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1. Clearly the verti
es of a regular polygon satisfy the 
onditions

in the problem.

If A and B are points in S, let R

AB

denote re
e
tion in

the perpendi
ular bise
tor of the segment AB. Let G be the

bary
entre of the set S and note that for any two points A and

B in S, R

AB

(G) = (G). Thus A and B are equidistant from G.

Sin
e this is true for any pair of points of S, it follows that the

points of S lie on a 
ir
le, �, 
entred at G. So the points of S

form a 
onvex polygon A

1

A

2

: : : A

n

. Sin
e R

A

1

A

3

transforms ea
h

half-plane bounded by the line A

1

A

3

into itself, we must have

R

A

1

A

3

(A

2

) = A

2

(sin
e all other points of S lie on the other half-

plane. Thus A

1

A

2

= A

2

A

3

. Similarly, A

2

A

3

= A

3

A

4

et
, and so

the points of S form the verti
es of a regular polygon.

2. (Solution 
ommuni
ated by 
oordinators Marius Radules
u

and Cristian Voi
a.)
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Thus C � 1=8. Equality o

urs at the �rst `�' above if and only

if there exists i 6= j su
h that x

k

= 0 for k 6= i; j. Suppose this
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is so. The se
ond `�' is the AM-GM inequality and so equality

o

urs pre
isely when x

2

i

+ x

2

j

= 2x

i

x

j

, i.e., when x

i

= x

j

. Thus

C = 1=8 and equality o

urs if and only if all but two of the x

k

's

are zero and the remaining two are equal.

3. First 
olour the board bla
k and white like a 
hessboard. Let

f(n) be the number we are looking for. Let f

w

(n) be the minimal

number of white squares that must be marked so that any bla
k

square has a white neighbour. Similarly de�ne f

b

(n). Then from


onsiderations of symmetry (n is even),

f

b

(n) = f

w

(n) and f(n) = f

b

(n) + f

w

(n):

Label the squares (i; j) for 1 � i; j � n = 2k in su
h a way that

(1; 1) is white (thus the white squares are those satisfying i � j

(mod 2)). Now mark the (white) squares (i; j) satisfying

(i) i+ j � 2 mod 4

and

(ii) i and j are

�

odd; if i+ j � n;

even if i+ j > n.

(So squares on every se
ond white diagonal are marked, and 
on-

dition (ii) ensures that the edge squares of ea
h of these diagonals

are marked.) Consider an arbitrary bla
k square. If it is in the

interior, it has four adja
ent white squares and, of these, two sat-

isfy (i). Of these two, one satis�es (ii) and, thus, is marked. On

the other hand, if the bla
k square is at an edge, then 
ondition

(ii) guarantees that exa
tly one of the adja
ent edge squares is

marked. Thus with this marking, every bla
k square is adja
ent

to exa
tly one marked square. The total number of marked white

squares is k(k + 1)=2. Thus f

w

(n) � k(k + 1)=2.

On the other hand, no two of the marked white squares

have a 
ommon adja
ent bla
k square, sin
e otherwise two

of them would be a distan
e 2 apart in the `taxi
ab' metri


(d((i; j); (i

0

; j

0

)) = ji� i

0

j+ jj � j

0

j), whereas in fa
t the minimum

distan
e between two marked squares is 4. Thus we need to mark
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at least k(k + 1)=2 bla
k squares in order to 
over the marked

white squares. Hen
e f

b

(n) = f

w

(n) � k(k + 1)=2.

To 
on
lude :

f

w

(n) = f

b

(n) =

k(k + 1)

2

and thus,

f(n) = f

w

(n) + f

b

(n) = k(k + 1):

4. Clearly n = 1 and p any prime gives a solution.

Suppose now that n > 1 and let q be the smallest prime

dividing n; say n = qs. Sin
e (p � 1)

n

� �1 mod n

p�1

, we have

(p� 1)

qs

� �1 mod q )

(p� 1)

s

� �1 mod q (1)

by Fermat's Little Theorem. Now, (s; q�1) = 1 by 
hoi
e of q. So

there exists a 2 N with as � 1 mod q � 1 and thus, by Fermat's

Little Theorem again

p� 1 � (p� 1)

as

� (�1)

a

mod q

But, if q > 2, p� 1 6� 1 mod q by (1). So p� 1 � �1 mod q, i.e.,

q j p, and thus q = p, sin
e p is prime.

So, if n > 1, then p is the smallest prime dividing n. Sin
e

n � 2p, we thus have that p = 2 and n = 2 or 4, or p is odd and

n = p. Now p = 2 or 3 and n = p are readily seen to be solutions,

while p = 2 and n = 4 is not. Suppose �nally that p � 5. Then

(p� 1)

p

+1 = p

p

�

�

p

p� 1

�

p

p�1

+ � � � �

�

p

2

�

p

2

+ p

2

� p

2

mod p

3

and thus p

p�1

does not divide (p� 1)

p

+ 1. So the only solutions

are (p; n) = (2; 2), (3; 3) or (p; 1).
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Diagram for Problem 5.

5. (N. Sedrakian) Let O, O

1

and O

2

be the 
entres of �, �

1

and

�

2

respe
tively, and r, r

1

and r

2

the radii of these 
ir
les. Let

K on AB and E on O

1

O

2

be the feet of the perpendi
ulars from

O. Let F be the interse
tion of MK and O

1

O

2

. We assume that

r

1

> r

2

. (The other 
ases, r

1

= r

2

and r

1

< r

2


an be treated

similarly.)
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4MO

1

F � 4MOK (sin
e OK k O

1

F ). Thus

O

1

F =

r

1

r
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r

1

r
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1

P �O

1
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1
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�
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1

)

2

+ r

2

1

� (r � r

2

)

2

2r

1

�

= r

1

� r

2

) O

2

F = r

2

and thus F 2 �

2

. (Here we use the fa
t that in a triangle with

verti
es A, B, C and opposing sides a, b, 
, the distan
e from B

to the foot of the altitude at A is (a

2

+ 


2

� b

2

)=2a.)

Sin
e4MOA and4MO

1

C are isos
eles with 
ommon base

angle hCMO

1

= hAMO, these triangles are similar. The triangles

4MO

1

D and 4MOB are likewise similar. Thus

CM

AM

=

O

1

M

OM

=

r

1

r

=

DM

BM

=

FM

KM

and thus CD k AB and F 2 CD. But AB ? O

1

O

2

) CD ? O

2

F

and thus CD is a tangent to �

2

.

6. Let y 2 R and x = f(y). Then

f(0) = f(x� f(y)) = f(f(y)) + f(y)

2

+ f(f(y))� 1

)f(f(y)) =


+ 1

2

�

f(y)

2

2

= K �

f(y)

2

2

(�)

where 
 = f(0). Note that f(0) 6= 0 sin
e, otherwise, taking y = 0

in the fun
tional equation gives f(x) = f(x) � 1. Letting y = 0

in the fun
tional equation, we get:

f(x� 
) = f(
)+ 
x+ f(x)� 1) f(x� 
)� f(x) = f(
)� 1+ 
x

is a non-
onstant linear fun
tion of x.

Thus, given z 2 R, there exists x 2 R with z = f(x� 
)� f(x) =

f(w) � f(x), say. Hen
e for z 2 R,
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f(z) = f(f(w)� f(x))

= f(f(x)) + f(w)f(x) + f(f(w)) � 1

= K �

f(x)

2

2

+ f(w)f(x) +K �

f(w)

2

2

� 1 (using (�))

= 2K � 1�

(f(w) � f(x))

2

2

= 2K � 1�

z

2

2

Taking z = f(y) for any y and using (�), we get 2K � 1 = K so

that K = 1 (and 
 = f(0) = 1) and thus

f(z) = 1�

z

2

2

for all z 2 R. It is easily veri�ed that this fun
tion does satisfy

the fun
tional equation.
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