SOLUTIONS OF THE PROBLEMS OF THE 40TH
INTERNATIONAL MATHEMATICAL OLYMPIAD

Kevin Hutchinson

1. Clearly the vertices of a regular polygon satisfy the conditions
in the problem.

If A and B are points in S, let Rap denote reflection in
the perpendicular bisector of the segment AB. Let G be the
barycentre of the set S and note that for any two points A and
Bin S, Rsp(G) = (G). Thus A and B are equidistant from G.
Since this is true for any pair of points of S, it follows that the
points of S lie on a circle, T', centred at G. So the points of S
form a convex polygon A; A, ... A,. Since R4, 4, transforms each
half-plane bounded by the line A; A3 into itself, we must have
R4, 45(As) = Ay (since all other points of S lie on the other half-
plane. Thus A1 A2 = A2A3. Slmllarly, A2A3 = A3A4 etc, and so
the points of S form the vertices of a regular polygon.

2. (Solution communicated by coordinators Marius Radulescu
and Cristian Voica.)

-5 (X#2) (23 0m)
< % <Z$Z +222wi:vj>
= (X))

Thus C < 1/8. Equality occurs at the first ‘<’ above if and only
if there exists 7 # j such that xy = 0 for k # 4,j. Suppose this
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is so. The second ‘<’ is the AM-GM inequality and so equality
occurs precisely when z7 4+ z7 = 2z, i.e., when z; = z;. Thus
C = 1/8 and equality occurs if and only if all but two of the z;’s
are zero and the remaining two are equal.

3. First colour the board black and white like a chessboard. Let
f(n) be the number we are looking for. Let f,,(n) be the minimal
number of white squares that must be marked so that any black
square has a white neighbour. Similarly define f;(n). Then from
considerations of symmetry (n is even),

fo(n) = fu(n) and f(n) = fi(n) + fu(n).

Label the squares (i,j) for 1 < i,7 < n = 2k in such a way that
(1,1) is white (thus the white squares are those satisfying i = j
(mod 2)). Now mark the (white) squares (i, j) satisfying

(i)i+j=2mod4
and

- . odd, if¢+j <m;

(if) i and j are { even ifi+4j>n.
(So squares on every second white diagonal are marked, and con-
dition (ii) ensures that the edge squares of each of these diagonals
are marked.) Consider an arbitrary black square. If it is in the
interior, it has four adjacent white squares and, of these, two sat-
isfy (i). Of these two, one satisfies (ii) and, thus, is marked. On
the other hand, if the black square is at an edge, then condition
(ii) guarantees that exactly one of the adjacent edge squares is
marked. Thus with this marking, every black square is adjacent
to exactly one marked square. The total number of marked white
squares is k(k + 1)/2. Thus f,(n) < k(k+1)/2.

On the other hand, no two of the marked white squares
have a common adjacent black square, since otherwise two
of them would be a distance 2 apart in the ‘taxicab’ metric
(d((i, ), ") =li—1i'| +|j —j'|), whereas in fact the minimum
distance between two marked squares is 4. Thus we need to mark
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at least k(k + 1)/2 black squares in order to cover the marked
white squares. Hence f,(n) = fu(n) > k(k + 1)/2.
To conclude :

ful) = fotm) = HEHD
and thus,

f(n) = fu(n) + fo(n) = k(k + 1).

4. Clearly n = 1 and p any prime gives a solution.

Suppose now that n > 1 and let ¢ be the smallest prime
dividing n; say n = gs. Since (p — 1) = —1 mod n?~!, we have
(p—1)?”*=—-1modq =

(p—1)°=—-1mod ¢ (1)

by Fermat’s Little Theorem. Now, (s,qg—1) = 1 by choice of ¢q. So
there exists a € N with as = 1 mod ¢ — 1 and thus, by Fermat’s
Little Theorem again

p—1=(p-1)*=(-1)" mod ¢q

But, if ¢ >2,p—1% 1 mod ¢q by (1). Sop—1=—-1mod g, ie.,
q | p, and thus ¢ = p, since p is prime.

So, if n > 1, then p is the smallest prime dividing n. Since
n < 2p, we thus have that p = 2 and n = 2 or 4, or p is odd and
n = p. Now p = 2 or 3 and n = p are readily seen to be solutions,
while p = 2 and n = 4 is not. Suppose finally that p > 5. Then

p - p
(p—l)p+1=pp—<p_1>pp 1—l—---—<2>;02—i—;025p2m0dp3

and thus pP~! does not divide (p — 1)? + 1. So the only solutions
are (p,n) = (2,2), (3,3) or (p,1).
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Diagram for Problem 5.

5. (N. Sedrakian) Let O, O; and O» be the centres of ', I'; and
'y respectively, and r, r; and ry the radii of these circles. Let
K on AB and E on 010> be the feet of the perpendiculars from
0. Let F be the intersection of M K and O;05. We assume that
r1 > ro. (The other cases, r1 = r» and r; < ro can be treated
similarly.)
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AMOWF ~ AMOK (since OK || O1F). Thus

01F=%0K = %(OlP—OlE)

_m 2r? —r2 3 (r—mr)?+r} —(r—r)?
T 2r1 2r1

:’I“l—’I“2:>02F:’I°2

and thus F' € T'y. (Here we use the fact that in a triangle with
vertices A, B, C and opposing sides a, b, ¢, the distance from B
to the foot of the altitude at A is (a® + ¢*> — b?)/2a.)

Since AMOA and AMOC are isosceles with common base
angle (CM Oy = (AMO, these triangles are similar. The triangles
AMOD and AMOB are likewise similar. Thus

CM_OlM_’I"l_DM_FM
AM — OM

r BM KM

and thus CD || AB and F € CD. But AB L 0105 = CD 1 O2F
and thus C'D is a tangent to I's.

6. Let y € R and z = f(y). Then

FO)=flz—fw)=FfW)+fW)?+f(fly)—1

iy = S TW g SO

where ¢ = f(0). Note that f(0) # 0 since, otherwise, taking y = 0
in the functional equation gives f(z) = f(x) — 1. Letting y = 0
in the functional equation, we get:

fle—c)=fO+cx+fx)-1= f(z—c)=f(z) = flc)-1+cx

is a non-constant linear function of z.

Thus, given z € R, there exists € R with z = f(z —¢) — f(z) =
f(w) — f(z), say. Hence for z € R,
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Taking z = f(y) for any y and using (x), we get 2K —1 = K so
that K =1 (and ¢ = f(0) = 1) and thus

for all z € R. It is easily verified that this function does satisfy
the functional equation.
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