is the
fixed field of V ). Then

ϕE(L) = |(G/H)V | = |HomG(G/V,G/H)|.

By considering an étale K-algebra A as a direct product of separ-
able extensions of K, for any extension E with K ≤ E ≤ N there
is a ring-homomorphism ϕE : Ω(K,N) −→ Z where ϕE(A) equals
the number of components of E⊗K A which are isomorphic to E.

Remark 4.2 The isomorphism Ω(G) ∼= Ω(K,N) in Remark 3.3
allows us to replace ϕU by ϕE and in direct products to let E
run through all isomorphism classes of fields E with K ≤ E ≤ N
(since isomorphism classes of subfields correspond to conjugacy
classes of subgroups). Then Lemma 3.7 becomes:

Lemma 4.3 Let G = Gal(N/K), let H ≤ G with fixed field L,
and let L ⊆ E. Then

ϕL(L) = |AutG(G/H)| = [NG(H) : H ]

and
ϕL(L) | ϕE(L).

Definition 4.4 With K, L and N as above, we define a set,

SL := {ϕE(L) : K ≤ E ≤ N}.

We also define a polynomial pL ∈ Z[t] by

pL(t) =
∏

k∈SL

(t− k).

We state without proof the following results from [8].

Theorem 4.5 The polynomial pL annihilates 〈L〉 in the Witt
ring W (K), where 〈L〉 : L −→ K, 〈L〉(x) = TraceL/K(x2) for all
x ∈ L.



84 IMS Bulletin 44, 2000 �

Corollary 4.6 Let the polynomial qL =
∏

k∈TL
(t− k) where

TL := {k ∈ SL : k ≡ n mod 2}.

Then qL annihilates 〈L〉 in the Witt ring W (K).

5. Examples

Pierre Conner in 1987 [2] found the first results on annihilating
polynomials for trace forms. He showed that the trace form of
any separable extension of the field K is annihilated in W (K) by
the polynomial

p :=

n∏

k=0,k≡n mod 2

(t− k).

(Conner did not publish his result as he believed–correctly–that
a better result was possible.) The Beaulieu-Palfrey paper [1]
improves on the Conner result and the theorem and corollary
above are a further improvement.

Let g be the Galois number of f ∈ K[t] as defined in [1],
that is, g is the smallest natural number j such that any j of the
roots of f generate the splitting field N of f . Then g − 1 is the
maximum value of the set SL \ {n} where L := K[t]/(f).

The Beaulieu-Palfrey polynomial is

(t− n)

g−1∏

k=0,k≡n mod 2

(t− k)

and qL divides this, since any g roots generate all of N , that is,
there are no fields E 6= N such that ϕE(L) ≥ g.

In many cases qL is definitely of lower degree than the
Beaulieu-Palfrey polynomial. To show this, we construct examples
where (with the same notation as above)

[NG(H) : H ] > 2.

Then by Lemma 4.3, for any field E with K ≤ L ≤ E ≤ N we
have

2 < ϕL(L) | ϕE(L).
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Lemma 5.1 Let p be a prime, let G be a p-group and let H be a
proper subgroup of G. Then

H 6⊆ NG(H).

Example 5.2 Let p be an odd prime and let G be a Sylow p-
subgroup of the symmetric group Sp2 on p2 letters.

In particular, taking p = 3, we have that |G| = 81 and,
for any subgroup H of G, 3 divides [NG(H) : H ] = ϕL(L) where
L = FixH .

Since Sylow 3-subgroups are conjugate to each other and
any 3-subgroup of S9 is contained in a Sylow 3-subgroup, G will
contain a 9-cycle and so act transitively on 9 letters. By the same
reasoning G will contain a 3-cycle (but no transposition!) and so
by [1, §2, Ex. 2], the Galois number of G is g = 9− 2 = 7. (Since
G is a permutation group embedded in S9, it acts faithfully on 9
letters.)

Now let N/K be a Galois extension with Galois group G
as above (results on the inverse Galois problem show that there
exist number field extensions with G as Galois group). Let L/K
be a field extension of degree 9 such that K ≤ L ≤ N and the
subgroup H of G corresponding to L is not normal in G. (We do
not choose [L : K] = 27 as then H would be normal in G by 5.1,
and so L/K would itself be a normal–and thus Galois–extension.)
Then H will be core-free, i.e. contains no normal subgroup of G
(if H did contain a normal subgroup, then the action of G on the
9 letters would have a kernel).

Then the possible values of ϕE(L) are 0, 3 and 9 = [L : K],
so in this case we have

qL = (t− 3)(t− 9) (or possibly t− 9),

whereas the Beaulieu-Palfrey polynomial is

(t− 9)

7−1∏

k=0

k≡9 mod 2

(t− k) = (t− 1)(t− 3)(t− 5)(t− 9).
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The essential point here is that the factors in qL must go up in
jumps of 6: a modulo 2 periodicity comes from the even-odd trick
in Corollary 4.6 and a modulo 3 periodicity comes from Lemma
4.3. The factors in the Beaulieu-Palfrey polynomial only go up in
jumps of 2 and so there are more of them.

Remark 5.3 The same approach may be followed for larger primes
than 3, and so there exist examples where the difference in degree
between qL and the Beaulieu-Palfrey polynomial is arbitrarily
large.

Since an n-dimensional trace form has diagonalization of
the form n × 〈1〉 for n odd, it is clear it is annihilated by the
polynomial t−n. A more interesting example would be where the
dimension of the trace form is a power of 2. The next example is
of this kind.

Example 5.4 Let p = 2 and let G be the modular group of order
16,

G = 〈τ, σ : τ2 = σ8 = 1, τστ−1 = σ5〉.

Let H be the subgroup of G generated by τ . Then H is core-free
in G because τ is not central in G. Then G acts faithfully on the 8
cosets of H and may be regarded as a subgroup of the symmetric
group S8 on 8 letters, being generated by an 8-cycle σ and an
involution τ subject to the relation τστ−1 = σ5.

Then
τσ2τ−1 = (τστ−1)2 = σ10 = σ2

so τ and σ2 commute. Thus the normalizer of H in G is generated
by τ and σ2 and so has order 8. So we have that 4 divides [NG(H) :
H ] = ϕL(L).

By [3, Example 1], the Galois number of G is 5.

As in the previous example, let N/K be a Galois extension
with Galois group G. Let L be the fixed field of H , where K ≤
L ≤ N . Then [L : K] = n = |G|/|H | = 8.

Thus by the earlier theory the possible values of ϕE(L) are
0, 4 and n = 8. So we have

pl = qL = t(t− 4)(t− 8),
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whereas the Beaulieu-Palfrey polynomial is

(t− 8)

5−1∏

k=0
k≡8 mod 2

(t− k) = t(t− 2)(t− 4)(t− 8).

Here the factors in pL = qL go up in jumps of 4 and there is
a factor less than in the Beaulieu-Palfrey polynomial. One may
obtain similar examples by considering other suitable 2-subgroups
of S2n , for n > 3.
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