A SURVEY OF
C*-ALGEBRAIC QUANTUM GROUPS,
PART I

Johan Kustermans & Lars Tuset

Abstract: This is an overview of C*-algebraic quantum groups. We
begin with elementary Hopf algebra theory and define a finite quantum
group as a Hopf *-algebra that is a Frobenius algebra. The duality
theory for finite quantum groups is thoroughly developed and includes
a generalization of the Plancherel Formula.

Next we consider the more general case of compact quantum
groups as defined by S. L. Woronowicz. We show how compact groups
and duals of discrete groups fit into this category. The famous example
quantum SU(2) found by Woronowicz is then treated. It was the first
example of a compact quantum group that is not a Kac algebra.

We develop the finite-dimensional co-representation theory and
discuss the generalized Tannaka-Krein Theorem. The Haar functional
(whose existence is one of the major achievements of Woronowicz’s
theory) is used to establish a Peter-Weyl type theorem for matrix ele-
ments of unitary co-representations. As opposed to the situation for
Kac algebras the antipode is in general not involutive. This deviation
is governed by a one-parameter group of automorphisms, which is also
related to the fact that the Haar functional is not a trace.

The algebra of ‘regular functions’ of a compact quantum group
is a Hopf "-algebra. It is a dense subalgebra of the C*-algebra occur-
ring in the definition of the quantum group. The proof of these facts
uses the left regular co-representation. It is an infinite-dimensional
co-representation, which is a notion involving multiplier algebras.
Compact quantum groups may be investigated via left regular co-
representations, or rather multiplicative unitaries. We give an account
of this approach due to S. Baaj and G. Skandalis and later modified
by Woronowicz.

In the final part of this survey, to be published in the next issue
of the Bulletin, we consider the category of multiplier Hopf *-algebras
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introduced by A. Van Daele, we show how C*-algebraic quantum groups
are related to the examples of quantum groups studied by V. G. Drin-
feld and his collaborators, and we consider briefly the theory of general
locally compact quantum groups, stating the recently established defin-
ition of a locally compact quantum group given by S. Vaas and the first
author.

Throughout this paper we use the symbol ® to denote an algeb-
raic tensor product and ® to denote its topological completion with
respect to the minimal tensor-product norm. The only exceptions are
made when we discuss h-adic completions in Section 6 (part II).
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1. Introduction

The aim of this paper is to introduce the reader to the fascin-
ating subject of quantum groups from the C*-algebra point of
view. Quantum groups were discovered a generation ago, and have
since then developed in radically different directions motivated
both from physics and mathematics. There exist several excellent
treatments covering parts of the vast topic of quantum groups (see
[14],[25]), but none seem to be seriously concerned with portraying
in a broad manner the work done in the C*-algebra framework.
An explanation for this may be that important work on the gen-
eral locally compact quantum group case has been accessible only
in preprint form.

Loosely speaking, quantum groups are essentially groups
or group-like objects that are quantizations of groups. We shall
explain this in great detail later, but, for the moment, let us con-
sider the situation more heuristically. Perhaps one of the most
fruitful ideas in mathematics is to study geometrical spaces via
naturally associated rings or algebras. A classical example is that
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of a compact Hausdorff space X and the C*-algebra C(X) of con-
tinuous functions on X. It is well known that all the topolo-
gical information of the space X is contained in the C*-algebraic
structure of C'(X). In fact, Gelfand’s theorem tells us that the
functor X — C(X) is an anti-equivalence from the category of
compact Hausdorff spaces to the category of commutative unital
C*-algebras.

With the discovery of quantum physics it soon became clear
that non-commutative algebras could be used to explain geometry
on the scale of atoms and molecules. Quantum physics could then
be seen as a generalization of the theory of classical geometrical
spaces to a theory of a suitable category of algebras, in such a way
that the full subcategory of commutative algebras corresponds to
the classical geometrical spaces. In this way non-commutative
algebras can conceptually be thought of as ‘sets of functions on
quantum spaces’. The concept of quantization is more specific
than explained here. It is intimately connected to Poisson man-
ifolds and Poisson brackets measuring the deviation in the non-
commutative product from the commutative pointwise product in
terms of a deformation parameter (thought of as Planck’s con-
stant). Section 6 (part IT) is devoted to explaining this.

Of course, the appropriate category of algebras studied
depends on what properties of the space one is interested in.
Thus, the algebras (given with pointwise operations) may consist
of polynomials (algebraic geometry), complex-analytic functions
(complex geometry), smooth functions (differential geometry),
continuous functions (topology) or measurable functions (meas-
ure theory).

Quantum physics is in its nature a probabilistic theory. It
was J. von Neumann who gave a rigorous mathematical founda-
tion for quantum mechanics, using von Neumann algebras, which
together with the theory of weights generalizes the classical the-
ory of Borel integration. With their powerful structure theory, von
Neumann algebras have proved successful in many areas of math-
ematics. In fact, the earliest attempt to give a generalization of
Pontryagin’s duality theorem for abelian locally compact groups
to arbitrary locally compact groups used certain von Neumann
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algebras known as Kac algebras (see [8]).

Von Neumann algebras are C*-algebras of a special kind.
Whereas von Neumann algebras generalize Borel measure theory,
C*-algebras form, via Gelfand’s theorem, natural generalizations
of locally compact Hausdorff spaces. This suggests that locally
compact quantum groups should be defined using C*-algebras.
A leading proponent of this approach is the Polish physicist and
mathematician S. L. Woronowicz, see [39]. His viewpoint is very
much in the spirit of non-commutative geometry developed by
A. Connes (see [4]), who uses non-commutative C*-algebras as a
framework for powerful and useful notions of differential geometry
on quantum spaces.

The C*-algebra structure takes care of the quantum spaces
only as topological spaces. More structure has to be imposed to
capture a possible group-like structure on these quantum spaces.
After all, it is clear that topological groups may be homeomorphic
without being isomorphic — there exist, for instance, two non-
isomorphic groups consisting of eight elements. For finite groups
the extra structure we are talking about is that of a Hopf algebra.
Here the group multiplication is encoded in what is called a co-
multiplication.

Suppose G is a finite group and let C(G) denote the unital
*-algebra of complex valued functions on G. The co-multiplication
A is the unital *~homomorphism from C(G) to the algebraic tensor
product C(G) ® C(G) defined by A(f)(s,t) = f(st) for all f €
C(@) and s,t € G. Here we have identified C(G) ® C(G) with the
unital *-algebra C(G x G) of complex valued functions on G x G.
Thus A is simply the transpose of the multiplication of G by the
contravariant functor G — C(G) from the category of finite groups
to the category of finite-dimensional commutative C*-algebras.
The associativity of the group multiplication gives the identity
(A ®1)A = (¢t ® A)A, known as co-associativity. In this way
the functor, G — C(G), is used to transfer systematically group
notions (such as the existence of the unit element and the inverse,
together with their axioms) to notions about algebras (such as
the existence of the co-unit and the co-inverse with corresponding
identities). In the category of algebras these notions makes sense
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even for algebras that are not commutative and one arrives at
the more general concept of a Hopf algebra. As we shall see in
Section 2 , finite quantum groups are Hopf algebras with a good
*-operation. In Section 2 we develop the theory of such quantum
groups to familiarize the reader with the functor, G — C(G), and
the theory of Hopf algebras.

For finite groups the topology involved is the discrete one,
and the generalization to finite quantum groups runs as smoothly
as one could hope. For compact groups one considers instead the
functor, G — C(G), going into the category of unital C*-algebras,
where C'(G) is the algebra of continuous functions on the compact
group G. One may define A using the same formula as before. In
general A(C(G)) € C(G x G) is not contained in the algebraic
tensor product C(G) ® C(G). But C(G x G) may be identified
with the topological completion C(G) ® C(G) of C(G) ® C(Q)
with respect to a natural C*-norm, so one arrives at a topological
version of Hopf algebras.

There is no problem defining the co-unit and co-inverse on
C(G). In the mid-eighties a whole new class of group-like objects
were discovered, and it became evident from these important
examples — which clearly deserved to be called quantum groups
— that the unit and co-inverse could not in general be defined as
bounded operators on the non-commutative C*-algebras involved.
They also ruled out Kac algebras as determining a too restrictive
class of quantum groups, exactly for the reason that the co-unit
and the co-inverse were treated as bounded operators (on the von
Neumann algebras involved).

It was Woronowicz who proposed the first definition (see
[37]) of a compact quantum group general enough to contain
his newly-discovered quantum group, a twisted version SU,(2)
(see [38]), of the classical matrix group SU(2). He proved the
existence of the Haar state for such quantum groups and used
it to extend the classical Peter-Weyl Theorem to the category of
compact quantum groups that he called compact matriz pseudo-
groups. Soon after, he proved a generalization of the celebrated
Tannaka-Krein Theorem, which made it clear that the theory of
compact quantum groups was in essence a theory of finite dimen-
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sional unitary co-representations. The matrix elements of these
co-representations form a dense unital *-algebra of the C*-algebra
of the quantum group, generalizing the algebra of regular func-
tions on classical groups. The co-unit and co-inverse can be
defined most naturally on this algebra. We outline Woronowicz’s
theory of compact quantum groups in Section 3 and Section 4.

In a subsequent paper [22] Woronowicz defined the dual of
a compact quantum group, thereby generalizing classical discrete
groups. For a discrete group G it is natural to consider the func-
tor G — Cy(G), where Cp(G) is the non-unital C*-algebra of
(continuous) functions on the discrete group G vanishing at infin-
ity. The formula for the co-multiplication A given above does not
necessarily have range contained in Co (G xG); rather, it belongs to
the unital C*-algebra Cy (G x G) of bounded functions on G, which
may be identified with the multiplier algebra of Cy(G) ® Co(G).
Thus one is led to the notion of multiplier Hopf algebras.

That the topology does not play a major role in the theory
of compact and discrete quantum groups became evident from
A. Van Daele’s definition of algebraic quantum groups [29]. Tt is
a purely algebraic definition and the category thus defined con-
tains Woronowicz’s compact and discrete quantum groups. Also
Van Daele proved a generalization of Pontryagin’s duality the-
orem within this category. The important notion is that of the
Haar functional corresponding to the Haar integral for classical
groups. It is used to define the Fourier transform which identifies
the convolution algebra of the quantum group with the algebra
of functions on its dual quantum group. In Section 5 (part II)
we outline the theory of multiplier Hopf algebras and identify the
compact and discrete quantum groups of Woronowicz.

For a compact Lie group there are other algebras naturally
attached to it, namely its associated Lie algebra and the universal
enveloping algebra of the Lie algebra consisting of left-invariant
differential operators on the Lie group. This can be embedded
as a unital Hopf *-algebra into the maximal dual of the Hopf *-
algebra of regular functions on the Lie group. Unlike the case of
the convolution algebra (which may also be seen as an algebra
of linear functionals on the algebra of regular functions), these
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linear functionals are of course not bounded, so the C*-algebras
come in very indirectly as algebras to which these differential
operators are affiliated. Most of the interesting new examples
of quantum groups where found as deformations or quantizations
of these co-commutative Hopf algebras in the monumental work
by V. G. Drinfeld and his collaborators. Section 6 (part II) is
devoted to explain some of their work and how it is related to
Woronowicz’s theory.

In Section 7 (part II), we give a recent definition of loc-
ally compact quantum groups proposed by the first author and
S. Vaas (see [16]). It is well known that the unitary representa-
tion theory of non-compact locally compact groups is highly non-
trivial. For the matrix group SL(2, R), for instance, there are no
finite-dimensional unitary representations. The role of topology
becomes much more significant in treating non-compact locally
compact quantum groups, and the left and right invariant Haar
weights play a vital role.

2. Hopf *-algebras, Finite Quantum Groups and
Duality

We reformulate the theory of finite groups in terms of finite
quantum groups by considering algebras of functions naturally
attached to the groups. These algebras carry additional struc-
tures leading to the notion of a Hopf *-algebra. Hopf algebras
have been subject to intensive studies by algebraists over the
last decades, [1]. A finite quantum group is a finite-dimensional
Hopf *-algebra which in addition is a C*-algebra or Frobenius
algebra. In the category of finite quantum groups thus defined,
the finite groups are identified as the full subcategories of commut-
ative or co-commutative Hopf *-algebras, and the finite abelian
groups as the Hopf *-algebras which are both commutative and
co-commutative. In this section we establish a duality result
within the category of finite quantum groups that generalizes
Pontryagin’s duality theorem for finite abelian groups.

The crucial role played by Haar functionals on the Hopf
*-algebras involved, corresponding to Haar integrals for groups,
will be evident. Among the important identities obtained is the
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generalization of Plancherel’s formula for finite abelian groups.
It turns out that the duality theory developed here (which uses
the Haar functionals so manifestly) has found its formulation in
the broad framework of multiplier Hopf *-algebras developed by
A. Van Daele (see Section 5 (part II)). They contain all compact
and discrete groups.

Historically the function algebra K (G), introduced below,
led to the theory of compact quantum groups developed by Woro-
nowicz in the C*-algebra context (see [31] and [37]). The convolu-
tion algebra C[G], also defined below, suggested the approach to
quantum groups in terms of Kac algebras [8]. Later we shall study
a third approach by considering the universal enveloping algebras
of Lie algebras, which are again Hopf *-algebras, but now consist-
ing of unbounded elements. This approach is emphasized by the
Russian school and includes the monumental work by Drinfeld,

[7].

Here we have chosen to stick to the finite-dimensional case
due to the technical difficulties otherwise encountered, and we
hope that our rather detailed account, including proofs, will reveal
the essential ideas necessary to resolve problems arising in the
development of the more general theory.

The first example, and the most relevant to our approach,
comes with the function algebra K (G) of a group G. To simplify
matters, we shall assume G to be finite. Later, locally compact
(infinite) groups will enter the arena, and this approach proposes
C*-algebras as a framework for locally compact quantum groups.

Let K(G) be the set of all complex-valued functions on G.
It is a unital *-algebra under the following operations:

o (Af)(s) = A f(s),
o (f+9)(s) = f(5) +9(s),
°( 9)(s) = f(s)g(s),

£e(s) = f(s),
°1() 1,

where f,g € K(G), A € C and s € G. Throughout this paper
we use the symbol ® to denote the algebraic tensor product of
two vector spaces. Since G is finite, we may identify the algebras
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K(G) ® K(G) and K(G x G) via the formula (f ® g)(s,t) =
f(s)g(t) for all f,g € K(G) and s,t € G. We transpose the group
structure to K (G) by introducing;:
e A unital *-homomorphism A : K(G) — K(G)® K(G) such that
A(f)(s,t) = f(st).
e A unital *~homomorphism € : K(G) — C such that e(f) = f(e).
e A unital involutive *-automorphism S : K(G) — K(G) such
that S(f)(s) = f(5 ).
Here f € K(G) and s,t € G, whereas e denotes the neutral ele-
ment in G.
The group axioms can be expressed in terms of these maps

by the following identities:

1. (AOVNA =(1eA)A,

2. 0O A=00e)A =1,

3. m(SOA=m(e S)A =1¢e(.),
where ¢ is the identity map on K(G) and m : K(G) ® K(G) —
K (G) is the multiplication on K (G) lifted to the tensor product
K(G)oK(Q), som(z®y) = zy for z,y € K(G). The first identity
is a consequence of the associativity of the group multiplication.
The second identity expresses the fact that e is the neutral element
of G and the last one stems from the axiom for inverse elements.

What we have at hand is an example of a commutative Hopf

*-algebra. Let us recall the general definition:

Definition 2.1 Consider a unital *-algebra A (with multiplica-
tionm: A®A— A:a®bwr ab ) and a unital *-homomorphism
A : A - AGA satisfying co-associativity, i.e. (AGL)A = (LOA)A.
Assume furthermore the existence of linear maps € : A — C and
S : A — A fulfilling the conditions:

EO)A=010e)A =, (2.1.1)
m(S O A =m(e S)A=1e(.). (2.1.2)
The pair (A, A) is called a Hopf *-algebra.
The linear maps € and S are uniquely determined by the
conditions (1) and (2) (see [1]). They are called co-unit and anti-

pode, respectively, whereas the term co-multiplication is used for
A. We collect some basic properties:
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Proposition 2.2 Consider a Hopf *-algebra (A, A) with co-unit
¢ and antipode S. Then

1. € is a unital *-homomorphism and ¢S = ¢.

2. S is anti-multiplicative and S(S(a*)*) = a for all a € A.

3. 0(S®S)A = AS, where g : A® A — A® A is the flip-
automorphism given by o(a ® b) = b ® a for all a,b € A.

We say that two Hopf *-algebras (A1, A;) and (A2, As) are
isomorphic if there exists a *-isomorphism 7 : A; — As such that
(m ® m)A; = Ay, Notice that the uniqueness of the co-unit and
the antipode implies that eom = g1 and Sew = 75;.

The two linear maps 77,75 : A® A - A® A determined by

Ti(a®b) = A(a)(1 D) and Ty(a®b) = (a® 1)A®),

where a,b € A, play a fundamental role in the theory of quantum
groups. They are linear isomorphisms with inverses given by

T ' (a®b) = (1©S)A(a)) (1®b) and Ty '(a®b) = (a®1) ((SOL)A(D))

for a,b € A.

Returning to our example (K(G),A), the formulas in Pro-
position 2.2 are seen to be dual versions of the well known iden-
tities e ! =e, (gh) "L =h tg ! and (g7 ')~ = g in the group G.
The maps T} and T3 are transposes of the bijective maps

GXxG — GxG: (s,t)— (st,t) and GXG — GxG: (s,t) — (s,st),

respectively, where s,t € G. The bijectivity of 71 and T> expresses
the fact that the maps s — st and s — ts from G to G, where
s,t € G, are bijective. Since @ is finite it means that each of them
is either surjective or injective.

It is easy to prove that the set of characters (that is, unital
*-homomorphisms) on K(G) is a group isomorphic to G under
multiplication given by An = (A®n)A for characters A, of K(G).
Thus if G; and G5 are finite groups, then they are isomorphic
if and only if the associated Hopf *-algebras (K(G1),4A1) and
(K(G2),As) are isomorphic.
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Furthermore, for a finite group G, observe that K(G) is
a finite-dimensional commutative C*-algebra with respect to the
supremum norm. Applying Gelfand’s theorem, it is not hard to see
that every Hopf *-algebra (A4, A), with A a finite-dimensional com-
mutative C*-algebra, is isomorphic to (K(G),A) for some finite
group G. We thus arrive at the following definition of a finite
quantum group.

Definition 2.3 A finite quantum group (A, A) is a Hopf *-
algebra for which A is a finite-dimensional Frobenius algebra, i.e.
a*a=0&a=0forallacA.

A linear functional h on A is called a Haar functional on a
Hopf *-algebra (A4, A) if h(1) # 0 and (h ® t)A = 1h(:).

Assume that hi,hs are linear functionals on A such that
hi(1) = ha(1) # 0 and (b1 ® t)A = 1hi(-) and (0 ® ha)A =
1 ho(+). Then, for all a € A, we have ha(1) hi(a) = ha(hi(a)1) =
ho((h ® )A(a)) = hi((t ® h2)A(a)) = hi(1) ha(a), and hence
hl = h2.

If follows from statement 3 in Proposition 2.2 that a Haar
functional h on (A,A) satisfies (t+ ® hS)A = 1(hS)(:) and
(hS)(1) = h(1). Thus h = hS and (¢t ® h)A = 1h(:) and h
is unique up to multiplication by a scalar.

Any finite quantum group (A4, A) possesses a unique (up to
a scalar) positive Haar functional h, i.e. a Haar functional such
that h(a*a) > 0 for all a € A. Moreover, h is faithful. We discuss
this in Section 3 in the more general context of compact quantum
groups.

These results are evident for A commutative: Suppose G
is a finite group and define a linear functional h : K(G) — C by
h(f) = Y .cq f(s) for all f € K(G). Tt is of course the integral
corresponding to the counting measure on G.

Clearly (h © t)(F)(t) =Y ,cq F(s,t) forall F € K(G x G)
and t € G. Therefore

(hO)AWDNM) =D Af)(s,t) =D flst) =D f(s) =h(f)1()
sEG SEG SEG

for all t € G and f € K(G). So h is the Haar functional on
(K(G),A). Clearly it is positive and faithful.
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Given a discrete group G (not necessarily finite), we con-

struct a Hopf *-algebra (C[G],A) from G, which as we shall see
later, is dual to the Hopf *-algebra (K (G), A).

As a set, C[G] consists of the complex valued functions with
finite support. It is a unital *-algebra under the following opera-
tions:

e (A )(8)=>\ (),

o (f+9)(s) = f(s5) +9(s),

* (f9)(5) = Xy F(1) g(t™1s),
o fr(s) = f(s71),

where f,g € C[G], A € C and s € G. Notice that the sum above
is finite because f has finite support.

For s € G, define ¢, € C[G] to be equal to 1 at the point s
and equal to 0 elsewhere. Obviously (ds)sce forms a basis for the
vector space C[G]. The formulas 0:0; = ds; and (85)* = d,—1 for
s,t € G will be useful in the sequel. For instance, it is immediate
from them that J. is the unit element in C[G]. Using the map
G — C[G] : s — s, we can regard G as a subgroup of the group
of invertible elements in C[G].

We define linear maps specified on the basis (Js)seq:

e A : C[G] = C[G] ® C[G] by A(d,) = 8, ® 6,
ez :(CG] = Chy2(8,) =1,
e S : CG] = C[G] by 5(8,) = 6,1,

where s € G. Tt follows that (C[G],A) is a Hopf *-algebra with

co-unit € and antipode S:
The co-associativity expresses the associativity of the tensor
product ®, i.e.

(A ® YA, = (6, ®8,) @65 =05 @ (8, @ 85) = (1L © A)A(S,),
where s € G.
Denoting the multiplication map C[G] ® C[G] — C[G] by
m, we have 5'(65)53 = 4-105 = 04-1, = 0, for all s € G, and

hence

(S ® 1)A(8s) = 5(85) 85 = 0. = 6. £(85) = (e ® S)A(S,) .
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The identity (2.1.1) for the co-unit is proved in a similar
fashion. It should be noted that the group multiplication is
encoded in the convolution product 7 this time, and not in the
co-multiplication, as is the case for (K (G), A).

Note again that A(&s) = §s ® 05 for every s € G. Suppose
(A, A) is a Hopf *-algebra. An element a € A is called group-like
if a # 0 and A(a) = a®a. This notion is justified by the fact that
every group-like element in (C[G],A) is of the form d, for some
s € G:

Suppose f € C[G] is group-like and write f = Y~ f(s) Js.
Then

Y fe)6 06 =Af)=Ffof=Y f(s)ft) s @b .

seG s,teG

Since (05 ® 0t)s,te is a basis for C[G] ® C[G], it follows that
f(s)ds = f(s) f for all s € G. As f # 0, there exists r € G such
that f(r) # 0 and thus f = §,.
Define a linear functional i : C[G] — C by h(f) = f(e) for
f € C[G]. Hence, h(6,) = 1 and h(8,) = 0 for all s € G\ {e}.
Because A A A
(h © 1)A(s) = h(ds) 85 = 6.h(0,)

for all s € G, we conclude that h is the Haar functional on

~

(C[G], A). Now

h(f*f) = (f )le) =D f(s)

seG

for all f € C[G], so h is positive and faithful.

In the rest of this section we assume that G is a finite
group. By faithfulness of the Haar functional h, we conclude that
(C[G], A) is a finite quantum group in the sense of Definition 2.3.

Notice that (C[G], A) is a co-commutative Hopf *-algebra,
ie. oA = A, where o denotes the flip-automorphism. In fact,
every finite co-commutative quantum group is isomorphic to
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(C[G], A) for some finite group G. This assertion is evident from
the duality result below.

Let (A, A) be a finite quantum group with a positive faithful
Haar functional h. The set of group-like elements of (4, A) forms
a subgroup of the group of unitaries: Let a,b € A be group-like.
Then ¢(a) = 1 and a=! = S(a). Hence ab # 0 and thus ab is
group-like. Also h(a)a = (h ® t)A(a) = h(a)I, and therefore
h(a) = 0 unless @ = I. Since a* is group-like, a*a is group-like.
As h(a*a) > 0, we thus get a*a = I. Similarly aa* = I and so
S(a) = a*.

Furthermore, we shall see in Section 3 that the set of group-
like elements of (A, A) forms a linear basis if and only if (4, A) is
co-commutative.

We begin by defining the dual Hopf *-algebra (A, A) of a
finite-dimensional Hopf *-algebra (4, A) with co-unit ¢ and anti-
pode S. Let A be the vector space of linear functionals on A. We
use the co-multiplication, the antipode and the *-operation on A
to define a multiplication and *-operation on A:

o (@B)(a) = (w © B)A(a),
— o(S(@)

o w*(a)

for all w,0 € A and a € A. Equipped with these operations A
acquires the status of a unital *-algebra with unit €.

Since A is finite-dimensional, we may identify A® A with
the vector space of linear functionals on A ® A via the formula
(w®8)(a®b) =w(a)f(b), where w,f € A and a,b € A.

Using this identification, the multiplication on A yields a co-
multiplication A : A - A® A on A such that A(w)(a®b) = w(ab)
for all w € A and a,b € A.

Similarly the unit 1 and the antipode S on (A, A) define
a co-unit € : A — C and an antipode S : A — A on (A,A),
respectively, given by the formulas:

o 5(w) = w(1),
* S(w)(a) = w(S(a)),

where w € A and a € A. Hence (A4, A) is a Hopf *-algebra.
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Consider two finite-dimensional Hopf *-algebras (A;, Ay)
and (A3, As) and a Hopf *-algebra isomorphism F : A; — As.
Then we can also dualize the mapping F to the mapping

s Ay — A given by F( ) = Fw for all w € Ay, Tt is an
easy exercise to check that Fisa Hopf *-algebra isomorphism
from (A2,A2) to (Al,Al).

Two Hopf *-algebras (41, A;) and (As, As) are called a dual
pair if and only if there exists a non-degenerate bilinear form
(-,-) : Ay x Ay — C such that:
albl, a2> <(l1 (9 bl, AQ (a2)>
al,a2b2> <A1 (0,1) as ® b2>,
ai,az) = (a1, S2(a2)*),
a1, a3) = (Si(a1)*, az),

Si(ar), az) = (a1, S2(az)),
ai, > = El(al) and (1,&2) = EQ((LQ)

O)Cﬂ»-lkwwr—t\'/

-
-
-
-
-
-

for all a;,by € Ay and as,by € As. Equations 1 and 2 involve
the extended bilinear form (-,-) : (41 ® A1) X (42 ® 43) —» C
determined by the equality (a1 ® b1, a2 ® b2) = (a1, as) (b1, b} for
all a;,by € Ay, as,bs € As. Uniqueness of the co-unit and the
antipode implies that equations 3 to 6 are redundant. Invoking
the non-degeneracy of (-,-), we see that (4;,A;) is commutative
if and only if (Aa, Az) is co-commutative.

The Hopf *-algebras (A,A) and (A,A) form a dual pair
under the bilinear form (-,-) : A x A — C given by the formula
(a,w) = w(a) for all a € A, w € A. In fact, all dual pairs are of
this form.

Suppose (4, A) is a finite quantum group with Haar state h.

For a € A define ah € A such that (ah)(z) = h(za), where z € A.

Since h is faithful, the linear map A —)AA : a — ah is injective and
consequently bijective because A and A have the same dimension.
Thus A={ah|a€ A}.

We should point out that the above vector space isomorph-
ism fails to be an isomorphism on the level of Hopf *-algebras (it
is not even multiplicative). However, we can use it to pull back

the Hopf *-algebra structure on the dual (4, A) to A. In the case
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that A = K (@) this pull-back Hopf *-algebra is identical to the
Hopf *-algebra (C[G], A).

Let (A,A) be the dual Hopf *-algebra of (4,A). Define
the linear functional i on A by h(ah) = e(a) for a € A. Notice
that h is well defined because A — A : a — ah is a vector space
isomorphism. We prove some properties for h:

Proposition 2.4 Suppose a € A and § € A. Then we have
(&h)(ah) = £(S(a)).

Proof: Pick b € A such that £ = bh. Using the *-operation and
the surjectivity of T, we see that there exist elements py,...,pn
and gi,...,q, in A such that a®b =31 A(p;)(q; ®1). Apply-
ing m(S ® ¢) to this equality, we get S(a)b = Y1, e(pi) S(q:)-
Inserting = € A, we calculate

((ah)&)(z) = (ah ® )A(z)
= (hoh)(A(z)(a®b))

n

> (h o h)(Alepi) (g @ 1))

1

-
Il

[
NE

h(zp;) h(g:)

<.
I
-

[
NE

h(zp:i) h(S(q:)) -

1

Hence (ah)é = 3" h(S(q;)) pih, which implies that

-
Il

(¢h)(ah) = h((ah)¢) = Zh(S(Qi)) h(pih)

h(S(a:)) e(pi) = h(S(a)b)

Il

1

I
178 2 S
—~
n

(@),

as desired. O
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As will be clear later, the following corollary is the quantum
analogue of Plancherel’s theorem.

Corollary 2.5 The formula h((ah)*(ah)) = h(a*a) holds for all
a€ A

Proof: We have ( ) (x) =
h(aS(x)) = h(S(@S™"(a")))
It follows that (ah) = S7'(a
h((ah)*(ah) = h(S™ @)h)(ah)) = ((@h)) (S~ (@)h) =
(ah)(S(S~'(a*))) = h(a*a), where we used the previous pro-
position in the equality labelled (*). O

(ah)(S(2)") = h(S(x)*a) =
= h(zS7!(a*)) for all z € A.
*)h, which implies in turn that

Proposition 2.6 The map h is a Haar functional on (A, A)

Proof: Choose b,c € A. As before, we can find elements
Diy--Pn €A, q1,-..,qn € Asuchthat boc= )", | A(p;)(¢;®1).
Applying € ® ¢ to this equation yields e(b)c = Y1 | pie(q;). So,
for z,y € A,

(A(bh)(1 ® ch))(z ©y) = (bh® ch)((z ® 1)A(y))
= (h@h)((z@DA(y)(b@c) =37 (h@h)((z @ )A(yp:)(z @ 1)).

Left invariance of h now implies that (A(bh)(1 ® ch))(z ® y) =
>or . h(zg;) h(yp;) for every z,y € A. Hence, A(bh)(1 ® ch)
= " qih ® p;h. Therefore we have (h ® )(A(bh)(1 ® ch)) =
S h(gih) pih = Y7, e(q;) pih = (b) ¢h = h(bh) ch and con-
sequently (A®:)A(bh) = h(bh) 1, which shows the right invariance
of h.

Pick a € A such that ah = ¢, so h(a) = (1 .
By the Cauchy-Schwarz inequality, 1 = |h(a)|®> < h(1) h(a*a),
so h(a*a) # 0. By Plancherel’s formula, h(e) = h(e*c) =
h((ah)*(ah)) = h(a*a) # 0. 0
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Plancherel’s formula shows that EL is positive and faithful.
Thus A is a Frobenius algebra and (A4,A) is a finite quantum
group. Therefore we have duality within the category of finite
quantum groups.

Consider the commutative and co-commutative Hopf *-
algebras (K (G),A) and (C[G],A), respectively, associated to a
finite group G. They constitute a dual pair under the bilinear
form (- | -) : K(G) x C[G] — C given by

(f19)=">_f(s)9(s) = h(fg)

seG

for all f € K(G) and g € C[G], where h is the Haar functional on
(K(G), A).
Using this Haar functional h, we define a Hopf *-algebra

isomorphism 0 : C[G] = K(G) : g = gh. Then (f | g) = (f,6(g))
for all f € K(G@) and g € C[G], where the latter form (-,-) is
the one giving the duality between (K (G),A) and (K (G),A) as
described above.
. Suppose that G is an abelian finite group and denote by
G the dual group of G. Recall that G is the set of group homo-
morphisms from G to the circle T, and that G is a group under
the pointwise product.

Notice that G is a subset of K(G). The Fourier transform

F : C[G] — K(G) is given in terms of the duality (- | -} between
K(G) and C[G] by F(g)(A) = (A | g) = h(\g), where g € C[G]
and A € G. The same formula extends F(g) from G to K(G).

Notice that the Fourier transform F : C[G] — K(G) is an
isomorphism of Hopf *-algebras. We restrict ourselves to showing
that F is a *-homomorphism:

e Let A € G. Because ) is a group homomorphism, by definition
of the co-multiplication A on K(G), we get A(A) = A® A. Now

Flarg)A) = (Al g1g2) =(AN) [ 91 @ g2) =A@ A [ g1 ® g2)
= (A g1) (A g2) = Flg1)(A) Fg2) () = (F(91)F(92))(A)

for all g1,¢92 € C[G] and A € G.
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e Observe that S(\) = \* for every A € G. Thus

Flg)N) = 1g") =N [g9)=Xlg)=Fl9(N) =F(9) (V)
for all g € C[G] and X € G.

Recall that K(G) and C[G] are equal as vector spaces (but
not as algebras). Thus we may define F : K(G) — K(G) by
F(f) = F(f), where f € K(G). The Plancherel Formula for a
finite abelian group G states that F is an isometry with respect to
the L2-norms given by the Haar measures on G and G (if correctly
scaled), i.e.

GL DI (s)P = D IF (NP

s€G AEG

for all f € K(G). We prove that the formula in Corollary 2.5
takes this form whenever (4,A) = (K(G),A), where now G is a
finite abelian group:

Denote by A’ the Haar functional on (K(G),A). Since

OF 1 : K(G) — K/(Z;') is a Hopf *-algebra isomorphism, it fol-
lows by uniqueness of the Haar functional h' that h8F~! = ch’
for some ¢ € C. Now observe that

SIS = h(f*f) = h((fh)*(fh)) = WOF~(F ()" F(f))

seG

=l (F(F)F(H)) =c D IFHNIP

Ae@

for all f € K(G). It remains to prove that ¢ = |G| . To this end
insert f =1 in the formula above and note that F(1)(X) = h(}),

Gl =D 1) = .
sed Aed

Now
h(AM)1 = (h®)AN) = h(A)A
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forall A € G, so h(\) = 0forall A # 0. Thus |G| = c¢h(1)? = ¢|G|?
as desired.
Given a finite-dimensional Hopf *-algebra (A4,A), we may,

of course, form the dual of the dual Hopf *-algebra (A, A) to get
the double dual Hopf *-algebra (A, A). In fact, since A is finite-

dimensional, we have a canonical isomorphism 7 : 4 — El of
vector spaces given by 7(a)(w) = w(a) foralla € Aand w € A. A
closer investigation shows that 7 is a Hopf *-algebra isomorphism.
It follows that if (A4, A) is a finite-dimensional Hopf *-algebra, then
A is a Frobenius algebra if and only if A is a Frobenius algebra.
Also the formula in Proposition 2.4 can be rewritten in terms of
the dual forms (-,-)4 : A x A —» C and ()4 : Ax A > C,
namely, .
(17 (wh),ahy 4 = (S(a),w)a

and A .
(ah,wh) 3 = (S(w),m(a)) 4,

foralla € A and w € A.

Consider again a finite abelian group G. Taking into
account the canonical Hopf *-algebra isomorphisms introduced in
the discussion above, we arrive at the following diagram:

—

K(G) _ L, d] —f s KO
p[ Jﬁ
K@) " Ko <« da

~
N

where we have defined the isomorphism P : K(G) - K(G)

in such a way that the diagram commutes. The Hopf *-algebra
isomorphism P has to be the transpose of a group isomorph-
ism P : G — G,ie P(f) = fP for all f € K(G). This is
Pontryagin’s duality theorem for finite abelian groups. Of course,
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G ~ G ~ G via the classification of finite abelian groups, but
these isomorphisms are not, canonical.

A tedious but straightforward calculation shows that P is
given by the well known formula appearing in Pontryagin’s duality
theorem for finite abelian groups, i.e. P(s)(w) = w(s) forall s € G

and w € G.

Remark 2.7 We state some general facts about finite quantum
groups. It can be shown, [37], that for a finite quantum group
(A,A) the Haar functional h is tracial, that is, h(ab) = h(ba)
for all a,b € A. Furthermore, the antipode is involutive and
*-preserving, so a finite quantum group is a Kac algebra (see [§]
and Section 3, and also Section 7 (part IT)). Any finite-dimensional
Frobenius- or C*-algebra is a direct sum of full matrix algeb-
ras, and the irreducible *-representations of such an algebra are
all obtained by projecting down on any of the factors in the
product. The co-unit of a finite quantum group is a 1-dimensional
*-representation of A, and therefore A must contain a copy of C.

The smallest non-abelian group is the group of permutations
of three elements, which consists of 6 elements. The corresponding
finite quantum group is a 6-dimensional commutative and non-
cocommutative Hopf *-algebra. The following (see exercise 7 on
p. 68 in [14]) is an example of a 4-dimensional Hopf algebra which
is neither commutative nor co-commutative:

Denote by A the universal unital algebra generated by two
elements ¢ and x satisfying the relations

2 =1 22 =0 rt = —tx .

The following formulas:

Alt)y=t®t Alz)=1@z+r0t
and
ety = 1 St = 0
e(z) = 0 S(x) = tx.

define a co-multiplication A, a co-unit € and an antipode S on A.
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However, this Hopf algebra is not a quantum group because
there is no *-operation turning it into a Frobenius algebra. In
fact, it is easy to see that the antipode S satisfies S* = ¢ and
that it is not involutive. The lowest dimensional finite quantum
group which is neither commutative nor co-commutative is the
‘historic’ example due to G. I. Kac and V. G. Paljutkin, published
in Russian in 1965. The algebra A for this quantum group is 8-
dimensional and is *-isomorphic to C® C® C & C & M(C). It
admits only one non-trivial Hopf *-algebra structure, [9].

3. Compact Quantum Groups

3.1. Definition and Examples of Compact Quantum
Groups

The definition we adopt of a compact quantum group is by now
widely accepted. It is due to Woronowicz [35] , who also defined
its immediate predecessor: a compact matrix pseudo-group [37].
A compact matrix pseudo-group is a generalization of a com-
pact matrix group. Its definition distinguishes a fundamental
co-representation, a role played by the identity representation in
the matrix group case. It is well known that every compact Lie
group has an injective finite-dimensional representation. There-
fore, compact matrix pseudogroups can be regarded as quantum
analogues of compact Lie groups.

Although the co-multiplication is defined on the C*-algebra
level, this is not the case for the co-unit and antipode. They
may not be bounded. However, we shall see that there always
exists a Hopf *-algebra which is dense in the C*-algebra. In the
classical case this is the algebra of regular functions on the group.
For matrix groups it is the *-algebra generated by the co-ordinate
functions, which by the Stone-Weierstrass Theorem is dense in
the C*-algebra of continuous functions on the group. One way
to overcome the difficulties with a co-unit and a co-inverse not
everywhere defined, is to invoke the maps 77 and 7% discussed in
the previous section.



30 IMS Bulletin 43, 1999 i

A note on terminology: when considering the tensor product
A ® B of C*-algebras A and B, we shall always take it to be the
C*-algebraic completion of the algebraic tensor product A ® B
with respect to the minimal tensor product norm.

Definition 3.1.1 A compact quantum group is a pair (A, A),
where A is a unital C*-algebra and A : A — A ® A is a unital
*-homomorphism such that:

1. (A® A = (1L ®A)A,

2. A(A)(A®1) is a dense subspace of A® A,

3. A(A)(1 ® A) is a dense subspace of A® A.

In this definition, A(A)(A ® 1) is the linear span of the set
{A(a)(b®1) | a,be A} (and similarly for A(A)(1 @ A)).

Clearly, all finite quantum groups are compact quantum
groups because, as we have seen, the maps 77 and T3 are bijective.
Now we introduce the motivating example generalizing the finite
quantum group (K (G), A), where G is a finite group.

Example 3.1.2 Suppose G is a compact topological group and
let C(G) denote the set of continuous functions on G. It is a
unital C*-algebra under the obvious pointwise-defined algebraic
operations and the uniform norm (cf. the *-algebra K(G) when
G is finite). The linear map = : C(G) ® C(G) — C(G x G)
determined by 7« (f ® g)(s,t) = f(s)g(t) for f,g € C(G) and
s,t € G has a unique continuous extension to a *-isomorphism
from C(G) ® C(G) to C(G x G). We shall use this *-isomorphism
to identify C(G) ® C(G) with C(G x G).

Define the unital *-homomorphism A from C(G) into
C(G) ® C(G) by setting A(f)(s,t) = f(st) for all f € C(G) and
s,t € G. The associativity of the group multiplication is then
reflected in the co-associativity of A, i.e. (A ® )A = (1 ® A)A.

Define the *-homomorphism T; from C(G) ® C(G) to
C(G) ® C(G) such that Ty (f)(s,t) = f(st,t) for f € C(G)®C(Q)
and s,t € GG. Asin the finite group case, this map is invertible with
inverse given by T, *(f)(s,t) = f(st™',t) for f € C(G) ® C(QG)
and s,t € G. Thus by continuity, 71 (C(G) ® C(G)) is dense in
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C(G) ® C(G). Since T1(a ® b) = A(a)(1 ®b) for all a,b € C(G),
we have proved axiom 3 in Definition 3.1.1. Axiom 2 is proved
similarly. Hence, (C(G),A) is a compact quantum group.

The two *-homomorphisms S : C(G) — C(G) and
£:C(G) = C defined by the formulas S(f)(s) = f(s~!) and
e(f) = f(e), where f € C(G) and s € G, play the role of the
antipode and the co-unit on (C(G),A), respectively. They are
obviously everywhere defined and bounded and furthermore, S
is an involutive *-isomorphism. Nothing of this is true in the
general case and this poses a challenging problem.

The pair (C(G),A) thus resembles very much the notion
of a Hopf *-algebra in the sense of Definition 2.1, in that we just
have to replace the algebraic tensor product ® with the topological
tensor product ®.

The previous example exhausts all compact quantum groups
for which the C*-algebra is commutative. The proof, which essen-
tially uses Gelfand’s representation theorem for commutative C*-
algebras, boils down to showing that a compact semi-group satis-
fying the cancellation laws is a compact group, a well known fact.
The next example exhausts all co-commutative compact quantum
groups for which the Haar state is faithful. We give a proof of this
fact at the end of this section.

Example 3.1.3 We now consider (C[G], A), where G is a discrete
group. In Section 2 we showed that (C[G],A) is a unital Hopf *-
algebra with a positive and faithful Haar functional h.

In order to get a compact quantum group, we need to show
that the unital *-algebra C[G] admits a C*-norm. We use the Haar
functional to introduce a Hilbert space and represent the unital
*-algebra C[G] injectively as bounded operators on this Hilbert
space.

The inner product (- | -) on C[G] is defined by the equations
(f | 9) = h(g*f) for f,g € C[G]. Denote the corresponding Hilbert

space completion of C[G] by L%(h) and the norm on it by || - ||».
Notice that || f]I3 = > ,cq [f(s)]? for f € C[G].
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Functions f in C[G] can be represented as linear operators
Ly in L2(h) given by left multiplication on C[G]: Lf(g) = fg for
all g € C[G]. We proceed by showing that the operators Ly, where
f € CJG], are bounded on the dense subspace C[G] of L2(h),
and thus have unique extensions to bounded operators «(f) on
L2(h): To this end, recall that C[G] comes with a linear basis
(8s)sec, where %6, = 4. for s € G. Hence ||Ls,(9)|3 = [|0:9]|3 =

h((059)*(9s9)) = h(g*9;059) = h(g*deg) = h(g*g) = llgll5 for all
r,s € G. We have shown that L;, is isometric, hence bounded
of norm one. The result that Ly is bounded for an arbitrary
f € C[G] now follows by the triangle inequality and the fact that
the elements (0s)seq constitute a linear basis for C[G].

It is not difficult to check that the map C[G] — B(L2(h)) :
f — ©(f) is a unital injective *-homomorphism. It is essentially

the GNS-representation of the functional h. The operator norm
||| on B(L?(h)) (the bounded operators on L?(h)) is a C*-norm,
so we get a C*-norm || - ||, on C[G] by defining || f||» = ||=(f)]|, for
f € CIG]. Let C}(G) denote the C*-algebra completion of C[G]
with respect to this norm. By definition of C}(G), there exists

a unique unital faithful representation T @) — B(L2(h))
which extends the map C[G] — B(L2(h)) : f + =(f).

We prove that the co-multiplication A on C[G] is bounded
with respect to || - ||, and therefore we have an extension to a
co-multiplication A, on C*(G):

Let f € C[G]. Consider a complex-valued function F' on

G'x @G, with finite support, regarded as an element of L*(h)®L2(h).
We show that

I(x @ m)AF) Fll < lx(HIIF e,

which is sufficient to conclude that A(f) has || ||T—n0rm less than
I f]l>- It is not difficult to see that ((m ® m)(A(f)) F)(p,q) =
Yseq f(8) F(s™'p,sq) for p,q € G (it is enough to check this
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formula for f of the form §;, t € G). Thus

Irom@AUE)FlE= D 1D f(s)Fs™'ps o)

p,gEG sSEG

=SS H P pos T pa) P

qEG pEG s€ECG

=> (D IGFC-a)@) )

q€EG p€eG

=S x5 FC,- )3 < S Im I IFC- )l

qEG qEG

==(HI* > [Fp,pg)’

P,q€G

=l=(HIF D 1F@a)* = Ix(H)I IF]I5 -
P,q€EG

That (C}(G),A,) is a compact quantum group now follows, since
the reduced C*-algebra C}(G) contains the dense Hopf *-algebra
(CG], A).

A crucial result in the theory of compact quantum groups is
the existence of the Haar state. This fact was proven by Woronow-
icz in the separable case (see [31]). The general case was proven
by A. Van Daele (see [30]). A proof under weaker conditions can
be found in [20]. Precisely formulated, the existence result says
that:

Theorem 3.1.4 Consider a compact quantum group (A,A).
There exists a unique state h on A such that (h ® 1)A(a) =
(t ® h)A(a) = h(a)1 for all a € A. The functional h is called
the Haar state on (A, A).

The proof of the uniqueness of the Haar state is essentially
trivial. The following result holds: Let h, ho be two states on A
such that (h1 ® t)A(a) = hi(a)1 and (¢t ® h2)A(a) = ha(a)1 for
a € A. Then hy = ho.

Unlike the classical case, the Haar state does not have to be
faithful. We give an example where faithfulness does not hold.
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Example 3.1.5 Let G be a discrete group and consider again the

~

unital Hopf *-algebra (C[G], A). We endow C[G] with a universal
C*-norm || - ||, by defining ||z|[, to be the supremum of the set

{lI8(z)||| K a Hilbert space, # a unital *-representation of C[G] on K}

for each x € C[G]. Consider §5 for s € G and let # be a unital
*-representation of C[G] on a Hilbert space K. Then

10(8)11 = 110(3:)* 8(3s) I = [10(350:)[| = 10l = II1]] = 1,

80 ||ds|le < 1. Finiteness of ||z||, for arbitrary z € C(G) now
follows since (ds)seq is a linear basis for C[G].

Remembering that, in the definition of ||z||,, the set we
are taking the supremum over contains the number ||z||, from
Example 3.1.2, we deduce that || - ||, is a C*-norm on C[G]
(not merely a C*-semi-norm). Denote the C*-algebra com-
pletion of C[G] with respect to || - ||, by C*(G). This unital
C*-algebra is obviously universal in the following sense: Any
unital *-representation § of C[G] on a Hilbert space has a unique
extension to a (bounded) *-representation of C*(G).

Let U : G — B(K) be a strongly continuous unitary repres-
entation of the group G and define the map 6y : C[G] — B(K) by
Ou(f) =2 scq f(s)U(s) for f € C[G]. It is easily seen that 6 is
a unital *-representation and that 8;;(ds) = U(s) for s € G. Keep-
ing this in mind, we get a 1-1 correspondence between strongly
continuous unitary representations of the group G and unital *-
representations of the C*-algebra C*(G).

It is well known that the unital C*-algebra C*(G) ® C*(G)
can be faithfully represented on a Hilbert space K — this is
true for any C*-algebra. Considering the following embeddings
ClG) ® (]G] C C*(G) ® C*(G) = B(K), we may view A as a
unital *-representation of C[G] on K. Thus it has a bounded
extension A, : C*(@) — B(K). Combining the facts that C[G] is
dense in C*(@), that A, is continuous and that C*(G) ® C*(G)
is closed in B(K), we see that A, (C*(G)) C C*(@) ® C*(G). So
we get a unital *~homomorphism A, : C*(G) —» C*(G) ® C*(G).
Hence, the pair (C*(G), Au) is a compact quantum group.
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For similar reasons, there exists a unital surjective
*-homomorphism 7, : C*(G) — CX(G) such that 7, (f) = f
for all f € C[G]. This *-homomorphism is an isomorphism if and
only if G is amenable (which is true if G is abelian or finite).

Let h, be the vector state on C(G) given by hp(z) =
(r(x)be | be) for z € C*(G), where 7 is the representation of
C#(G) on B(L2(h)) introduced in Example 3.1.3. Its restriction
to C[G] is of course the Haar functional i on C[G], so by continu-
ity, h, is the Haar state on (C*(@),A,). By definition of h, we
see that h(8,6;) = h(0s:) = h(es) = h(6,85) for s,t € G so by
linearity and continuity, h, is tracial, i.e. h,(zy) = h,(yz) for all
z,y € C(G). Since 7(ds)d. = d5 for all s € G, we also see that
m(Cr(Q)) b, is dense in H.

Now take any = € C#(G) such that h,(z*z) = 0. Then we
get for all y € C¥(G), that

which implies that 7(z)(w(y)de) = 0, so w(x) = 0 and therefore
z = 0. We have shown that the Haar state h, on (C*(G),A,) is
faithful.

Since (7 (}Zmru)Au = Aﬂru, we conclude by uniqueness that
the Haar state hy, on (c* (G),Au) is given by hy = hym,. Tt is
now clear that h,, is faithful if and only if the group G is amenable
(the classical example of a non-amenable discrete group is the free
group on two generators).

As for the co-multiplication, one may argue that there exists
a unique bounded unital *-homomorphism &, : C*(G) — C which
extends £, the co-unit of (C[G],A), so & is also bounded with
respect to || - ||, when G is amenable.

We now give the standard example of a compact quantum
group that is neither commutative nor co-commutative (more pre-
cisely, it is a one-parameter family of compact quantum groups).
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Thus it is not included in the cases (C(G),A) for G a com-

pact group nor (C[G], A) for G a discrete group described above.
In fact, it was also one of the first examples not included in
the category of Kac algebras. The example is due to Woro-
nowicz (see [38]) and is a ‘deformation’ of the special unitary
group SU(2). Woronowicz called it twisted SU(2) (due to a twist
in the determinant) and we denote it by SU,(2), where ¢ is a
deformation parameter. This example was discovered among a
huge range of examples found by Drinfeld (see [7]) and M. Jimbo
(see [12]), namely as a deformation U, (su(2)) of the universal
enveloping algebra U(su(2)) of the Lie algebra su(2) associated
to the Lie group SU(2). The connection between these two dual
approaches was first recognized and established by Y. S. Soibel-
man and L. L. Vaksman (see [28]) and M. Rosso (see [24]). They
used representations of U, (su(2)) as the linking mechanism (see
Section 6 (part II)).

Soibelman & Vaksman also developed the harmonic ana-
lysis on twisted SU(2). They showed [28] how little Jacobi
g-polynomials could be given a geometric interpretation on a
‘quantum space’. Later (see [17]) S. Levendorski & Soibelman
generalized the method of representations to generate examples
of compact matrix pseudogroups from Drinfeld’s and Jimbo’s
deformations of the simple Lie algebras.

This example is also typical of how ‘proper’ quantum groups
(i.e. those that are neither commutative nor co-commutative) are
constructed. In most cases, these examples tend to appear rather
ad hoc, although deformation theory gives certain restrictions on
the possibilities.

Example 3.1.6 Let g € [-1,1]\{0}. Define A to be the universal
unital *-algebra generated by two elements a and v satisfying the
relations:

afa+yy=1 aa* +@yy =1
Yy ="y qgya=ay gY@ =ay".

The universality of 4 assures us that there exist a unital
*-homomorphism A : A — A ® A, a unital *~homomorphism
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e : A — C and an unital anti-homomorphism S : A — A such
that:

Ale) =a@a—qgy" ®7y A(y) =7®@a+ a" @y
S(@=a*  S)=a SH)=-¢gy SO)=-¢'Y
ela) =1 e(y)=0.

The co-associativity of A and condition 2.1.1 of Definition 2.1 fol-
low by inspection on the generators @ and vy (remember that A
and e are *-homomorphisms). Since the multiplication m is not
multiplicative and S is anti-multiplicative, we have to handle con-
dition 2.1.2 of Definition 2.1 differently. Define the linear subspace

Ao={ae A|m(SO)A(a) =e(a) 1 =m(t® S)A(a) } .

It is not difficult to check that Ajg is a unital subalgebra of .4 which
contains the elements «a, a*,7,v*. Since these elements generate
A as a unital algebra, we see that A = Ag. Hence (A,A) is a
Hopf *-algebra with co-unit € and antipode S.

Notice that when ¢ = 1, the algebra 4 is commutative (but
not co-commutative). Recall that SU(2) is defined to be the group

SU(2) = “ __E | a,c € C such that |a|®> + |c|* =1 ¢ .
c a

Introduce the coordinate functions o',~' € C(SU(2)) given by

a'(a __C>=a and ’y'(a __c>=c
c a c a

for all a,c € C such that |a|? + |¢|> = 1. Denote by Pol(SU(2))
the unital *-subalgebra of C(SU(2)) generated by o' and ~'.
By the Stone-Weierstrass Theorem, the *-algebra Pol(SU(2)) is
dense in the C*-algebra C(SU(2)). Furthermore observe that the
coordinate functions o' and 7' satisfy the same relations as «
and v do (when ¢ = 1). Therefore we have a surjective unital
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*-homomorphism 6 : A — Pol(SU(2)) such that #(a) = o' and
6(v) =~'. The identity

o(x) (A(a) A(—7*)) — A\2)

where A is a *-character on A4, is easily checked on the generators
and thus holds for all z € A. Hence 6(z) = 0 < A(z) = 0 for all
*-characters A on A. So 6 is injective if and only if the *-characters
separate elements in A. It is well known that the *-characters
separate elements in a commutative C*-algebra and by restriction,
they supply a separating family of *-characters for *-subalgebras.
In [38], Woronowicz proved that .4 has a universal C*-algebra
envelope A by constructing enough unital *-representations and
working with a Hamel basis in A. Hence we may identify A with
Pol(SU(2)). In this way, we have recovered the compact group
SU(2), and the Hopf *-algebra of coordinate functions Pol(SU(2))
is isomorphic to the universal algebra A.

Let us now proceed to the more interesting case when ¢ # 1.
In this case, (A, A) is neither commutative nor co-commutative.
In order to obtain a quantum group, we need a C*-norm on A
which makes A : A - A ® A continuous.

Mimicking the construction for the norm on C*(G) in
Example 3.1.5, we introduce a universal norm | - ||, on A by
setting ||a||, to be the supremum of the set

{]|6(a)|| | K a Hilbert space, 6 a unital *-representation of A on K}

for all a € A. The boundedness of the co-multiplication with
respect to this norm is then immediate. However, it requires some
argument to see that this really defines a norm.

The boundedness of ||al||,, for any element a € A is proved
by verifying it on the generators a and + (this reduction is jus-
tified by the triangle inequality, the submultiplicativity and the
*-invariance of || - ||,). But the relation a*a + v*y = 1 gives
lloafl < 1 and [|y[l, < 1.

As usual, the property ||z||l, = 0 & x = 0 is the most
difficult to prove. To prove it, it suffices to produce an injective
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unital *-representation of A: let H be a separable Hilbert space
with orthonormal basis (egn, | K € NU{0},m € Z ) and define the
*-representation 7 : A — B(H) by the formulas:

m(@)erm = V91— er_1,m and w(y)erm = 7" €km+1

where we put e_;,, = 0. The *-representation is well defined
because the operators 7(a),m () satisfy the same relations as «,y,
respectively, so we can appeal to the universal property of 4. For
a proof of the injectivity of 7, see [21].

The C*-algebra completion A, of A with respect to || - ||«
together with the continuous extension A, : 4, - A, ® A, of A
form a pair (4,,A,) that constitutes a compact quantum group.

The representation 7w allows one to express the Haar state
h on (Ay,A,) by the formula

o0

h(a) = (1=¢*) Y ¢ (mu(a)er,o, ero)

k=0

for all @ € A. Here (-, ) denotes the inner product on H and
7y Ay = B(H) denotes the continuous extension of 7. It is gen-
erally true that Haar functionals on Hopf *-algebras are faithful
(see [1]), so the restriction of h to A is faithful. It is possible, but
highly non-trivial, to show that A is faithful on the C*-algebra A,
(see [21]). However, we stress that the Haar state is not tracial in
this case, and for this reason SU,(2) is not a Kac algebra.

In all of the examples, except Example 3.1.2, we started
from a Hopf *-algebra and completed it with respect to some suit-
able C*-norm. The appearance of a dense Hopf*-algebra is not a
coincidence. In fact, the following result holds in the general case:

Theorem 3.1.7 Let (A, A) be a compact quantum group. There
exists a unique Hopf *-algebra (A, ®) such that A is a dense unital
*-subalgebra of A such that A(A) C A® A and such that ® is the
restriction of A to A.

The *-algebra A is the maximal unital *-subalgebra of A
such that the restriction of the co-multiplication A to it turns it
into a Hopf *-algebra.
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This maximal unital *-subalgebra A is certainly contained
in the unital *-subalgebra A,, of A defined as the inverse image
A1 (A ® A) of A® A under A. Also, it can be shown that
A(An) C Ay © Ay One can prove that if the Haar state is
faithful on A, then A,, = A, so in this case A,, is indeed a dense
Hopf *-algebra.

If A is commutative, then A consists of the linear space of
the coefficient functions of the finite-dimensional unitary repres-
entations (i.e. the regular functions) of the underlying compact
group. We therefore refer to .4 in Theorem 3.1.7 as the algebra of
matrix coefficients. This terminology will be justified in the fol-
lowing subsection, where we look into the co-representation theory
for compact quantum groups.

3.2. Finite-Dimensional Co-representations, Tannaka-
Krein Duality and the Peter-Weyl Theorem

Although the proofs of some of the results in this subsection
require the notion of an infinite-dimensional co-representation —
in particular, the left regular co-representation — which involves
the language of multiplier algebras, the results can be formulated
in the setting of finite-dimensional co-representations. This is due
to the quantum analogue of the classical result that states that
every strongly-continuous representation of a compact group is
decomposable into irreducible finite-dimensional ones.

We shall need the leg numbering notation to define a
co-representation. Consider a unital C*-algebra A and a finite-
dimensional Hilbert space H. Define unital *-homomorphisms

ARB(H)»A®QARB(H):p—pizand AQ B(H) > AQA®B(H):p—pas

such that (a® )13 =a®1®z and (a ® z)23 = 1 ® a ® z for all
a € A, x € B(H). Notice that the tensor product ® is just the
algebraic one because H is finite-dimensional.

For instructive purposes, suppose G is a compact group.
Let H be a finite-dimensional Hilbert space. Define the lin-
ear mapping 6 : C(G) ® B(H) — C(G,B(H)) such that
O(f @x)(s) = f(s)z forall s € G, f € C(G) and = € B(H). Tt is
a *-isomorphism and we shall suppress this identification in the
sequel.
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Let F be a function in C(G, B(H)). A straightforward cal-
culation shows that

(A®)(F)(s,t) = F(st), Fis(s,t) =F(s), F(s,t) =F(t)

for all s,t € G. So F' is multiplicative if and only if (A ® ¢)(F) =
Fi3F3.

Clearly, strong continuity is equivalent to norm continuity
for finite-dimensional representations. Hence U is a strongly con-
tinuous representation of G on a finite-dimensional Hilbert space
H if and only if U is an invertible element of the C*-algebra
C(G) @ B(H) such that (A ® 1)(U) = Uy3Uss.

More generally, a finite-dimensional co-representation of a
compact quantum group (A, A) on a finite-dimensional Hilbert
space H is by definition an invertible element U € A® B(H) such
that (A ® 1)(U) = U;3Us3. We use the term ‘co-representation’
derived from Hopf algebra theory to distinguish these objects from
‘ordinary’ representations of the C*-algebra A, which have nothing
to do with representations of the possible underlying group.

The standard notions of group representation theory trans-
fer easily to this setting:

e Let U,V be finite-dimensional co-representations of (4,A) on
Hilbert spaces H,K, respectively. An intertwiner T from U to V
is a linear mapping from H to K such that V(1®T) = (1 T)U.
The set of intertwiners will be denoted by Mor(U,V). The co-
representations U and V' are equivalent, denoted U =2 V, if there
exists an invertible intertwiner from U to V.

e A subspace K of H is called invariant for a finite-dimensional co-
representation U of (4, A) on H if (19 Px)U(1®Pk) = U(1®Pk),
where Pk is the orthogonal projection of H onto K. We say that
U is irreducible if it has no non-trivial invariant subspaces.

A finite-dimensional co-representation U of (4,A) on H
is called wnitary if it is a unitary element in the unital C*-
algebra A ® B(H). The following assertion, which requires a
fairly straightforward argument, shows that there is no restriction
in working with finite-dimensional unitary co-representations.
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Proposition 3.2.1 Suppose U is a finite-dimensional co-
representation of (A, A) on H, and let h be the Haar state on
(A,A). Put Q@ = (h®)(U*U), which is an invertible positive
operator on H, and define V.= (1 ® Q2)U(1 ® Q~%). Then
V is a finite-dimensional unitary co-representation of (A, A)
on H and Q% € Mor(U,V). Thus any finite-dimensional co-
representation of (A,A) is equivalent to a finite-dimensional
unitary co-representation of (A, A).

For any finite-dimensional co-representations U € B(H)® A
and V € B(K) ® A of (4, A), the set Mor(U, V) is a subspace of
the vector space B(H,K) of all linear operators from H to K.
Schur’s lemma states:

e The co-representation U is irreducible if and only if Mor(U,U) =
C1.
e If U and V are irreducible, then

0 ifU2V
Mor(U, V) = { CF for F invertible € B(H,K) ifU z V.

Consider an additional finite-dimensional co-representation
W of (A,A). Given intertwiners S € Mor(U,V) and T €
Mor(V, W), the composition T o S belongs to Mor(U,W). If
S is invertible, then S~' € Mor(V,U). Therefore the relation &
is indeed an equivalence relation.

If U and V are finite-dimensional unitary co-representations,
then S* belongs to Mor(V,U) for S € Mor(U,V). Combining
this with the polar decomposition of operators between Hilbert
spaces, we find that finite-dimensional unitary co-representations
are equivalent if and only if they are unitarily equivalent (i.e. there
exists a unitary intertwiner).

Consider finite-dimensional co-representations U and V
of (A,A) on H and K respectively. We may form the finite-
dimensional direct sum co-representation U @& V and the finite-
dimensional tensor product co-representation U @ V of (A4, A):

e Using the canonical embedding (A ® B(H)) ® (A ® B(K)) =
A®(B(H)®B(K)) CA®BH® K),weregard UV := (U, V)
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as an element in A ® B(H & K). It is easy to check that U & V
is a finite-dimensional co-representation of (4,A) on H ¢ K.
e Putting U ® V = U;2Vj3, we obtain a finite-dimensional co-
representation of (4,A) on H ® K, where we have used the iden-
tification B(H) ® B(K) = B(H ® K).

It should be noted that we are using a leg notation which
differs slightly from the one introduced above. Here we look at
the obvious *-homomorphisms:

A®B(H) - A® BH)® B(K) : p— p12

and
A®B(K) > A®B(H)® B(K):p— pi13 .

If U and V are unitary, the co-representations U &V and U @ V
are unitary as well.

Notice that the identity element 1 € A is a 1-dimensional
unitary co-representation of (A, A) on C under the identification
A=A C=A® B(C). It is called the trivial co-representation
of (A, A). Obviously, U®1 = 1®U = U for any finite-dimensional
co-representation U.

We have manufactured an example of a concrete tensor C*-
category (see [19]). Namely, it is the category Rep(4, A) whose
objects are the finite-dimensional unitary co-representations of
(A,A). Its morphisms are the intertwiners with composition o
and *-operation as prescribed. The set of morphisms between two
finite-dimensional co-representations is a Banach space under the
operator norm, which obviously fulfils the C*-norm property. The
tensor product ® is an associative bilinear functor from Rep(A4, A)
to its product category with the trivial co-representation as the
unit. It commutes with the involutive contravariant *-functor act-
ing as the identity on objects and as the *-operation on morph-
isms.

This category is concrete in the sense that the objects
are essentially embedded in a category of finite-dimensional Hil-
bert spaces. Strict associativity of the tensor product ® can be
achieved, for example, by taking these Hilbert spaces to be Hilbert
subspaces of a given (properly infinite) von Neumann algebra, so



44 IMS Bulletin 43, 1999 I

that the tensor products are defined using the (strict associative)
product in the ambient von Neumann algebra.

Let U be a finite-dimensional unitary co-representation of
(A, A) on a Hilbert space H and suppose that K is a subspace of H
which is invariant under U. Then the orthogonal complement K+
of K is also invariant under U. Unlike the classical case, the argu-
ment for this is non-trivial in the quantum case. Denote by Uk
the element in A ® B(K) obtained by restricting U to K and sim-
ilarly, denote by Uk the restriction of U to K. They are both
finite-dimensional unitary co-representations, and the direct sum
co-representation Ux @ Ug 1 is equivalent to U. It is clear from
this result that any finite-dimensional unitary co-representation
can be decomposed into a finite direct sum of irreducible ones.
Also, the category Rep(A4, A) has sufficient sub-objects and direct
sums in the sense of [19].

Another way of seeing finite-dimensional co-representations
is as matrices over A. Let H be a finite-dimensional Hilbert
space and fix an orthonormal basis ej,...,e, for H. Now
define 6;; € B(H) by 6;;(v) = (v,ej)e; for all v € H and
i,7 € {1,...,n}, where (-,-) denotes the inner product on H.
Then for all 7,5,k € {1,...,n}, we have

n

00k = 05104 07 = 0ji 20“» =1.
j=1

Using this system of matrix units (6;;)7;_;, we identify
A ® B(H) and Mp,(A). Thus if U is an element of A ® B(H),

there exist unique elements U;; € A (i, = 1,...,n) such that
U = 37—, Uij @ 8;j. Moreover, U is a finite-dimensional co-

representation if and only if (U;;)7;—, is invertible in M,(A) and
A(Uj) = Ypo Uik @ Ugj for all 4,5 € {1,...,n}. We call the
elements U;; (¢,j = 1,...,n) the matriz coefficients of U with
respect, to the basis eq1,...,e,.

An invertible element U € M,(A) satisfying A(U;;) =
Yopey Uik ® Ug; for all 4,5 = 1,...,n will therefore be called
a matriz co-representation of (A,A) of dimension n. By the
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discussion above, the elements U;j, 4,5 € {1,...,n}, are matrix
coefficients of a co-representation.

A compact quantum group (A4, A) is called a compact matriz
pseudo-group, denoted (A, U), if it has a finite-dimensional matrix
co-representation U such that the unital *-algebra A generated by
its matrix coefficients U;; is dense in the C*-algebra A. The matrix
co-representation U is called the fundamental co-representation of
(A,0).

Recall the definition of the compact quantum group SU,(2).
It is a compact matrix pseudo-group with the fundamental co-
representation U € M(A,,) given by

U=<a —1y )
Y a

Let us go back to the general compact quantum group set-
ting. Define the subspace A of A as the linear span of the set

{U;; | U a matrix corepresentation of (4,A), 1 <14, j < dimensionU}

Let (u®)qaer be a complete set of pairwise inequivalent finite-
dimensional irreducible unitary co-representations of (A4, A) with
dimensions n, (completeness means that every finite-dimensional
irreducible unitary co-representation is equivalent to one of these).
By convention, we have a distinguished element in I (which we
denote by 0) such that u° is the trivial co-representation and thus
u?, = 1, the unit in A.

Theorem 3.2.2 The following properties hold for a compact
quantum group (A, A):
1. A is a dense unital *-subalgebra of A with Hamel basis
(uij la€l,i,j=1,...,n4) .
2. Define the map ® : A — A® A by restricting A to A. Then

(A, ®) is a Hopf *-algebra with co-multiplication ®, co-unit

¢ and antipode S uniquely determined by:

Nea
Suf) =D uf @ufy  e(uff) =05 S(uf) =uf”
k=1

foralla € I andi,j=1,...,n,.
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With the knowledge we have acquired so far, there are only
three statements in this theorem that require proofs:

L. linear independence of (uf; |a € 1,4,j=1,...,n4),
2. density of A4 in A,
3. *-invariance of A.

Assertion 1 can be proved using purely algebraic techniques
(see [31]), but follows more easily from Theorem 3.2.3 stated
below.

Assertion 2 requires the construction of the left (or right)
regular co-representation. It is in general an infinite-dimensional
unitary co-representation, and will therefore be dealt with in the
next subsection where infinite-dimensional co-representations are
discussed. The decomposition of the left regular co-representation
into irreducible finite-dimensional unitary co-representations is
what it takes to get density of A in A. As a consequence, the
left regular representation contains copies of all finite-dimensional
irreducible unitary co-representations (occurring with multiplicity
equal to their dimensions).

In the classical case, the decomposition of an infinite-
dimensional strongly continuous unitary representation of a com-
pact group G into finite-dimensional unitary representations goes
as follows, [26]: First reduce to a cyclic strongly continuous unit-
ary representation U : G — B(H) : s — U, by Zorn’s lemma.
Denote by z € H the cyclic vector for U. Then use the Haar
integral [ : C(G) — C to define a new inner product (-,-) on H

by

(2,y) = / (Usr,2) (2, Uy) ds

for z,y € H, where (-,-) is the original inner product on H.
This yields a strictly positive operator Q € B(H) determined by
(Qz,y) = (z,y) for all z,y € H. Now use the Banach-Steinhaus
Theorem and the Lebesgue Dominated Convergence Theorem to
conclude that @ is compact. So by the Hilbert-Schmidt Theorem,
@ has a decomposition into eigenspaces. These finite-dimensional
spaces are invariant subspaces of H for U, because () is easily seen
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to be an intertwiner of U. Thus we have obtained the desired
decomposition of U.

The proof for the general compact quantum group case is
done likewise (see Section 4). We should point out that for com-
pact matrix pseudogroups there is no need for the left regular
co-representation in order to manufacture sufficiently many finite-
dimensional unitary co-representations to get density of A in A.
It is implicit in the axioms (laid down by Woronowicz, where he
more or less imposed a Hopf *-algebra structure on A ), that
every finite-dimensional co-representation is contained in (higher)
tensor products of the fundamental co-representation U and its
conjugate U (see the definition of U below).

Let us enter the discussion about Assertion 3 now. Sup-
pose that U is a finite-dimensional unitary co-representation of
(A, A) on a Hilbert space H for which we fix an orthonormal basis
€1,...,en. Write U = Z:’L,]':l Ui; ®8;;, where Us;, (1,5 =1,...,n)
all belong to A. Now define V.= 3°" Uf ® 0;; € A ® B(H).
Then clearly (A ® ¢)(V) = Vi3Vas, but it is non-trivial (and to
our knowledge requires the construction of the left regular co-
representation) to show that V is invertible. By Proposition 3.2.1,
the finite-dimensional co-representation V' is equivalent to a finite-
dimensional unitary co-representation U of (4,A) on H = H (it
depends on the choice of the basis, but is uniquely determined up
to equivalence).

It can be shown (see [36]) that U and U are conjugates in
the tensor C*-category Rep(A4, A) in the following sense (see [19]):
There exist R € Mor(1,U ® U) and R € Mor(1,U ® U) such that

(R*®1g)(lg®R) =1 and (R*®17)(lF®R)=15.

Hence Rep(A, A) is a concrete strict tensor C*-category with con-
jugation.

As in the classical case, every compact quantum group
is completely determined by its finite-dimensional unitary co-
representations. In [36], Woronowicz proved a theorem generaliz-
ing the Tannaka-Krein Theorem for compact groups to compact
quantum groups. His theorem states that every concrete (embed-
ded) strict tensor C*-category with conjugation is equivalent to
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Rep(A4,A) for some compact quantum group (A, A), which is
uniquely determined up to isomorphism on the Hopf *-algebra
level (A, ®). The category Rep(A,A) is symmetric if for any
finite-dimensional unitary co-representations U € B(H) ® A and
V e B(K)® A, the flip H® K — K ® H induces an equivalence
between U ® V and V ® U. In this case A has to be commutat-
ive (see [37]), so Rep(A4,A) is the category of finite-dimensional
unitary representations of a compact group.

Suppose we are given an abstractly-defined strict tensor C*-
category T with conjugation (see [19]). It is not automatic that
T can be embedded into a tensor C*-category of Hilbert spaces,
i.e. that there exists a faithful tensor *-functor from the category
T to a tensor C*-category of Hilbert spaces. Such an embedding
exists whenever 7 has a symmetry (i.e. involutive braiding). This
theorem, which is due to S. Doplicher and J. E. Roberts (see
[6]), requires a highly non-trivial proof. They constructed such a
symmetric category in the framework of algebraic quantum field
theory (where no Hilbert spaces could a priori be attached to the
objects) to produce a compact group which could be interpreted as
the gauge group associated to the net of observable algebras for the
quantum field theory under consideration (see [5]). The category
of finite-dimensional unitary representations of this gauge group
is then equivalent to the symmetric category thus constructed.

In conformal field theory, tensor C*-categories appear which
are braided but not symmetric, [32]. The categories correspond
to co-representations of quantum groups at root of unity, [15],[11].
It should be pointed out that the root of unity quantum groups
do not fit into the C*-algebraic scheme of quantum groups. In
view of Woronowicz’s Tannaka-Krein Theorem, an abstractly-
defined strict tensor C*-category with conjugation thus cannot
be embedded into a tensor C*-category of Hilbert spaces without
further restrictions. And as the root-of-unity case shows, exist-
ence of a braiding is not sufficient. In [34] it is shown that the
co-representation theory of a quantum group at root of unity
gives rise to an (abstract) tensor C*-category.

Tensor C*-categories — including ribbon categories [14] —
have proved to be a vital link between quantum field theory and
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quantum groups. They also seem to be a meeting point with areas
such as knot theory and subfactor theory of von Neumann algebras
[13]. (See [33] for construction of subfactors from quantum groups,
and [23], [18] for equality of g-dimension, intrinsic dimension and
Jones index.)

Let us go back to the Haar state h on the compact quantum
group (A,A) with dense Hopf *-algebra (A,®). Clearly, the
restriction of h to A is a Haar functional on (A,®) and by
Hopf *-algebra theory (see [1]), it follows that h is faithful on
A. Obviously, h is uniquely determined by its values on the
linear basis appearing in Theorem 3.1.7. A combination of the
identity ®(uf;) = ;2 u} ® uf;, the linear independence of
the basis under consideration and the left invariance of h, yield
h(u)) = h(1) = 1 and h(uy) = 0 for all a € I\ {0} and
i,je{l,...,n}

We are looking at a special case of the orthogonality rela-
tions for the Haar state. The Peter-Weyl Theorem states that
for the commutative compact quantum group (C(G), A), the lin-
ear basis (\/noug; |« € I,4,j =1,...,n, ) forms an orthonormal
basis for L?(G). Since h need not be tracial in the quantum group
case, the situation is a bit more complicated. The quantum Peter-
Weyl Theorem, formulated and proved by Woronowicz (see [31]),
takes the form:

Theorem 3.2.3 For every a € I, there exists a unique positive
invertible n, X no-matrix F® over C with Tr F,, = Tr (F,) ! such
that

6aﬁ’ 6pq FS
M,

Jaﬁ 51’]‘ ((Fa)_l)pq
M, ’

h((uf,) u5y) = and h(uf,(uf,)") =

where M, = Tr F, = Tr (F,)~'.

We shall not give a complete proof but will indicate how
Schur’s lemma enters the argument.

Take a,8 € I. Fixi € {1,...,n3} and k € {1,...,n4,}
and define the ng x n, matrix A% over C with matrix elements

A;’f = h((ufj)*uﬁl) forall j € {1,...,ng} and I € {1,...,n4}.
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The corresponding operator from H to K, also denoted by
A is an intertwiner from u® to u®:

ng na

6 %o
] “ujy) ZZh ) ugs) rj) Ugy
r=1s=1

ng Nna

=D () Akug,

r=1 s=1

A 1=(h®)A((u

so 1® A* = (u?)*(1 ® A*)u®. By unitarity of u®, we conclude
that A** € Mor(u®,uf) foralli=1,...,ngand k=1,...,n,.
Schur’s lemma now tells us that

v [0 if o # 8
"l Mrlforsome), € C ifa=4.

When a = B, the matrix F, is a rescaling of (\;;) such that
Tr F, = Tr(F,)™'. Tt should be pointed out however, that it still
takes some work to prove the final result from this discussion.

We denote by L2(h) the Hilbert space completion of A with
respect to the inner product (-,-) on A given by {(a,b) = h(b*a)
for all a,b € A.

Notice that when h is tracial (which is true in the commut-
ative, the co-commutative and the finite-dimensional case), then
dpg Fj = 0ij (F*)=™Y)yp for i,5,p,g = 1,...,n4. Thus F® has to
be the identity matrix on M, (C), or equivalently, the collection
(VMoug; | € T,i4,j =1,...,n4) is an orthonormal basis for
L?(h).

Although the linear basis (ug; | a € I,i,j = 1,...,n4)
is not orthogonal in general, it can be orthonormalized in a
very concrete way (as opposed to the Gram-Schmidt proced-

ure). Define for every a € I the n, x ny-matrix (v;) over A

such that v = VM, ((Fy)~2)t ug;. A direct computation shows
that (vf; | €1,4,j=1,...,n,) forms an orthonormal basis for
L2(h).

The fact that h is not tracial can be described by a
one-parameter family of multiplicative linear functionals on A.
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Namely, define for every z € C a linear functional f, on A by
fo(ugy) = ((F“)’Z)ji, where @ € T and i,j € {1,...,n,}. This
definition makes sense as F'® is invertible and positive.

Forw,f € A" and a € A, put wxaxd = (0O1Ow)®3) (a) € A,
where &) = (& ® 1)® = (1 ® 3)®.

If follows from the quantum Peter-Weyl Theorem that
h(ab) = h(b(f1 xa = f1)) for all a,b € A. In fact, one may prove
the following additional properties:

1. f. is a unital multiplicative linear functional on A.
2. fi(a) = fz(a*) and f,(S(a)) = f-.(a) for all a € A.
3. fo=cecand (f, ® f.)® = fy4, forally,z e C.

Another property which is quite surprising is that this
family implements the square of the antipode in the sense that
S2(a) = f_1 xax f; for all a € A. This statement follows from the
fact that ((F,)~")* € Mor(u®, (S? ® t)(u®)) for all a € I, which
needs some more co-representation theory to prove.

We point out that the family (f,).cc of functionals is
uniquely determined by the conditions mentioned above and by
an analyticity condition (which is immediate from the definitions).

The following equivalences are easily checked: The Haar
state h is tracial if and only if f, = ¢ for all z € C, which is
equivalent to S = 1. This last condition holds if and only if S is
*-preserving. The fact that h is tracial is also equivalent to the
statement that the dual discrete quantum group is unimodular.
We shall come back to discrete quantum groups in a later section.

What is lurking beneath all this is the presence of cer-
tain one-parameter groups of algebra automorphisms on A. For
instance, define a one-parameter group (0,).cc of algebra auto-
morphisms on A by o,(a) = fi. *a x f;, for all a € A and
z € C. One may prove that h is a KMS-state whenever it is
faithful. Furthermore, the one-parameter group (o,).cc is then
the restriction to A of the modular group on the C*-algebra A (in
the sense of Tomita-Takasaki theory) for the KMS-state h. These
one-parameter groups play a central role in the theory of locally
compact quantum groups (see Section 7 (part IT)).

The following discussion indicates how closely connected
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areas like quantum groups, tensor categories, quantum field the-
ories, knot theory and subfactors really are. Define a function
d : Rep(4,A) — (0,00) by the formula Tr(f; ® ¢)u for all u €
Rep(A4,A). Tt is easy to see that the following properties hold:

ed(l)=1,

e d(u ®v) =d(u) + d(v),
o d(u®v) =d(u)d(v),

o dm) = d(u),

for all u,v € Rep(A4,A). These are properties characteristic for a
dimension function. It is indeed equal to the intrinsic dimension
defined on the tensor C*-category Rep(A,A), (see [23]), where
its relation to the g-dimension for quantized universal envelop-
ing algebras of Lie algebras and to the quantum dimension for
ribbon categories is also established. The intrinsic dimension is
defined canonically in any tensor C*-category with conjugation,
[19]. Longo’s work (see [18]) has shown how its square root can
be interpreted as the Jones index of subfactors of von Neumann
algebras. One may prove that d(u) is larger than the ordinary
dimension of the finite-dimensional unitary co-representation wu.

Another important consequence of the ‘semi-tracial’ prop-
erty of the Haar state h is that its left kernel {a € A|h(a*a) =0}
is a closed two-sided *-ideal of A. Hence we may form the quo-
tient C*-algebra A, = A/N},, where Nj, denotes the left kernel
of h. Let # : A — A, be the quotient map. It is easy to see
that the map (6 ® 0)A factors through the quotient A, and that
(0 @ 0)A(A,) C A, ® A,.. We denote the resulting map from
A, = A, ® A, by A,. Clearly (A,,A,) is a compact quantum
group with faithful Haar measure h, determined by h,.0 = h. Its
dense unital *-algebra A, is of course #(.A). Since h is faithful
on A, it is clear that @ is injective on A, so the Hopf *-algebra
(A, ®,) is isomorphic to (A, ®). Hence, one may always reduce
to compact quantum groups with faithful Haar state.

Recall now the definition of the co-commutative compact
quantum groups (C*(G),A,) and (C*(@), A, ), where G is a dis-
crete group. The Haar state h, on (C*(G),A,) is always faith-
ful, whereas the Haar state h, on (C*(G),A,) is faithful if and
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only if G is amenable. We defined a unital *-isomorphism m,
from C*(G) to C}(G) with the property that h, = h,m,. Thus
N; =kerm, and 6 = m,. Therefore, with (4,A) = (C*(G),A,),

we get (4, A,) = (C*(G),A,). Here A, = A= C[q].

The dual space A’ of the Hopf x-algebra (A, ®) consisting of
all linear functionals on A, is a unital *-algebra with product and
*-operation defined by wn(a) = (w®n)®(a) and w*(a) = w(S(a)*)
for all w,p € A" and a € A. The unit of A is the co-unit ¢
of (A, ®). Since the inclusion A’ ® A" C (A ® A)' is surjective
if, and only if, A is finite-dimensional, there is no hope that the

~

formula A(w)(z ® y) = w(zy) for all w € A" and z,y € A, which
defines an element A(w) € (A ® A)', gives a co-multiplication

~

A(w). Indeed, it follows from the quantum Peter—Weyl Theorem
that A(h) € A" ® A" if and only if A is finite-dimensional, where
h is the Haar state on (A, ®).

Let U be a finite-dimensional unitary co-representation of
(A, A) on a Hilbert space H. The formula (w® ¢)(U) makes sense
for any functional w € A’, and it can be shown that the map-
ping 7y : A - B(H) : w = (w ® ¢)(U) is a finite-dimensional
weak *-continuous unital *-representation of A’ on H. The cor-
respondence U — 7y is a bijection between finite-dimensional
unitary co-representations of (A, A) and finite-dimensional weak
*_continuous unital *-representations of A’. All the notions con-
cerning the co-representation theory of (A, A) and the represent-
ation theory of A’ (intertwiners, irreducibility, ...) transform nat-
urally under this bijection.

Suppose that the compact quantum group (A,A) is co-
commutative and let U be a finite-dimensional irreducible unitary
co-representation of (A, A). Then A’ is commutative and there-
fore the irreducible representation 7;; has to be 1-dimensional.
This implies that the matrix co-representation associated to U is
nothing but a unitary element u in A such that A(u) = u ® u.
Define G to be the subgroup of the unitary group of A consisting
of all group-like elements. It is now easy to see that the Hopf
*-algebras (A, ®) and (C[G],A) are isomorphic. If h is faith-
ful, then (4,A) is thus isomorphic to (C*(G),A,). Of course,
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the quantum Peter-Weyl Theorem is a triviality here because
h(6%6:) = h(ds5-14), which by definition is 1 if s = ¢ and 0 oth-
erwise.

4. Left Regular Co-representations and Multi-
plicative Unitaries

We shall need multiplier algebras in order to formulate the notion
of infinite-dimensional co-representations of compact quantum
groups. They are also an indispensable tool for the study of non-
compact quantum groups and multiplier Hopf *-algebras. For this
reason, we give a slightly more general definition of a multiplier
algebra than is customary.

Definition 4.1 Consider a *-algebra A satisfying the Frobenius
property. Denote by End(A) the unital algebra of linear maps
from A to A. Define the set M (A) to be

{T € End(A) | 3S € End(A) such that T(a)*b =a"S(b) Va,b € A} .

Then M (A) is a unital subalgebra of End(A). The linear map
S associated to a given T € M (A) is uniquely determined by the
Frobenius property and we denote it by T*. M(A) is a unital
*-algebra with T — T* as *-operation, .

For a € A, define L, € M(A) by L,(b) = ab for all b € A.
By the Frobenius property, the map A — M(A), a — L,, is an
injective *~homomorphism, and its image, which we shall identify
with A, is a two-sided *-ideal in M (A). Moreover, the ideal A is
essential in the following sense: An element z € M(A) satisfying
xa = 0 for all a € A, has to be equal to zero. It is clear that
M(A) = A if, and only if, A is unital.

Let A, B be two *-algebras having the Frobenius property.
The formula (S ® T)(a ®b) = S(a) @ T(b) for all a € A, b € B,
S € M(A)and T € M(B) defines an embedding of M (A) ® M (B)
into M (A ® B). In general it is not surjective.

When A is a C*-algebra, the Closed Graph Theorem implies
that M (A) consists of bounded operators. Also, M (A) is a unital
C*-algebra with the operator norm. We give two basic examples
of multiplier algebras:
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e Let X be a locally compact, Hausdorff space. Denote by Cp(X)
the C*-algebra of continuous functions on X that vanish at infin-
ity. Then M (Cy(@G)) is the C*-algebra of all bounded continuous
functions on X. Hence M (Cy(@)) is *-isomorphic to C'(X), where
X is the Stone-Cech compactification of X.

e Let Bo(H) be the C*-algebra, of compact operators on a Hilbert
space H. Then M (By(H)) is *-isomorphic to B(H).

Suppose we are given two C*-algebras A and B and a
*-homomorphism 7 : A — M(B). We call © non-degenerate
if the linear span of the set {w(a)b | a € A, b € B} is
dense in B. It is possible to show that every non-degenerate
*-homomorphism 7 : A — M(B) has a unique extension to a
unital *-homomorphism 7 : M (A) — M (B). We denote T by the
same symbol 7 in the sequel.

Again we need the leg numbering notation. In defining it,
we have to be more cautious in the present setting. Take three
C*-algebras A, B, C. Tt can be shown that there exists a non-
degenerate *-homomorphism 03 : A® C — M(A ® B ® C) such
that fi13(a ® ¢) = a®1®cfor all a € A, ¢ € C. Thus, it
has a unique extension to M (A ® C). Set x13 = 613(x) for all
z € M(A®C). The other variants of the leg numbering notation
are defined similarly.

Take two C*-algebras A, B and 2 € M(A® B). For w € A*,
the element (w ® ¢)(x) of M (B) is defined in the following way:

It can be shown (see [27]) that w® ¢t : A ® B — B has a
unique extension to a continuous linear map w ® 1 : A® B — B.
The next step is to extend the map w® ¢ to M(A® B). It can be
shown (see [20]) that w® ¢ has a unique bounded linear extension
w®i: M(A®B) — M(B) such that b (w®t)(X) = (w®:)((10b) X)
and (w®e)(X)b = (wRe)(X (1 ® b)) for all b in M(A) and X in
M(A ® B). Now put (w ® t)(z) := (w®¢)(z) for x € M(A® B).
Of course, a similar construction produces the element (v ® 0)(x)
of M(A) for any § € B* and 2 € M(A® B).

Suppose G is a compact group and consider a map U from G
to B(H), where H is a (not necessarily finite-dimensional) Hilbert
space. Identify C(G, Bo(H)) with C(G) ® Bo(H). Define a linear
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map U from C(G) ® Bo(H) to the set of all functions from G
to Bo(H) by U(F)(s) = Us F(s) for all F € C(G,Bo(H)) and
s € G. Then U is bounded and strongly *-continuous if and
only if U € M(C(G) ® Bo(H)). Thus arguing as in the finite-
dimensional case, we see that U is a strongly-continuous unitary
representation of G on H if, and only if, U is a unitary element
of the multiplier C*-algebra M (C(G) ® Bo(H)) and

(A ® L)ﬁ = 013023 .

Here we have extended the non-degenerate *~homomorphism A®¢
to the multiplier algebra M (C(G) ® Bo(H)) as explained above.

Notice that requiring U to belong to M (C'(G)) ® M (Bo(H))
amounts to requiring that U be norm-continuous, which in general
is a too strong condition. For instance, the left regular represent-
ation is norm-continuous if, and only if, it is represented on a

finite-dimensional Hilbert space.

Definition 4.2 Let (A, A) be a compact quantum group and H
a Hilbert space. A unitary element U € M(A ® Bo(H)) is called
a unitary co-representation of (A, A) if (A ® 1)(U) = Uy3Usz.

We will not look at the tensor category of all (infinite-
dimensional) unitary co-representations of a compact quantum
group, but will just mention some results relating to finite-
dimensional unitary co-representations and the Hopf *-algebra
(A, D).

However, let us see how intertwiners and invariant subspaces
are defined in the infinite-dimensional setting:

e Let U and V' be unitary co-representations of (4, A) on Hilbert
spaces H and K, respectively, and suppose T' € B(H, K). We say
that T is an intertwiner from U to V if (w®)(V)T =T (w®)(U)
for all w € A*

e A closed subspace K of H is said to be invariant under U if
(we)(U)K C K for all w e A*.

The theorem below implies that the orthogonal complement K+ of
K is invariant under U if K is. As a consequence, the restrictions
of U to K and K are unitary co-representations with direct sum



= Quantum Groups I o7

equivalent to U (i.e. there exists a unitary intertwiner between
them).

The terminology (irreducibility, tensor products,...) used
for finite-dimensional unitary co-representations is now easily gen-
eralized to infinite-dimensional unitary co-representations.

Let U be a unitary co-representation of (A, A) on Hilbert
spaces H. Define the subspace B of B(H) to be the closure of the
set { (ha®1)U*|a € A}. The importance of B is revealed in the
following theorem:

Theorem 4.3 Let the notation be as above. The following prop-
erties hold:

e B is a non-degenerate C*-subalgebra of B(H),
oeU c M(A® B),
c(1®TU=U(1®T) & T e B forall T € B(H) .

Here B’ is the commutant of B in B(H), and so it is a von
Neumann algebra. Clearly, we have regarded 1® T for T € B(H)
as an element in M (A ® Bo(H)). It can be shown that T inter-
twines U with itself if, and only if, U satisfies the last condition
in the theorem. From this and the *-invariant property of B, it
follows that orthogonal complements of U-invariant subspaces are
U-invariant.

Theorem 4.4 Every irreducible unitary co-representation of a
compact quantum group (A, A) is finite-dimensional. Any unit-
ary co-representation U of (A,A) on a Hilbert space H can be
decomposed into a direct sum of finite-dimensional unitary co-
representations. More precisely, there exists a family of mutually
orthogonal finite-dimensional subspaces (H;);cr of H such that
H = ®;crH; and each H; is invariant under U and the restriction
U; of U to H; is a finite-dimensional unitary co-representation of
(A, A). In this case we write U = ®;c1U;.

We sketch the proof (see [31] for more details). The first
statement is immediate from the second one. Define for v € H,
the rank-one operator 6, , on H by 6, ,(w) = (w,v)v for w € H.
Next, put @y = (h®t)(U*(1®6,,,)U), where h is the Haar state on
(A, A). The element U*(1®6, ,)U obviously belongs to A® By (H)
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(remember that A is unital), so @, is a positive compact operator
on H. A straightforward calculation shows that U and 1 ® @,
commute in M (A ® Bo(H)).

By taking an orthonormal basis (e;)icr, we get a family
of rank-one projections (fe; e, )icr which sum up to the identity
operator on H in the strong topology. Using strict continuity
arguments, one sees that the family (Q., )ics is strongly summable
and that the sum equals the identity operator on H. In particular
Qe; # 0 for some j € I. Since @), is compact and non-zero, it
has a finite-dimensional eigenspace (corresponding to any strictly
positive eigenvalue). Clearly, this eigenspace is invariant under
U. The restriction of U to the orthogonal complement is again a
unitary co-representation (here this is obvious). Applying Zorn’s
lemma it is not difficult to see that we get the desired orthogonal
decomposition of H into finite-dimensional U-invariant subspaces.
Using finite-dimensional co-representation theory, any unitary co-
representation can therefore be decomposed into a direct sum of
finite-dimensional irreducible unitary co-representations.

We now proceed to define the most important unitary
co-representation, the left regular one, which incorporates the
co-product of the quantum group. Let (H,w, Q) be a GNS-
representation for the Haar state h, i.e. H is a Hilbert space,
m: A — B(H) is a unital *-homomorphism and 2 is an element

in H such that 7(4)Q = H and h(a) = (7(a)Q2,Q) for all a € A.

Pick a faithful unital *-representation # of A on a Hilbert
space K. Let ay,...,a, € A and vy,...,v, € K. Then the left
invariance of h implies that

I 30, @@ m)(A@)(vi @ Q) 17 = 327 ) (Wi ® 9)(Alajas))

= i (i, v5) (m(ai)Q, m(ay)Q) = | 3232, vi @ m(ai) QP
From this we conclude that we have a well-defined isometry U €
B(K ® H) such that U(v ® m(a)Q) = (0 @ m)(A(a))(v ® Q) for
all @ € A and v € K. The density of A(A)(A®1)in A A
implies that U has dense range and is therefore unitary. In fact,
the following proposition holds.

Proposition 4.5 There exists a unique unitary element V of
M (A ® By(H)) such that V*(v ® 7(a)f2) = (0 @ 7)(A(a))(v @ Q)
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for all a € A and v € K. Moreover, the element V is a unitary
co-representation of (A, A).

Proof: The formula
V(1 ®Or(ay0,0) = (0 @ m)(A(a))(A(a))(1 @ ba,0)

foralla € Aandv € K, implies that V*(A®Bo(H)) = A®By(H).
Invoking the unitarity of V', we get V(A ® Bo(H)) = A® Bo(H).
So we can regard V' as an element in End(A ® Bo(H)) and it is
easy to see that its adjoint in the sense of Definition 4.1 is V*,
regarded as an element in End(A ® By(H)). Consequently, V' can
be considered as an element in M (A ® By(H)).

The co-representation property follows from the identity

(W )V m(a) = 7((w®)A(a)2
for all w € A*, combined with the coassociativity of A. O

The co-representation V' is that which is called the left reg-
ular co-representation of the compact quantum group (A, A). We
have, for all a,b € A, that

(t @ Wr@ya,rme) (V) = (@ W) (A(B*)(1®a)) .

Now decompose V' according to Theorem 4.4 into a direct sum
@;erV; of finite-dimensional co-representations of (A4, A). Clearly,
(t @ Wy ;) (Vi) € A for all i € I and v;,w; € H;. Therefore
(t@Wr(a)a,rp)e) (V) and thus (1@ h)(A(b*)(1®a)) belongs to the
closure of A for all a,b € A. Since { (t®h)(A(D*)(1®a)) | a,be A}
is a dense subset of A, we conclude that A is dense in A, which
proves Theorem 3.1.7.

Definition 4.6 Define the unitary element W € B(H ® H) by
W = (mr®@1)(V). Then W*(v @ m(a)Q) = (7 ® 7)(A(a))(v ® Q)
for all a € A and v € H. The operator W is called the multiplic-
ative unitary of the compact quantum group (A, A). It satisfies
the pentagonal equation: W12 W13Was = WosWio (this is a con-
sequence of the co-associativity of A).

The following properties hold:
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e w(A) is the closure of the set {(t ® w)(W) | w € By(H) } in
B(H).
o (m@m)A(a) =W*(1®n(a))W for all a € A.

Hence the co-multiplication is essentially encoded in W.

These considerations lead to the work of Baaj & Skandalis
[3], who study multiplicative unitaries in their own right (in that
they are not necessarily constructed from a prescribed quantum
group). These authors construct quantum-group-like objects with
co-multiplication from multiplicative unitaries.

Definition 4.7 Consider a Hilbert space H and a unitary ele-
ment W € B(H ® H) satisfying the pentagonal equation (so
WiaWisWas = W23W12). We call W a multiplicative unitary
on H.

As in the case of a compact quantum group, one introduces:
1. The closed subspaces A=[(t @ w)(W) | w € By(H)*] and
A=[(w®)(W) | we By(H)*] of B(H).
2. Linear maps A : A » B(H® H) and A : A - B(H ® H)
given by A(z) = W*(1 @ )W forall z € A and A(z) =
W(z ® 1)W* for all z € A.

Here [ ] denotes the closed linear span of the elements under con-
sideration.

Baaj and Skandalis formulated a certain regularity condi-
tion for multiplicative unitaries and proved that if W satisfies this
regularity condition, then:

e A and A are non-degenerate C*-subalgebras of B(H),
e (AR)A=(®A)A and (A®)A=(®AA,
e A(A)(A®1) and A(A)(1 ® A) are dense subspaces of A ® A,
e A(A)(A®1) and A(A)(1 ® A) are dense subspaces of A ® A.

However, the regularity condition turned out to be not very
suitable for the general framework of quantum groups. Baaj him-
self pointed out (see [2]) that the multiplicative unitary associated
to the quantum group E(2) does not satisfy the regularity condi-
tion.
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Later Woronowicz (see [35]) introduced the notion of man-
ageability for multiplicative unitaries. This probably covers the
general case. Assuming this condition, he was able to prove
the same properties for (4,A) and (A,A) as Baaj and Skan-
dalis proved using their regularity condition. Woronowicz also
constructed an antipode-like object that admitted a polar decom-
position (under the assumption of his manageability condition).

The objects (A, A) and (A, A) are to be thought of as dual
to each other. For instance, one of them is a compact quantum
group if and only if the other one is a discrete quantum group.
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