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Abstra
t: This is an overview of C

�

-algebrai
 quantum groups. We

begin with elementary Hopf algebra theory and de�ne a �nite quantum

group as a Hopf

�

-algebra that is a Frobenius algebra. The duality

theory for �nite quantum groups is thoroughly developed and in
ludes

a generalization of the Plan
herel Formula.

Next we 
onsider the more general 
ase of 
ompa
t quantum

groups as de�ned by S. L. Woronowi
z. We show how 
ompa
t groups

and duals of dis
rete groups �t into this 
ategory. The famous example

quantum SU(2) found by Woronowi
z is then treated. It was the �rst

example of a 
ompa
t quantum group that is not a Ka
 algebra.

We develop the �nite-dimensional 
o-representation theory and

dis
uss the generalized Tannaka-Krein Theorem. The Haar fun
tional

(whose existen
e is one of the major a
hievements of Woronowi
z's

theory) is used to establish a Peter-Weyl type theorem for matrix ele-

ments of unitary 
o-representations. As opposed to the situation for

Ka
 algebras the antipode is in general not involutive. This deviation

is governed by a one-parameter group of automorphisms, whi
h is also

related to the fa
t that the Haar fun
tional is not a tra
e.

The algebra of `regular fun
tions' of a 
ompa
t quantum group

is a Hopf

�

-algebra. It is a dense subalgebra of the C

�

-algebra o

ur-

ring in the de�nition of the quantum group. The proof of these fa
ts

uses the left regular 
o-representation. It is an in�nite-dimensional


o-representation, whi
h is a notion involving multiplier algebras.

Compa
t quantum groups may be investigated via left regular 
o-

representations, or rather multipli
ative unitaries. We give an a

ount

of this approa
h due to S. Baaj and G. Skandalis and later modi�ed

by Woronowi
z.

In the �nal part of this survey, to be published in the next issue

of the Bulletin, we 
onsider the 
ategory of multiplier Hopf

�

-algebras

8
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introdu
ed by A. Van Daele, we show how C

�

-algebrai
 quantum groups

are related to the examples of quantum groups studied by V. G. Drin-

feld and his 
ollaborators, and we 
onsider brie
y the theory of general

lo
ally 
ompa
t quantum groups, stating the re
ently established de�n-

ition of a lo
ally 
ompa
t quantum group given by S. Vaas and the �rst

author.

Throughout this paper we use the symbol � to denote an algeb-

rai
 tensor produ
t and 
 to denote its topologi
al 
ompletion with

respe
t to the minimal tensor-produ
t norm. The only ex
eptions are

made when we dis
uss h-adi
 
ompletions in Se
tion 6 (part II).

Table of 
ontents

1. Introdu
tion

2. Hopf

�

-algebras, Finite Quantum Groups and Duality

3. Compa
t Quantum Groups

4. Left Regular Co-Representations and Multipli
ative Unitaries

1. Introdu
tion

The aim of this paper is to introdu
e the reader to the fas
in-

ating subje
t of quantum groups from the C

�

-algebra point of

view. Quantum groups were dis
overed a generation ago, and have

sin
e then developed in radi
ally di�erent dire
tions motivated

both from physi
s and mathemati
s. There exist several ex
ellent

treatments 
overing parts of the vast topi
 of quantum groups (see

[14℄,[25℄), but none seem to be seriously 
on
erned with portraying

in a broad manner the work done in the C

�

-algebra framework.

An explanation for this may be that important work on the gen-

eral lo
ally 
ompa
t quantum group 
ase has been a

essible only

in preprint form.

Loosely speaking, quantum groups are essentially groups

or group-like obje
ts that are quantizations of groups. We shall

explain this in great detail later, but, for the moment, let us 
on-

sider the situation more heuristi
ally. Perhaps one of the most

fruitful ideas in mathemati
s is to study geometri
al spa
es via

naturally asso
iated rings or algebras. A 
lassi
al example is that
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of a 
ompa
t Hausdor� spa
e X and the C

�

-algebra C(X) of 
on-

tinuous fun
tions on X . It is well known that all the topolo-

gi
al information of the spa
e X is 
ontained in the C

�

-algebrai


stru
ture of C(X). In fa
t, Gelfand's theorem tells us that the

fun
tor X 7! C(X) is an anti-equivalen
e from the 
ategory of


ompa
t Hausdor� spa
es to the 
ategory of 
ommutative unital

C

�

-algebras.

With the dis
overy of quantum physi
s it soon be
ame 
lear

that non-
ommutative algebras 
ould be used to explain geometry

on the s
ale of atoms and mole
ules. Quantum physi
s 
ould then

be seen as a generalization of the theory of 
lassi
al geometri
al

spa
es to a theory of a suitable 
ategory of algebras, in su
h a way

that the full sub
ategory of 
ommutative algebras 
orresponds to

the 
lassi
al geometri
al spa
es. In this way non-
ommutative

algebras 
an 
on
eptually be thought of as `sets of fun
tions on

quantum spa
es'. The 
on
ept of quantization is more spe
i�


than explained here. It is intimately 
onne
ted to Poisson man-

ifolds and Poisson bra
kets measuring the deviation in the non-


ommutative produ
t from the 
ommutative pointwise produ
t in

terms of a deformation parameter (thought of as Plan
k's 
on-

stant). Se
tion 6 (part II) is devoted to explaining this.

Of 
ourse, the appropriate 
ategory of algebras studied

depends on what properties of the spa
e one is interested in.

Thus, the algebras (given with pointwise operations) may 
onsist

of polynomials (algebrai
 geometry), 
omplex-analyti
 fun
tions

(
omplex geometry), smooth fun
tions (di�erential geometry),


ontinuous fun
tions (topology) or measurable fun
tions (meas-

ure theory).

Quantum physi
s is in its nature a probabilisti
 theory. It

was J. von Neumann who gave a rigorous mathemati
al founda-

tion for quantum me
hani
s, using von Neumann algebras, whi
h

together with the theory of weights generalizes the 
lassi
al the-

ory of Borel integration. With their powerful stru
ture theory, von

Neumann algebras have proved su

essful in many areas of math-

emati
s. In fa
t, the earliest attempt to give a generalization of

Pontryagin's duality theorem for abelian lo
ally 
ompa
t groups

to arbitrary lo
ally 
ompa
t groups used 
ertain von Neumann
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algebras known as Ka
 algebras (see [8℄).

Von Neumann algebras are C

�

-algebras of a spe
ial kind.

Whereas von Neumann algebras generalize Borel measure theory,

C

�

-algebras form, via Gelfand's theorem, natural generalizations

of lo
ally 
ompa
t Hausdor� spa
es. This suggests that lo
ally


ompa
t quantum groups should be de�ned using C

�

-algebras.

A leading proponent of this approa
h is the Polish physi
ist and

mathemati
ian S. L. Woronowi
z, see [39℄. His viewpoint is very

mu
h in the spirit of non-
ommutative geometry developed by

A. Connes (see [4℄), who uses non-
ommutative C

�

-algebras as a

framework for powerful and useful notions of di�erential geometry

on quantum spa
es.

The C

�

-algebra stru
ture takes 
are of the quantum spa
es

only as topologi
al spa
es. More stru
ture has to be imposed to


apture a possible group-like stru
ture on these quantum spa
es.

After all, it is 
lear that topologi
al groups may be homeomorphi


without being isomorphi
 | there exist, for instan
e, two non-

isomorphi
 groups 
onsisting of eight elements. For �nite groups

the extra stru
ture we are talking about is that of a Hopf algebra.

Here the group multipli
ation is en
oded in what is 
alled a 
o-

multipli
ation.

Suppose G is a �nite group and let C (G) denote the unital

�

-algebra of 
omplex valued fun
tions onG. The 
o-multipli
ation

� is the unital

�

-homomorphism from C (G) to the algebrai
 tensor

produ
t C (G) � C (G) de�ned by �(f)(s; t) = f(st) for all f 2

C (G) and s; t 2 G. Here we have identi�ed C (G)� C (G) with the

unital

�

-algebra C (G �G) of 
omplex valued fun
tions on G�G.

Thus � is simply the transpose of the multipli
ation of G by the


ontravariant fun
torG 7! C (G) from the 
ategory of �nite groups

to the 
ategory of �nite-dimensional 
ommutative C

�

-algebras.

The asso
iativity of the group multipli
ation gives the identity

(� � �)� = (� � �)�, known as 
o-asso
iativity . In this way

the fun
tor, G 7! C (G), is used to transfer systemati
ally group

notions (su
h as the existen
e of the unit element and the inverse,

together with their axioms) to notions about algebras (su
h as

the existen
e of the 
o-unit and the 
o-inverse with 
orresponding

identities). In the 
ategory of algebras these notions makes sense
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even for algebras that are not 
ommutative and one arrives at

the more general 
on
ept of a Hopf algebra. As we shall see in

Se
tion 2 , �nite quantum groups are Hopf algebras with a good

�

-operation. In Se
tion 2 we develop the theory of su
h quantum

groups to familiarize the reader with the fun
tor, G 7! C (G), and

the theory of Hopf algebras.

For �nite groups the topology involved is the dis
rete one,

and the generalization to �nite quantum groups runs as smoothly

as one 
ould hope. For 
ompa
t groups one 
onsiders instead the

fun
tor, G 7! C(G), going into the 
ategory of unital C

�

-algebras,

where C(G) is the algebra of 
ontinuous fun
tions on the 
ompa
t

group G. One may de�ne � using the same formula as before. In

general �(C(G)) � C(G � G) is not 
ontained in the algebrai


tensor produ
t C(G) � C(G). But C(G � G) may be identi�ed

with the topologi
al 
ompletion C(G) 
 C(G) of C(G) � C(G)

with respe
t to a natural C

�

-norm, so one arrives at a topologi
al

version of Hopf algebras.

There is no problem de�ning the 
o-unit and 
o-inverse on

C(G). In the mid-eighties a whole new 
lass of group-like obje
ts

were dis
overed, and it be
ame evident from these important

examples | whi
h 
learly deserved to be 
alled quantum groups

| that the unit and 
o-inverse 
ould not in general be de�ned as

bounded operators on the non-
ommutative C

�

-algebras involved.

They also ruled out Ka
 algebras as determining a too restri
tive


lass of quantum groups, exa
tly for the reason that the 
o-unit

and the 
o-inverse were treated as bounded operators (on the von

Neumann algebras involved).

It was Woronowi
z who proposed the �rst de�nition (see

[37℄) of a 
ompa
t quantum group general enough to 
ontain

his newly-dis
overed quantum group, a twisted version SU

q

(2)

(see [38℄), of the 
lassi
al matrix group SU(2). He proved the

existen
e of the Haar state for su
h quantum groups and used

it to extend the 
lassi
al Peter-Weyl Theorem to the 
ategory of


ompa
t quantum groups that he 
alled 
ompa
t matrix pseudo-

groups . Soon after, he proved a generalization of the 
elebrated

Tannaka-Krein Theorem, whi
h made it 
lear that the theory of


ompa
t quantum groups was in essen
e a theory of �nite dimen-
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sional unitary 
o-representations. The matrix elements of these


o-representations form a dense unital

�

-algebra of the C

�

-algebra

of the quantum group, generalizing the algebra of regular fun
-

tions on 
lassi
al groups. The 
o-unit and 
o-inverse 
an be

de�ned most naturally on this algebra. We outline Woronowi
z's

theory of 
ompa
t quantum groups in Se
tion 3 and Se
tion 4.

In a subsequent paper [22℄ Woronowi
z de�ned the dual of

a 
ompa
t quantum group, thereby generalizing 
lassi
al dis
rete

groups. For a dis
rete group G it is natural to 
onsider the fun
-

tor G 7! C

0

(G), where C

0

(G) is the non-unital C

�

-algebra of

(
ontinuous) fun
tions on the dis
rete group G vanishing at in�n-

ity. The formula for the 
o-multipli
ation � given above does not

ne
essarily have range 
ontained in C

0

(G�G); rather, it belongs to

the unital C

�

-algebra C

b

(G�G) of bounded fun
tions on G, whi
h

may be identi�ed with the multiplier algebra of C

0

(G) 
 C

0

(G).

Thus one is led to the notion of multiplier Hopf algebras .

That the topology does not play a major role in the theory

of 
ompa
t and dis
rete quantum groups be
ame evident from

A. Van Daele's de�nition of algebrai
 quantum groups [29℄. It is

a purely algebrai
 de�nition and the 
ategory thus de�ned 
on-

tains Woronowi
z's 
ompa
t and dis
rete quantum groups. Also

Van Daele proved a generalization of Pontryagin's duality the-

orem within this 
ategory. The important notion is that of the

Haar fun
tional 
orresponding to the Haar integral for 
lassi
al

groups. It is used to de�ne the Fourier transform whi
h identi�es

the 
onvolution algebra of the quantum group with the algebra

of fun
tions on its dual quantum group. In Se
tion 5 (part II)

we outline the theory of multiplier Hopf algebras and identify the


ompa
t and dis
rete quantum groups of Woronowi
z.

For a 
ompa
t Lie group there are other algebras naturally

atta
hed to it, namely its asso
iated Lie algebra and the universal

enveloping algebra of the Lie algebra 
onsisting of left-invariant

di�erential operators on the Lie group. This 
an be embedded

as a unital Hopf

�

-algebra into the maximal dual of the Hopf

�

-

algebra of regular fun
tions on the Lie group. Unlike the 
ase of

the 
onvolution algebra (whi
h may also be seen as an algebra

of linear fun
tionals on the algebra of regular fun
tions), these



14 IMS Bulletin 43, 1999 �

linear fun
tionals are of 
ourse not bounded, so the C

�

-algebras


ome in very indire
tly as algebras to whi
h these di�erential

operators are aÆliated. Most of the interesting new examples

of quantum groups where found as deformations or quantizations

of these 
o-
ommutative Hopf algebras in the monumental work

by V. G. Drinfeld and his 
ollaborators. Se
tion 6 (part II) is

devoted to explain some of their work and how it is related to

Woronowi
z's theory.

In Se
tion 7 (part II), we give a re
ent de�nition of lo
-

ally 
ompa
t quantum groups proposed by the �rst author and

S. Vaas (see [16℄). It is well known that the unitary representa-

tion theory of non-
ompa
t lo
ally 
ompa
t groups is highly non-

trivial. For the matrix group SL(2;R), for instan
e, there are no

�nite-dimensional unitary representations. The role of topology

be
omes mu
h more signi�
ant in treating non-
ompa
t lo
ally


ompa
t quantum groups, and the left and right invariant Haar

weights play a vital role.

2. Hopf

�

-algebras, Finite Quantum Groups and

Duality

We reformulate the theory of �nite groups in terms of �nite

quantum groups by 
onsidering algebras of fun
tions naturally

atta
hed to the groups. These algebras 
arry additional stru
-

tures leading to the notion of a Hopf

�

-algebra. Hopf algebras

have been subje
t to intensive studies by algebraists over the

last de
ades, [1℄. A �nite quantum group is a �nite-dimensional

Hopf

�

-algebra whi
h in addition is a C

�

-algebra or Frobenius

algebra. In the 
ategory of �nite quantum groups thus de�ned,

the �nite groups are identi�ed as the full sub
ategories of 
ommut-

ative or 
o-
ommutative Hopf

�

-algebras, and the �nite abelian

groups as the Hopf

�

-algebras whi
h are both 
ommutative and


o-
ommutative. In this se
tion we establish a duality result

within the 
ategory of �nite quantum groups that generalizes

Pontryagin's duality theorem for �nite abelian groups.

The 
ru
ial role played by Haar fun
tionals on the Hopf

�

-algebras involved, 
orresponding to Haar integrals for groups,

will be evident. Among the important identities obtained is the
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generalization of Plan
herel's formula for �nite abelian groups.

It turns out that the duality theory developed here (whi
h uses

the Haar fun
tionals so manifestly) has found its formulation in

the broad framework of multiplier Hopf

�

-algebras developed by

A. Van Daele (see Se
tion 5 (part II)). They 
ontain all 
ompa
t

and dis
rete groups.

Histori
ally the fun
tion algebra K(G), introdu
ed below,

led to the theory of 
ompa
t quantum groups developed by Woro-

nowi
z in the C

�

-algebra 
ontext (see [31℄ and [37℄). The 
onvolu-

tion algebra C [G℄, also de�ned below, suggested the approa
h to

quantum groups in terms of Ka
 algebras [8℄. Later we shall study

a third approa
h by 
onsidering the universal enveloping algebras

of Lie algebras, whi
h are again Hopf

�

-algebras, but now 
onsist-

ing of unbounded elements. This approa
h is emphasized by the

Russian s
hool and in
ludes the monumental work by Drinfeld,

[7℄.

Here we have 
hosen to sti
k to the �nite-dimensional 
ase

due to the te
hni
al diÆ
ulties otherwise en
ountered, and we

hope that our rather detailed a

ount, in
luding proofs, will reveal

the essential ideas ne
essary to resolve problems arising in the

development of the more general theory.

The �rst example, and the most relevant to our approa
h,


omes with the fun
tion algebra K(G) of a group G. To simplify

matters, we shall assume G to be �nite. Later, lo
ally 
ompa
t

(in�nite) groups will enter the arena, and this approa
h proposes

C

�

-algebras as a framework for lo
ally 
ompa
t quantum groups.

Let K(G) be the set of all 
omplex-valued fun
tions on G.

It is a unital

�

-algebra under the following operations:

� (�f)(s) = � f(s);

� (f + g)(s) = f(s) + g(s);

� (fg)(s) = f(s)g(s);

� f

�

(s) = f(s);

� 1(s) = 1;

where f; g 2 K(G), � 2 C and s 2 G. Throughout this paper

we use the symbol � to denote the algebrai
 tensor produ
t of

two ve
tor spa
es. Sin
e G is �nite, we may identify the algebras
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K(G) � K(G) and K(G � G) via the formula (f 
 g)(s; t) =

f(s) g(t) for all f; g 2 K(G) and s; t 2 G. We transpose the group

stru
ture to K(G) by introdu
ing:

� A unital

�

-homomorphism � : K(G)! K(G)�K(G) su
h that

�(f)(s; t) = f(st).

� A unital

�

-homomorphism " : K(G)! C su
h that "(f) = f(e).

� A unital involutive

�

-automorphism S : K(G) ! K(G) su
h

that S(f)(s) = f(s

�1

).

Here f 2 K(G) and s; t 2 G, whereas e denotes the neutral ele-

ment in G.

The group axioms 
an be expressed in terms of these maps

by the following identities:

1. (�� �)� = (���)�;

2. ("� �)� = (�� ")� = �;

3. m(S � �)� = m(�� S)� = 1 "(:);

where � is the identity map on K(G) and m : K(G) �K(G) !

K(G) is the multipli
ation on K(G) lifted to the tensor produ
t

K(G)�K(G), som(x
y) = xy for x; y 2 K(G). The �rst identity

is a 
onsequen
e of the asso
iativity of the group multipli
ation.

The se
ond identity expresses the fa
t that e is the neutral element

of G and the last one stems from the axiom for inverse elements.

What we have at hand is an example of a 
ommutative Hopf

�

-algebra. Let us re
all the general de�nition:

De�nition 2.1 Consider a unital

�

-algebra A (with multipli
a-

tion m : A�A! A : a
 b 7! ab ) and a unital

�

-homomorphism

� : A! A�A satisfying 
o-asso
iativity, i.e. (���)� = (���)�.

Assume furthermore the existen
e of linear maps " : A ! C and

S : A! A ful�lling the 
onditions:

("� �)� = (�� ")� = �; (2:1:1)

m(S � �)� = m(�� S)� = 1 "(:) : (2:1:2)

The pair (A;�) is 
alled a Hopf

�

-algebra.

The linear maps " and S are uniquely determined by the


onditions (1) and (2) (see [1℄). They are 
alled 
o-unit and anti-

pode, respe
tively, whereas the term 
o-multipli
ation is used for

�. We 
olle
t some basi
 properties:
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Proposition 2.2 Consider a Hopf

�

-algebra (A;�) with 
o-unit

" and antipode S. Then

1. " is a unital

�

-homomorphism and "S = ".

2. S is anti-multipli
ative and S(S(a

�

)

�

) = a for all a 2 A.

3. �(S � S)� = �S, where � : A � A ! A � A is the 
ip-

automorphism given by �(a
 b) = b
 a for all a; b 2 A.

We say that two Hopf

�

-algebras (A

1

;�

1

) and (A

2

;�

2

) are

isomorphi
 if there exists a

�

-isomorphism � : A

1

! A

2

su
h that

(� � �)�

1

= �

2

�. Noti
e that the uniqueness of the 
o-unit and

the antipode implies that "

2

� = "

1

and S

2

� = �S

1

.

The two linear maps T

1

; T

2

: A�A! A�A determined by

T

1

(a
 b) = �(a)(1
 b) and T

2

(a
 b) = (a
 1)�(b) ;

where a; b 2 A, play a fundamental role in the theory of quantum

groups. They are linear isomorphisms with inverses given by

T

�1

1

(a
b) = ((��S)�(a)) (1
b) and T

�1

2

(a
b) = (a
1) ((S��)�(b))

for a; b 2 A.

Returning to our example (K(G);�), the formulas in Pro-

position 2.2 are seen to be dual versions of the well known iden-

tities e

�1

= e, (gh)

�1

= h

�1

g

�1

and (g

�1

)

�1

= g in the group G.

The maps T

1

and T

2

are transposes of the bije
tive maps

G�G! G�G : (s; t) 7! (st; t) and G�G! G�G : (s; t) 7! (s; st);

respe
tively, where s; t 2 G. The bije
tivity of T

1

and T

2

expresses

the fa
t that the maps s 7! st and s 7! ts from G to G, where

s; t 2 G, are bije
tive. Sin
e G is �nite it means that ea
h of them

is either surje
tive or inje
tive.

It is easy to prove that the set of 
hara
ters (that is, unital

�

-homomorphisms) on K(G) is a group isomorphi
 to G under

multipli
ation given by �� = (�
�)� for 
hara
ters �; � of K(G).

Thus if G

1

and G

2

are �nite groups, then they are isomorphi


if and only if the asso
iated Hopf

�

-algebras (K(G

1

);�

1

) and

(K(G

2

);�

2

) are isomorphi
.
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Furthermore, for a �nite group G, observe that K(G) is

a �nite-dimensional 
ommutative C

�

-algebra with respe
t to the

supremum norm. Applying Gelfand's theorem, it is not hard to see

that every Hopf

�

-algebra (A;�), with A a �nite-dimensional 
om-

mutative C

�

-algebra, is isomorphi
 to (K(G);�) for some �nite

group G. We thus arrive at the following de�nition of a �nite

quantum group.

De�nition 2.3 A �nite quantum group (A;�) is a Hopf

�

-

algebra for whi
h A is a �nite-dimensional Frobenius algebra, i.e.

a

�

a = 0, a = 0 for all a 2 A.

A linear fun
tional h on A is 
alled a Haar fun
tional on a

Hopf

�

-algebra (A;�) if h(1) 6= 0 and (h� �)� = 1h(�).

Assume that h

1

,h

2

are linear fun
tionals on A su
h that

h

1

(1) = h

2

(1) 6= 0 and (h

1

� �)� = 1h

1

(�) and (� � h

2

)� =

1h

2

(�). Then, for all a 2 A, we have h

2

(1)h

1

(a) = h

2

�

h

1

(a) 1

�

=

h

2

�

(h

1

� �)�(a) ) = h

1

�

(� � h

2

)�(a) ) = h

1

(1)h

2

(a), and hen
e

h

1

= h

2

.

If follows from statement 3 in Proposition 2.2 that a Haar

fun
tional h on (A;�) satis�es (� � hS)� = 1 (hS)(�) and

(hS)(1) = h(1). Thus h = hS and (� � h)� = 1h(�) and h

is unique up to multipli
ation by a s
alar.

Any �nite quantum group (A;�) possesses a unique (up to

a s
alar) positive Haar fun
tional h, i.e. a Haar fun
tional su
h

that h(a

�

a) � 0 for all a 2 A. Moreover, h is faithful. We dis
uss

this in Se
tion 3 in the more general 
ontext of 
ompa
t quantum

groups.

These results are evident for A 
ommutative: Suppose G

is a �nite group and de�ne a linear fun
tional h : K(G) ! C by

h(f) =

P

s2G

f(s) for all f 2 K(G). It is of 
ourse the integral


orresponding to the 
ounting measure on G.

Clearly (h� �)(F )(t) =

P

s2G

F (s; t) for all F 2 K(G�G)

and t 2 G. Therefore

(h� �)(�(f))(t) =

X

s2G

�(f)(s; t) =

X

s2G

f(st) =

X

s2G

f(s) = h(f) 1(t)

for all t 2 G and f 2 K(G). So h is the Haar fun
tional on

(K(G);�). Clearly it is positive and faithful.
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Given a dis
rete group G (not ne
essarily �nite), we 
on-

stru
t a Hopf

�

-algebra (C [G℄;

^

�) from G, whi
h as we shall see

later, is dual to the Hopf

�

-algebra (K(G);�).

As a set, C [G℄ 
onsists of the 
omplex valued fun
tions with

�nite support. It is a unital

�

-algebra under the following opera-

tions:

� (�f)(s) = � f(s);

� (f + g)(s) = f(s) + g(s);

� (fg)(s) =

P

t2G

f(t) g(t

�1

s);

� f

�

(s) = f(s

�1

);

where f; g 2 C [G℄, � 2 C and s 2 G. Noti
e that the sum above

is �nite be
ause f has �nite support.

For s 2 G, de�ne Æ

s

2 C [G℄ to be equal to 1 at the point s

and equal to 0 elsewhere. Obviously (Æ

s

)

s2G

forms a basis for the

ve
tor spa
e C [G℄. The formulas Æ

s

Æ

t

= Æ

st

and (Æ

s

)

�

= Æ

s

�1
for

s; t 2 G will be useful in the sequel. For instan
e, it is immediate

from them that Æ

e

is the unit element in C [G℄. Using the map

G ! C [G℄ : s 7! Æ

s

, we 
an regard G as a subgroup of the group

of invertible elements in C [G℄.

We de�ne linear maps spe
i�ed on the basis (Æ

s

)

s2G

:

�

^

� : C [G℄ ! C [G℄ � C [G℄ by

^

�(Æ

s

) = Æ

s


 Æ

s

,

� "̂ : C [G℄ ! C by "̂(Æ

s

) = 1,

�

^

S : C [G℄ ! C [G℄ by

^

S(Æ

s

) = Æ

s

�1
,

where s 2 G. It follows that (C [G℄;

^

�) is a Hopf

�

-algebra with


o-unit "̂ and antipode

^

S:

The 
o-asso
iativity expresses the asso
iativity of the tensor

produ
t 
, i.e.

(

^

�� �)

^

�(Æ

s

) = (Æ

s


 Æ

s

)
 Æ

s

= Æ

s


 (Æ

s


 Æ

s

) = (��

^

�)

^

�(Æ

s

);

where s 2 G.

Denoting the multipli
ation map C [G℄ � C [G℄ ! C [G℄ by

m̂, we have

^

S(Æ

s

) Æ

s

= Æ

s

�1
Æ

s

= Æ

s

�1

s

= Æ

e

for all s 2 G, and

hen
e

m̂(

^

S � �)

^

�(Æ

s

) =

^

S(Æ

s

) Æ

s

= Æ

e

= Æ

e

"̂(Æ

s

) = m̂(��

^

S)

^

�(Æ

s

) :
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The identity (2.1.1) for the 
o-unit is proved in a similar

fashion. It should be noted that the group multipli
ation is

en
oded in the 
onvolution produ
t m̂ this time, and not in the


o-multipli
ation, as is the 
ase for (K(G);�).

Note again that

^

�(Æ

s

) = Æ

s


 Æ

s

for every s 2 G. Suppose

(A;�) is a Hopf

�

-algebra. An element a 2 A is 
alled group-like

if a 6= 0 and

^

�(a) = a
a. This notion is justi�ed by the fa
t that

every group-like element in (C [G℄;

^

�) is of the form Æ

s

for some

s 2 G:

Suppose f 2 C [G℄ is group-like and write f =

P

s2G

f(s) Æ

s

.

Then

X

s2G

f(s) Æ

s


 Æ

s

=

^

�(f) = f 
 f =

X

s;t2G

f(s) f(t) Æ

s


 Æ

t

:

Sin
e (Æ

s


 Æ

t

)

s;t2G

is a basis for C [G℄ � C [G℄, it follows that

f(s) Æ

s

= f(s) f for all s 2 G. As f 6= 0, there exists r 2 G su
h

that f(r) 6= 0 and thus f = Æ

r

.

De�ne a linear fun
tional

^

h : C [G℄ ! C by

^

h(f) = f(e) for

f 2 C [G℄. Hen
e,

^

h(Æ

e

) = 1 and

^

h(Æ

s

) = 0 for all s 2 G n feg.

Be
ause

(

^

h� �)

^

�(Æ

s

) =

^

h(Æ

s

) Æ

s

= Æ

e

^

h(Æ

s

)

for all s 2 G, we 
on
lude that

^

h is the Haar fun
tional on

(C [G℄;

^

�). Now

^

h(f

�

f) = (f

�

f)(e) =

X

s2G

jf(s)j

2

for all f 2 C [G℄, so

^

h is positive and faithful.

In the rest of this se
tion we assume that G is a �nite

group. By faithfulness of the Haar fun
tional

^

h, we 
on
lude that

(C [G℄;

^

�) is a �nite quantum group in the sense of De�nition 2.3.

Noti
e that (C [G℄;

^

�) is a 
o-
ommutative Hopf

�

-algebra,

i.e. �

^

� =

^

�, where � denotes the 
ip-automorphism. In fa
t,

every �nite 
o-
ommutative quantum group is isomorphi
 to
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(C [G℄;

^

�) for some �nite group G. This assertion is evident from

the duality result below.

Let (A;�) be a �nite quantum group with a positive faithful

Haar fun
tional h. The set of group-like elements of (A;�) forms

a subgroup of the group of unitaries: Let a; b 2 A be group-like.

Then "(a) = 1 and a

�1

= S(a). Hen
e ab 6= 0 and thus ab is

group-like. Also h(a)a = (h 
 �)�(a) = h(a)I , and therefore

h(a) = 0 unless a = I . Sin
e a

�

is group-like, a

�

a is group-like.

As h(a

�

a) > 0, we thus get a

�

a = I . Similarly aa

�

= I and so

S(a) = a

�

.

Furthermore, we shall see in Se
tion 3 that the set of group-

like elements of (A;�) forms a linear basis if and only if (A;�) is


o-
ommutative.

We begin by de�ning the dual Hopf

�

-algebra (

^

A;

^

�) of a

�nite-dimensional Hopf

�

-algebra (A;�) with 
o-unit " and anti-

pode S. Let

^

A be the ve
tor spa
e of linear fun
tionals on A. We

use the 
o-multipli
ation, the antipode and the

�

-operation on A

to de�ne a multipli
ation and

�

-operation on

^

A:

� (!�)(a) = (! � �)�(a);

� !

�

(a) = !(S(a)

�

)

for all !; � 2

^

A and a 2 A. Equipped with these operations

^

A

a
quires the status of a unital

�

-algebra with unit ".

Sin
e A is �nite-dimensional, we may identify

^

A �

^

A with

the ve
tor spa
e of linear fun
tionals on A � A via the formula

(! 
 �)(a
 b) = !(a)�(b), where !; � 2

^

A and a; b 2 A.

Using this identi�
ation, the multipli
ation on A yields a 
o-

multipli
ation

^

� :

^

A!

^

A�

^

A on

^

A su
h that

^

�(!)(a
b) = !(ab)

for all ! 2

^

A and a; b 2 A.

Similarly the unit 1 and the antipode S on (A;�) de�ne

a 
o-unit "̂ : A ! C and an antipode

^

S :

^

A !

^

A on (

^

A;

^

�),

respe
tively, given by the formulas:

� "̂(!) = !(1);

�

^

S(!)(a) = !(S(a));

where ! 2

^

A and a 2 A. Hen
e (

^

A;

^

�) is a Hopf

�

-algebra.



22 IMS Bulletin 43, 1999 �

Consider two �nite-dimensional Hopf

�

-algebras (A

1

;�

1

)

and (A

2

;�

2

) and a Hopf

�

-algebra isomorphism F : A

1

! A

2

.

Then we 
an also dualize the mapping F to the mapping

^

F :

^

A

2

!

^

A

1

given by

^

F (!) = F! for all ! 2

^

A

2

. It is an

easy exer
ise to 
he
k that

^

F is a Hopf

�

-algebra isomorphism

from (

^

A

2

;

^

�

2

) to (

^

A

1

;

^

�

1

).

Two Hopf

�

-algebras (A

1

;�

1

) and (A

2

;�

2

) are 
alled a dual

pair if and only if there exists a non-degenerate bilinear form

h�; �i : A

1

�A

2

! C su
h that:

1. ha

1

b

1

; a

2

i = ha

1


 b

1

;�

2

(a

2

)i;

2. ha

1

; a

2

b

2

i = h�

1

(a

1

); a

2


 b

2

i;

3. ha

�

1

; a

2

i = ha

1

; S

2

(a

2

)

�

i;

4. ha

1

; a

�

2

i = hS

1

(a

1

)

�

; a

2

i;

5. hS

1

(a

1

); a

2

i = ha

1

; S

2

(a

2

)i;

6. ha

1

; 1i = "

1

(a

1

) and h1; a

2

i = "

2

(a

2

)

for all a

1

; b

1

2 A

1

and a

2

; b

2

2 A

2

. Equations 1 and 2 involve

the extended bilinear form h�; �i : (A

1

� A

1

) � (A

2

� A

2

) ! C

determined by the equality ha

1

� b

1

; a

2

� b

2

i = ha

1

; a

2

i hb

1

; b

2

i for

all a

1

; b

1

2 A

1

, a

2

; b

2

2 A

2

. Uniqueness of the 
o-unit and the

antipode implies that equations 3 to 6 are redundant. Invoking

the non-degenera
y of h�; �i, we see that (A

1

;�

1

) is 
ommutative

if and only if (A

2

;�

2

) is 
o-
ommutative.

The Hopf

�

-algebras (A;�) and (

^

A;

^

�) form a dual pair

under the bilinear form h�; �i : A �

^

A ! C given by the formula

ha; !i = !(a) for all a 2 A, ! 2

^

A. In fa
t, all dual pairs are of

this form.

Suppose (A;�) is a �nite quantum group with Haar state h.

For a 2 A de�ne ah 2

^

A su
h that (ah)(x) = h(xa), where x 2 A.

Sin
e h is faithful, the linear map A!

^

A : a 7! ah is inje
tive and


onsequently bije
tive be
ause A and

^

A have the same dimension.

Thus

^

A = f ah j a 2 A g.

We should point out that the above ve
tor spa
e isomorph-

ism fails to be an isomorphism on the level of Hopf

�

-algebras (it

is not even multipli
ative). However, we 
an use it to pull ba
k

the Hopf

�

-algebra stru
ture on the dual (

^

A;

^

�) to A. In the 
ase
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that A = K(G) this pull-ba
k Hopf

�

-algebra is identi
al to the

Hopf

�

-algebra (C [G℄;

^

�).

Let (

^

A;

^

�) be the dual Hopf

�

-algebra of (A;�). De�ne

the linear fun
tional

^

h on

^

A by

^

h(ah) = "(a) for a 2 A. Noti
e

that

^

h is well de�ned be
ause A !

^

A : a 7! ah is a ve
tor spa
e

isomorphism. We prove some properties for

^

h:

Proposition 2.4 Suppose a 2 A and � 2

^

A. Then we have

(�

^

h)(ah) = �(S(a)).

Proof: Pi
k b 2 A su
h that � = bh. Using the

�

-operation and

the surje
tivity of T

2

, we see that there exist elements p

1

; : : : ; p

n

and q

1

; : : : ; q

n

in A su
h that a
 b =

P

n

i=1

�(p

i

)(q

i


 1). Apply-

ing m(S 
 �) to this equality, we get S(a)b =

P

n

i=1

"(p

i

)S(q

i

).

Inserting x 2 A, we 
al
ulate

((ah)�)(x) = (ah� �)�(x)

= (h� h)(�(x)(a 
 b))

=

n

X

i=1

(h� h)(�(xp

i

)(q

i


 1))

=

n

X

i=1

h(xp

i

)h(q

i

)

=

n

X

i=1

h(xp

i

)h(S(q

i

)) :

Hen
e (ah)� =

P

n

i=1

h(S(q

i

)) p

i

h, whi
h implies that

(�

^

h)(ah) =

^

h((ah)�) =

n

X

i=1

h(S(q

i

))

^

h(p

i

h)

=

n

X

i=1

h(S(q

i

)) "(p

i

) = h(S(a)b)

= �(S(a)) ;

as desired. �
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As will be 
lear later, the following 
orollary is the quantum

analogue of Plan
herel's theorem.

Corollary 2.5 The formula

^

h((ah)

�

(ah)) = h(a

�

a) holds for all

a 2 A.

Proof: We have (ah)

�

(x) = (ah)(S(x)

�

) = h(S(x)

�

a) =

h(a

�

S(x)) = h

�

S(xS

�1

(a

�

))

�

= h(xS

�1

(a

�

)) for all x 2 A.

It follows that (ah)

�

= S

�1

(a

�

)h, whi
h implies in turn that

^

h((ah)

�

(ah)) =

^

h((S

�1

(a

�

)h)(ah)) = ((ah)

^

h)(S

�1

(a

�

)h)

(�)

=

(ah)

�

S(S

�1

(a

�

))

�

= h(a

�

a), where we used the previous pro-

position in the equality labelled (*). �

Proposition 2.6 The map

^

h is a Haar fun
tional on (

^

A;

^

�).

Proof: Choose b; 
 2 A. As before, we 
an �nd elements

p

1

; : : : ; p

n

2 A, q

1

; : : : ; q

n

2 A su
h that b

 =

P

i=1

�(p

i

)(q

i


1).

Applying " � � to this equation yields "(b) 
 =

P

n

i=1

p

i

"(q

i

). So,

for x; y 2 A,

(

^

�(bh)(1
 
h))(x
 y) = (bh
 
h)((x
 1)�(y))

= (h
 h)((x
 1)�(y)(b
 
)) =

P

n

i=1

(h
 h)((x
 1)�(yp

i

)(q

i


 1)):

Left invarian
e of h now implies that (

^

�(bh)(1 
 
h))(x 
 y) =

P

n

i=1

h(xq

i

)h(yp

i

) for every x; y 2 A. Hen
e,

^

�(bh)(1
 
h)

=

P

n

i=1

q

i

h 
 p

i

h. Therefore we have (

^

h � �)(

^

�(bh)(1 
 
h)) =

P

n

i=1

^

h(q

i

h) p

i

h =

P

n

i=1

"(q

i

) p

i

h = "(b) 
h =

^

h(bh) 
h and 
on-

sequently (

^

h��)

^

�(bh) =

^

h(bh) 1, whi
h shows the right invarian
e

of

^

h.

Pi
k a 2 A su
h that ah = ", so h(a) = "(1) = 1.

By the Cau
hy-S
hwarz inequality, 1 = jh(a)j

2

� h(1)h(a

�

a),

so h(a

�

a) 6= 0. By Plan
herel's formula,

^

h(") =

^

h("

�

") =

^

h((ah)

�

(ah)) = h(a

�

a) 6= 0. �
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Plan
herel's formula shows that

^

h is positive and faithful.

Thus

^

A is a Frobenius algebra and (

^

A;

^

�) is a �nite quantum

group. Therefore we have duality within the 
ategory of �nite

quantum groups.

Consider the 
ommutative and 
o-
ommutative Hopf

�

-

algebras (K(G);�) and (C [G℄;

^

�), respe
tively, asso
iated to a

�nite group G. They 
onstitute a dual pair under the bilinear

form h� j �i : K(G)� C [G℄ ! C given by

hf j gi =

X

s2G

f(s)g(s) = h(fg)

for all f 2 K(G) and g 2 C [G℄, where h is the Haar fun
tional on

(K(G);�).

Using this Haar fun
tional h, we de�ne a Hopf

�

-algebra

isomorphism � : C [G℄ !

d

K(G) : g 7! gh. Then hf j gi = hf; �(g)i

for all f 2 K(G) and g 2 C [G℄, where the latter form h�; �i is

the one giving the duality between (K(G);�) and (

d

K(G);

^

�) as

des
ribed above.

Suppose that G is an abelian �nite group and denote by

^

G the dual group of G. Re
all that

^

G is the set of group homo-

morphisms from G to the 
ir
le T, and that

^

G is a group under

the pointwise produ
t.

Noti
e that

^

G is a subset of K(G). The Fourier transform

F : C [G℄ ! K(

^

G) is given in terms of the duality h� j �i between

K(G) and C [G℄ by F(g)(�) = h� j gi = h(�g), where g 2 C [G℄

and � 2

^

G. The same formula extends F(g) from

^

G to K(G).

Noti
e that the Fourier transform F : C [G℄ ! K(

^

G) is an

isomorphism of Hopf

�

-algebras. We restri
t ourselves to showing

that F is a

�

-homomorphism:

� Let � 2

^

G. Be
ause � is a group homomorphism, by de�nition

of the 
o-multipli
ation � on K(G), we get �(�) = �
 �. Now

F(g

1

g

2

)(�) = h� j g

1

g

2

i = h�(�) j g

1


 g

2

i = h�
 � j g

1


 g

2

i

= h�; g

1

i h�; g

2

i = F(g

1

)(�)F(g

2

)(�) = (F(g

1

)F(g

2

))(�)

for all g

1

; g

2

2 C [G℄ and � 2

^

G.
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� Observe that S(�) = �

�

for every � 2

^

G. Thus

F(g

�

)(�) = h� j g

�

i = hS(�)

�

j gi = h� j gi = F(g)(�) = F(g)

�

(�)

for all g 2 C [G℄ and � 2

^

G.

Re
all that K(G) and C [G℄ are equal as ve
tor spa
es (but

not as algebras). Thus we may de�ne

~

F : K(G) ! K(

^

G) by

~

F(f) = F(f), where f 2 K(G). The Plan
herel Formula for a

�nite abelian group G states that

~

F is an isometry with respe
t to

the L

2

-norms given by the Haar measures on G and

^

G (if 
orre
tly

s
aled), i.e.

jGj

X

s2G

jf(s)j

2

=

X

�2

^

G

j

~

F(f)(�)j

2

for all f 2 K(G). We prove that the formula in Corollary 2.5

takes this form whenever (A;�) = (K(G);�), where now G is a

�nite abelian group:

Denote by h

0

the Haar fun
tional on (K(

^

G);�). Sin
e

�F

�1

: K(

^

G) !

d

K(G) is a Hopf

�

-algebra isomorphism, it fol-

lows by uniqueness of the Haar fun
tional h

0

that

^

h�F

�1

= 
h

0

for some 
 2 C . Now observe that

X

s2G

jf(s)j

2

= h(f

�

f) =

^

h((fh)

�

(fh)) =

^

h�F

�1

(

~

F(f)

�

~

F(f))

= 
h

0

(

~

F(f)

�

~

F(f)) = 


X

�2

^

G

j

~

F(f)(�)j

2

for all f 2 K(G). It remains to prove that 
 = jGj

�1

. To this end

insert f = 1 in the formula above and note that

~

F(1)(�) = h(�),

so

jGj =

X

s2G

j1(s)j

2

= 


X

�2

^

G

jh(�)j

2

:

Now

h(�)1 = (h� �)�(�) = h(�)�
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for all � 2

^

G, so h(�) = 0 for all � 6= 0. Thus jGj = 
 h(1)

2

= 
 jGj

2

as desired.

Given a �nite-dimensional Hopf

�

-algebra (A;�), we may,

of 
ourse, form the dual of the dual Hopf

�

-algebra (

^

A;

^

�) to get

the double dual Hopf

�

-algebra (

^

^

A;

^

^

�). In fa
t, sin
e A is �nite-

dimensional, we have a 
anoni
al isomorphism � : A !

^

^

A of

ve
tor spa
es given by �(a)(!) = !(a) for all a 2 A and ! 2

^

A. A


loser investigation shows that � is a Hopf

�

-algebra isomorphism.

It follows that if (A;�) is a �nite-dimensional Hopf

�

-algebra, then

A is a Frobenius algebra if and only if

^

A is a Frobenius algebra.

Also the formula in Proposition 2.4 
an be rewritten in terms of

the dual forms h�; �i

A

: A �

^

A ! C and h�; �i

^

A

:

^

A �

^

^

A ! C ,

namely,

h�

�1

(!

^

h); ahi

A

= hS(a); !i

A

and

hah; !

^

hi

^

A

= h

^

S(!); �(a)i

^

A

;

for all a 2 A and ! 2

^

A.

Consider again a �nite abelian group G. Taking into

a

ount the 
anoni
al Hopf

�

-algebra isomorphisms introdu
ed in

the dis
ussion above, we arrive at the following diagram:

K

�

^

^

G

�

F

�1

�������! C [

^

G℄

�

�������!

d

K(

^

G)

^

P

?

?

?

?

y

?

?

?

?

y

^

F

K(G)

�

�1

 �������

d

d

K(G)

^

�

�1

 �������

d

C [G℄

where we have de�ned the isomorphism

^

P : K

�

^

^

G

�

! K(G)

in su
h a way that the diagram 
ommutes. The Hopf

�

-algebra

isomorphism

^

P has to be the transpose of a group isomorph-

ism P : G !

^

^

G , i.e.

^

P(f) = fP for all f 2 K(

^

^

G). This is

Pontryagin's duality theorem for �nite abelian groups. Of 
ourse,
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^

^

G '

^

G ' G via the 
lassi�
ation of �nite abelian groups, but

these isomorphisms are not 
anoni
al.

A tedious but straightforward 
al
ulation shows that P is

given by the well known formula appearing in Pontryagin's duality

theorem for �nite abelian groups, i.e. P(s)(!) = !(s) for all s 2 G

and ! 2

^

G.

Remark 2.7 We state some general fa
ts about �nite quantum

groups. It 
an be shown, [37℄, that for a �nite quantum group

(A;�) the Haar fun
tional h is tra
ial, that is, h(ab) = h(ba)

for all a; b 2 A. Furthermore, the antipode is involutive and

�

-preserving, so a �nite quantum group is a Ka
 algebra (see [8℄

and Se
tion 3, and also Se
tion 7 (part II)). Any �nite-dimensional

Frobenius- or C

�

-algebra is a dire
t sum of full matrix algeb-

ras, and the irredu
ible

�

-representations of su
h an algebra are

all obtained by proje
ting down on any of the fa
tors in the

produ
t. The 
o-unit of a �nite quantum group is a 1-dimensional

�

-representation of A, and therefore A must 
ontain a 
opy of C .

The smallest non-abelian group is the group of permutations

of three elements, whi
h 
onsists of 6 elements. The 
orresponding

�nite quantum group is a 6-dimensional 
ommutative and non-


o
ommutative Hopf

�

-algebra. The following (see exer
ise 7 on

p. 68 in [14℄) is an example of a 4-dimensional Hopf algebra whi
h

is neither 
ommutative nor 
o-
ommutative:

Denote by A the universal unital algebra generated by two

elements t and x satisfying the relations

t

2

= 1 x

2

= 0 xt = �tx :

The following formulas:

�(t) = t
 t �(x) = 1
 x+ x
 t

and

"(t) = 1 S(t) = 0

"(x) = 0 S(x) = tx :

de�ne a 
o-multipli
ation �, a 
o-unit " and an antipode S on A.
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However, this Hopf algebra is not a quantum group be
ause

there is no

�

-operation turning it into a Frobenius algebra. In

fa
t, it is easy to see that the antipode S satis�es S

4

= � and

that it is not involutive. The lowest dimensional �nite quantum

group whi
h is neither 
ommutative nor 
o-
ommutative is the

`histori
' example due to G. I. Ka
 and V. G. Paljutkin, published

in Russian in 1965. The algebra A for this quantum group is 8-

dimensional and is

�

-isomorphi
 to C � C � C � C �M

2

(C ). It

admits only one non-trivial Hopf

�

-algebra stru
ture, [9℄.

3. Compa
t Quantum Groups

3.1. De�nition and Examples of Compa
t Quantum

Groups

The de�nition we adopt of a 
ompa
t quantum group is by now

widely a

epted. It is due to Woronowi
z [35℄ , who also de�ned

its immediate prede
essor: a 
ompa
t matrix pseudo-group [37℄.

A 
ompa
t matrix pseudo-group is a generalization of a 
om-

pa
t matrix group. Its de�nition distinguishes a fundamental


o-representation, a role played by the identity representation in

the matrix group 
ase. It is well known that every 
ompa
t Lie

group has an inje
tive �nite-dimensional representation. There-

fore, 
ompa
t matrix pseudogroups 
an be regarded as quantum

analogues of 
ompa
t Lie groups.

Although the 
o-multipli
ation is de�ned on the C

�

-algebra

level, this is not the 
ase for the 
o-unit and antipode. They

may not be bounded. However, we shall see that there always

exists a Hopf

�

-algebra whi
h is dense in the C

�

-algebra. In the


lassi
al 
ase this is the algebra of regular fun
tions on the group.

For matrix groups it is the

�

-algebra generated by the 
o-ordinate

fun
tions, whi
h by the Stone-Weierstrass Theorem is dense in

the C

�

-algebra of 
ontinuous fun
tions on the group. One way

to over
ome the diÆ
ulties with a 
o-unit and a 
o-inverse not

everywhere de�ned, is to invoke the maps T

1

and T

2

dis
ussed in

the previous se
tion.
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A note on terminology: when 
onsidering the tensor produ
t

A 
B of C

�

-algebras A and B, we shall always take it to be the

C

�

-algebrai
 
ompletion of the algebrai
 tensor produ
t A � B

with respe
t to the minimal tensor produ
t norm.

De�nition 3.1.1 A 
ompa
t quantum group is a pair (A;�),

where A is a unital C

�

-algebra and � : A ! A 
 A is a unital

�

-homomorphism su
h that:

1. (�
 �)� = (�
�)�;

2. �(A)(A 
 1) is a dense subspa
e of A
A;

3. �(A)(1
A) is a dense subspa
e of A
A:

In this de�nition, �(A)(A 
 1) is the linear span of the set

f�(a)(b
 1) j a; b 2 A g (and similarly for �(A)(1 
A)).

Clearly, all �nite quantum groups are 
ompa
t quantum

groups be
ause, as we have seen, the maps T

1

and T

2

are bije
tive.

Now we introdu
e the motivating example generalizing the �nite

quantum group (K(G);�), where G is a �nite group.

Example 3.1.2 Suppose G is a 
ompa
t topologi
al group and

let C(G) denote the set of 
ontinuous fun
tions on G. It is a

unital C

�

-algebra under the obvious pointwise-de�ned algebrai


operations and the uniform norm (
f. the

�

-algebra K(G) when

G is �nite). The linear map � : C(G) � C(G) ! C(G � G)

determined by �(f 
 g)(s; t) = f(s) g(t) for f; g 2 C(G) and

s; t 2 G has a unique 
ontinuous extension to a

�

-isomorphism

from C(G)
 C(G) to C(G�G). We shall use this

�

-isomorphism

to identify C(G)
 C(G) with C(G �G).

De�ne the unital

�

-homomorphism � from C(G) into

C(G) 
 C(G) by setting �(f)(s; t) = f(st) for all f 2 C(G) and

s; t 2 G. The asso
iativity of the group multipli
ation is then

re
e
ted in the 
o-asso
iativity of �, i.e. (�
 �)� = (� 
�)�.

De�ne the

�

-homomorphism T

1

from C(G) 
 C(G) to

C(G) 
 C(G) su
h that T

1

(f)(s; t) = f(st; t) for f 2 C(G)
C(G)

and s; t 2 G. As in the �nite group 
ase, this map is invertible with

inverse given by T

�1

1

(f)(s; t) = f(st

�1

; t) for f 2 C(G) 
 C(G)

and s; t 2 G. Thus by 
ontinuity, T

1

(C(G) � C(G)) is dense in
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C(G) 
 C(G). Sin
e T

1

(a 
 b) = �(a)(1 
 b) for all a; b 2 C(G),

we have proved axiom 3 in De�nition 3.1.1. Axiom 2 is proved

similarly. Hen
e, (C(G);�) is a 
ompa
t quantum group.

The two

�

-homomorphisms S : C(G) ! C(G) and

" : C(G)! C de�ned by the formulas S(f)(s) = f(s

�1

) and

"(f) = f(e), where f 2 C(G) and s 2 G, play the role of the

antipode and the 
o-unit on (C(G);�), respe
tively. They are

obviously everywhere de�ned and bounded and furthermore, S

is an involutive

�

-isomorphism. Nothing of this is true in the

general 
ase and this poses a 
hallenging problem.

The pair (C(G);�) thus resembles very mu
h the notion

of a Hopf

�

-algebra in the sense of De�nition 2.1, in that we just

have to repla
e the algebrai
 tensor produ
t� with the topologi
al

tensor produ
t 
.

The previous example exhausts all 
ompa
t quantum groups

for whi
h the C

�

-algebra is 
ommutative. The proof, whi
h essen-

tially uses Gelfand's representation theorem for 
ommutative C*-

algebras, boils down to showing that a 
ompa
t semi-group satis-

fying the 
an
ellation laws is a 
ompa
t group, a well known fa
t.

The next example exhausts all 
o-
ommutative 
ompa
t quantum

groups for whi
h the Haar state is faithful. We give a proof of this

fa
t at the end of this se
tion.

Example 3.1.3 We now 
onsider (C [G℄;

^

�), where G is a dis
rete

group. In Se
tion 2 we showed that (C [G℄;

^

�) is a unital Hopf

�

-

algebra with a positive and faithful Haar fun
tional

^

h.

In order to get a 
ompa
t quantum group, we need to show

that the unital

�

-algebra C [G℄ admits a C

�

-norm. We use the Haar

fun
tional to introdu
e a Hilbert spa
e and represent the unital

�

-algebra C [G℄ inje
tively as bounded operators on this Hilbert

spa
e.

The inner produ
t (� j �) on C [G℄ is de�ned by the equations

(f j g) =

^

h(g

�

f) for f; g 2 C [G℄. Denote the 
orresponding Hilbert

spa
e 
ompletion of C [G℄ by L

2

(

^

h) and the norm on it by k � k

2

.

Noti
e that kfk

2

2

=

P

s2G

jf(s)j

2

for f 2 C [G℄.
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Fun
tions f in C [G℄ 
an be represented as linear operators

L

f

in L

2

(

^

h) given by left multipli
ation on C [G℄: L

f

(g) = fg for

all g 2 C [G℄. We pro
eed by showing that the operators L

f

, where

f 2 C [G℄, are bounded on the dense subspa
e C [G℄ of L

2

(

^

h),

and thus have unique extensions to bounded operators �(f) on

L

2

(

^

h): To this end, re
all that C [G℄ 
omes with a linear basis

(Æ

s

)

s2G

, where Æ

�

s

Æ

s

= Æ

e

for s 2 G. Hen
e kL

Æ

s

(g)k

2

2

= kÆ

s

gk

2

2

=

^

h((Æ

s

g)

�

(Æ

s

g)) =

^

h(g

�

Æ

�

s

Æ

s

g) =

^

h(g

�

Æ

e

g) =

^

h(g

�

g) = kgk

2

2

for all

r; s 2 G. We have shown that L

Æ

s

is isometri
, hen
e bounded

of norm one. The result that L

f

is bounded for an arbitrary

f 2 C [G℄ now follows by the triangle inequality and the fa
t that

the elements (Æ

s

)

s2G


onstitute a linear basis for C [G℄.

It is not diÆ
ult to 
he
k that the map C [G℄ ! B(L

2

(

^

h)) :

f 7! �(f) is a unital inje
tive

�

-homomorphism. It is essentially

the GNS-representation of the fun
tional

^

h. The operator norm

k � k on B(L

2

(

^

h)) (the bounded operators on L

2

(

^

h)) is a C

�

-norm,

so we get a C

�

-norm k � k

r

on C [G℄ by de�ning kfk

r

= k�(f)k, for

f 2 C [G℄. Let C

�

r

(G) denote the C

�

-algebra 
ompletion of C [G℄

with respe
t to this norm. By de�nition of C

�

r

(G), there exists

a unique unital faithful representation � : C

�

r

(G) ! B(L

2

(

^

h))

whi
h extends the map C [G℄ ! B(L

2

(

^

h)) : f 7! �(f).

We prove that the 
o-multipli
ation

^

� on C [G℄ is bounded

with respe
t to k � k

r

, and therefore we have an extension to a


o-multipli
ation

^

�

r

on C

�

r

(G):

Let f 2 C [G℄. Consider a 
omplex-valued fun
tion F on

G�G, with �nite support, regarded as an element of L

2

(

^

h)
L

2

(

^

h).

We show that

k(� � �)(

^

�(f))Fk

2

� k�(f)k kFk

2

;

whi
h is suÆ
ient to 
on
lude that

^

�(f) has k � k

r

-norm less than

kfk

r

. It is not diÆ
ult to see that

�

(� � �)(

^

�(f))F

�

(p; q) =

P

s2G

f(s)F (s

�1

p; s

�1

q) for p; q 2 G (it is enough to 
he
k this
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formula for f of the form Æ

t

, t 2 G). Thus

k(� � �)(

^

�(f))Fk

2

2

=

X

p;q2G

j

X

s2G

f(s)F (s

�1

p; s

�1

q) j

2

=

X

q2G

X

p2G

j

X

s2G

f(s)F (s

�1

p; s

�1

pq) j

2

=

X

q2G

(

X

p2G

j (f F (�; � q))(p) j

2

)

=

X

q2G

k�(f)F (�; � q)k

2

2

�

X

q2G

k�(f)k

2

kF (�; � q)k

2

2

= k�(f)k

2

X

p;q2G

jF (p; pq)j

2

= k�(f)k

2

X

p;q2G

jF (p; q)j

2

= k�(f)k

2

kFk

2

2

:

That (C

�

r

(G);

^

�

r

) is a 
ompa
t quantum group now follows, sin
e

the redu
ed C

�

-algebra C

�

r

(G) 
ontains the dense Hopf

�

-algebra

(C [G℄;

^

�).

A 
ru
ial result in the theory of 
ompa
t quantum groups is

the existen
e of the Haar state. This fa
t was proven by Woronow-

i
z in the separable 
ase (see [31℄). The general 
ase was proven

by A. Van Daele (see [30℄). A proof under weaker 
onditions 
an

be found in [20℄. Pre
isely formulated, the existen
e result says

that:

Theorem 3.1.4 Consider a 
ompa
t quantum group (A;�).

There exists a unique state h on A su
h that (h 
 �)�(a) =

(� 
 h)�(a) = h(a) 1 for all a 2 A. The fun
tional h is 
alled

the Haar state on (A;�).

The proof of the uniqueness of the Haar state is essentially

trivial. The following result holds: Let h

1

; h

2

be two states on A

su
h that (h

1


 �)�(a) = h

1

(a) 1 and (� 
 h

2

)�(a) = h

2

(a) 1 for

a 2 A. Then h

1

= h

2

.

Unlike the 
lassi
al 
ase, the Haar state does not have to be

faithful. We give an example where faithfulness does not hold.



34 IMS Bulletin 43, 1999 �

Example 3.1.5 Let G be a dis
rete group and 
onsider again the

unital Hopf

�

-algebra (C [G℄;

^

�). We endow C [G℄ with a universal

C

�

-norm k � k

u

by de�ning kxk

u

to be the supremum of the set

fk�(x)k j K a Hilbert spa
e, � a unital

�

-representation of C [G℄ on Kg

for ea
h x 2 C [G℄. Consider Æ

s

for s 2 G and let � be a unital

�

-representation of C [G℄ on a Hilbert spa
e K. Then

k�(Æ

s

)k

2

= k�(Æ

s

)

�

�(Æ

s

)k = k�(Æ

�

s

Æ

s

)k = k�(Æ

e

)k = k1k = 1;

so kÆ

s

k

u

� 1. Finiteness of kxk

u

for arbitrary x 2 C (G) now

follows sin
e (Æ

s

)

s2G

is a linear basis for C [G℄.

Remembering that, in the de�nition of kxk

u

, the set we

are taking the supremum over 
ontains the number kxk

r

from

Example 3.1.2, we dedu
e that k � k

u

is a C

�

-norm on C [G℄

(not merely a C*-semi-norm). Denote the C

�

-algebra 
om-

pletion of C [G℄ with respe
t to k � k

u

by C

�

(G). This unital

C

�

-algebra is obviously universal in the following sense: Any

unital

�

-representation � of C[G℄ on a Hilbert spa
e has a unique

extension to a (bounded)

�

-representation of C

�

(G).

Let U : G! B(K) be a strongly 
ontinuous unitary repres-

entation of the group G and de�ne the map �

U

: C [G℄ ! B(K) by

�

U

(f) =

P

s2G

f(s)U(s) for f 2 C [G℄. It is easily seen that �

U

is

a unital

�

-representation and that �

U

(Æ

s

) = U(s) for s 2 G. Keep-

ing this in mind, we get a 1-1 
orresponden
e between strongly


ontinuous unitary representations of the group G and unital

�

-

representations of the C

�

-algebra C

�

(G).

It is well known that the unital C

�

-algebra C

�

(G)
C

�

(G)


an be faithfully represented on a Hilbert spa
e K | this is

true for any C

�

-algebra. Considering the following embeddings

C [G℄ � C [G℄ � C

�

(G)
 C

�

(G) ,! B(K), we may view � as a

unital

�

-representation of C [G℄ on K. Thus it has a bounded

extension

^

�

u

: C

�

(G)! B(K). Combining the fa
ts that C [G℄ is

dense in C

�

(G), that

^

�

u

is 
ontinuous and that C

�

(G) 
 C

�

(G)

is 
losed in B(K), we see that

^

�

u

(C

�

(G)) � C

�

(G)
 C

�

(G). So

we get a unital

�

-homomorphism

^

�

u

: C

�

(G)! C

�

(G) 
 C

�

(G).

Hen
e, the pair (C

�

(G);

^

�

u

) is a 
ompa
t quantum group.
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For similar reasons, there exists a unital surje
tive

�

-homomorphism �

u

: C

�

(G) ! C

�

r

(G) su
h that �

u

(f) = f

for all f 2 C [G℄. This

�

-homomorphism is an isomorphism if and

only if G is amenable (whi
h is true if G is abelian or �nite).

Let

^

h

r

be the ve
tor state on C

�

r

(G) given by

^

h

r

(x) =

(�(x)Æ

e

j Æ

e

) for x 2 C

�

(G), where � is the representation of

C

�

r

(G) on B(L

2

(

^

h)) introdu
ed in Example 3.1.3. Its restri
tion

to C [G℄ is of 
ourse the Haar fun
tional

^

h on C [G℄, so by 
ontinu-

ity,

^

h

r

is the Haar state on (C

�

r

(G);

^

�

r

). By de�nition of

^

h, we

see that

^

h(Æ

s

Æ

t

) =

^

h(Æ

st

) =

^

h(Æ

ts

) =

^

h(Æ

t

Æ

s

) for s; t 2 G so by

linearity and 
ontinuity,

^

h

r

is tra
ial, i.e.

^

h

r

(xy) =

^

h

r

(yx) for all

x; y 2 C

�

r

(G). Sin
e �(Æ

s

)Æ

e

= Æ

s

for all s 2 G, we also see that

�(C

�

r

(G)) Æ

e

is dense in H .

Now take any x 2 C

�

r

(G) su
h that

^

h

r

(x

�

x) = 0. Then we

get for all y 2 C

�

r

(G), that

(�(x)(�(y)Æ

e

) j �(x)(�(y)Æ

e

)) =

^

h

r

(y

�

x

�

xy) =

^

h

r

(x

�

xyy

�

)

=

^

h

r

�

(x

�

x)

1

2

yy

�

(x

�

x)

1

2

�

� kyk

2

^

h

r

(x

�

x) = 0 ;

whi
h implies that �(x)(�(y)Æ

e

) = 0, so �(x) = 0 and therefore

x = 0. We have shown that the Haar state

^

h

r

on (C

�

r

(G);

^

�

r

) is

faithful.

Sin
e (�

u


�

u

)

^

�

u

=

^

�

r

�

u

, we 
on
lude by uniqueness that

the Haar state

^

h

u

on (C

�

(G);

^

�

u

) is given by

^

h

u

=

^

h

r

�

u

. It is

now 
lear that

^

h

u

is faithful if and only if the group G is amenable

(the 
lassi
al example of a non-amenable dis
rete group is the free

group on two generators).

As for the 
o-multipli
ation, one may argue that there exists

a unique bounded unital

�

-homomorphism "̂

u

: C

�

(G)! C whi
h

extends "̂, the 
o-unit of (C [G℄;

^

�), so "̂ is also bounded with

respe
t to k � k

r

when G is amenable.

We now give the standard example of a 
ompa
t quantum

group that is neither 
ommutative nor 
o-
ommutative (more pre-


isely, it is a one-parameter family of 
ompa
t quantum groups).
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Thus it is not in
luded in the 
ases (C(G);�) for G a 
om-

pa
t group nor (C [G℄;

^

�) for G a dis
rete group des
ribed above.

In fa
t, it was also one of the �rst examples not in
luded in

the 
ategory of Ka
 algebras. The example is due to Woro-

nowi
z (see [38℄) and is a `deformation' of the spe
ial unitary

group SU(2). Woronowi
z 
alled it twisted SU(2) (due to a twist

in the determinant) and we denote it by SU

q

(2), where q is a

deformation parameter. This example was dis
overed among a

huge range of examples found by Drinfeld (see [7℄) and M. Jimbo

(see [12℄), namely as a deformation U

q

(su(2)) of the universal

enveloping algebra U(su(2)) of the Lie algebra su(2) asso
iated

to the Lie group SU(2). The 
onne
tion between these two dual

approa
hes was �rst re
ognized and established by Y. S. Soibel-

man and L. L. Vaksman (see [28℄) and M. Rosso (see [24℄). They

used representations of U

q

(su(2)) as the linking me
hanism (see

Se
tion 6 (part II)).

Soibelman & Vaksman also developed the harmoni
 ana-

lysis on twisted SU(2). They showed [28℄ how little Ja
obi

q-polynomials 
ould be given a geometri
 interpretation on a

`quantum spa
e'. Later (see [17℄) S. Levendorski & Soibelman

generalized the method of representations to generate examples

of 
ompa
t matrix pseudogroups from Drinfeld's and Jimbo's

deformations of the simple Lie algebras.

This example is also typi
al of how `proper' quantum groups

(i.e. those that are neither 
ommutative nor 
o-
ommutative) are


onstru
ted. In most 
ases, these examples tend to appear rather

ad ho
, although deformation theory gives 
ertain restri
tions on

the possibilities.

Example 3.1.6 Let q 2 [�1; 1℄nf0g. De�ne A to be the universal

unital

�

-algebra generated by two elements � and 
 satisfying the

relations:

�

�

�+ 


�


 = 1 ��

�

+ q

2


 


�

= 1


 


�

= 


�


 q 
 � = �
 q 


�

� = �


�

:

The universality of A assures us that there exist a unital

�

-homomorphism � : A ! A � A, a unital

�

-homomorphism
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" : A ! C and an unital anti-homomorphism S : A ! A su
h

that:

�(�) = �
 �� q 


�


 
 �(
) = 
 
 �+ �

�


 


S(�) = �

�

S(�

�

) = � S(
) = �q 
 S(


�

) = �q

�1




�

"(�) = 1 "(
) = 0 :

The 
o-asso
iativity of � and 
ondition 2.1.1 of De�nition 2.1 fol-

low by inspe
tion on the generators � and 
 (remember that �

and " are

�

-homomorphisms). Sin
e the multipli
ation m is not

multipli
ative and S is anti-multipli
ative, we have to handle 
on-

dition 2.1.2 of De�nition 2.1 di�erently. De�ne the linear subspa
e

A

0

= f a 2 A j m(S � �)�(a) = "(a) 1 = m(�� S)�(a) g :

It is not diÆ
ult to 
he
k that A

0

is a unital subalgebra of A whi
h


ontains the elements �; �

�

; 
; 


�

. Sin
e these elements generate

A as a unital algebra, we see that A = A

0

. Hen
e (A;�) is a

Hopf

�

-algebra with 
o-unit " and antipode S.

Noti
e that when q = 1, the algebra A is 
ommutative (but

not 
o-
ommutative). Re
all that SU(2) is de�ned to be the group

SU(2) =

��

a �



 a

�

j a; 
 2 C su
h that jaj

2

+ j
j

2

= 1

�

:

Introdu
e the 
oordinate fun
tions �

0

; 


0

2 C(SU(2)) given by

�

0

�

a �



 a

�

= a and 


0

�

a �



 a

�

= 


for all a; 
 2 C su
h that jaj

2

+ j
j

2

= 1. Denote by Pol(SU(2))

the unital

�

-subalgebra of C(SU(2)) generated by �

0

and 


0

.

By the Stone-Weierstrass Theorem, the

�

-algebra Pol(SU(2)) is

dense in the C

�

-algebra C(SU(2)). Furthermore observe that the


oordinate fun
tions �

0

and 


0

satisfy the same relations as �

and 
 do (when q = 1). Therefore we have a surje
tive unital
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�

-homomorphism � : A ! Pol(SU(2)) su
h that �(�) = �

0

and

�(
) = 


0

. The identity

�(x)

�

�(�) �(�


�

)

�(
) �(�

�

)

�

= �(x) ;

where � is a

�

-
hara
ter on A, is easily 
he
ked on the generators

and thus holds for all x 2 A. Hen
e �(x) = 0 , �(x) = 0 for all

�

-
hara
ters � on A. So � is inje
tive if and only if the

�

-
hara
ters

separate elements in A. It is well known that the

�

-
hara
ters

separate elements in a 
ommutative C

�

-algebra and by restri
tion,

they supply a separating family of

�

-
hara
ters for

�

-subalgebras.

In [38℄, Woronowi
z proved that A has a universal C

�

-algebra

envelope A by 
onstru
ting enough unital

�

-representations and

working with a Hamel basis in A. Hen
e we may identify A with

Pol(SU(2)). In this way, we have re
overed the 
ompa
t group

SU(2), and the Hopf

�

-algebra of 
oordinate fun
tions Pol(SU(2))

is isomorphi
 to the universal algebra A.

Let us now pro
eed to the more interesting 
ase when q 6= 1.

In this 
ase, (A;�) is neither 
ommutative nor 
o-
ommutative.

In order to obtain a quantum group, we need a C

�

-norm on A

whi
h makes � : A ! A�A 
ontinuous.

Mimi
king the 
onstru
tion for the norm on C

�

(G) in

Example 3.1.5, we introdu
e a universal norm k � k

u

on A by

setting kak

u

to be the supremum of the set

f k�(a)k j K a Hilbert spa
e, � a unital

�

-representation of A on Kg

for all a 2 A. The boundedness of the 
o-multipli
ation with

respe
t to this norm is then immediate. However, it requires some

argument to see that this really de�nes a norm.

The boundedness of kak

u

for any element a 2 A is proved

by verifying it on the generators � and 
 (this redu
tion is jus-

ti�ed by the triangle inequality, the submultipli
ativity and the

�

-invarian
e of k � k

u

). But the relation �

�

� + 


�


 = 1 gives

k�k

u

� 1 and k
k

u

� 1.

As usual, the property kxk

u

= 0 , x = 0 is the most

diÆ
ult to prove. To prove it, it suÆ
es to produ
e an inje
tive
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unital

�

-representation of A: let H be a separable Hilbert spa
e

with orthonormal basis ( e

km

j k 2 N[f0g;m 2 Z ) and de�ne the

�

-representation � : A ! B(H) by the formulas:

�(�)e

km

=

p

1� q

2k

e

k�1;m

and �(
)e

km

= q

k

e

k;m+1

;

where we put e

�1;m

= 0. The

�

-representation is well de�ned

be
ause the operators �(�),�(
) satisfy the same relations as �,
,

respe
tively, so we 
an appeal to the universal property of A. For

a proof of the inje
tivity of �, see [21℄.

The C

�

-algebra 
ompletion A

u

of A with respe
t to k � k

u

together with the 
ontinuous extension �

u

: A

u

! A

u


A

u

of �

form a pair (A

u

;�

u

) that 
onstitutes a 
ompa
t quantum group.

The representation � allows one to express the Haar state

h on (A

u

;�

u

) by the formula

h(a) = (1� q

2

)

1

X

k=0

q

2k

h�

u

(a)e

k;0

; e

k;0

i

for all a 2 A. Here h�; �i denotes the inner produ
t on H and

�

u

: A

u

! B(H) denotes the 
ontinuous extension of �. It is gen-

erally true that Haar fun
tionals on Hopf

�

-algebras are faithful

(see [1℄), so the restri
tion of h to A is faithful. It is possible, but

highly non-trivial, to show that h is faithful on the C

�

-algebra A

u

(see [21℄). However, we stress that the Haar state is not tra
ial in

this 
ase, and for this reason SU

q

(2) is not a Ka
 algebra.

In all of the examples, ex
ept Example 3.1.2, we started

from a Hopf

�

-algebra and 
ompleted it with respe
t to some suit-

able C

�

-norm. The appearan
e of a dense Hopf

�

-algebra is not a


oin
iden
e. In fa
t, the following result holds in the general 
ase:

Theorem 3.1.7 Let (A;�) be a 
ompa
t quantum group. There

exists a unique Hopf

�

-algebra (A;�) su
h that A is a dense unital

�

-subalgebra of A su
h that �(A) � A�A and su
h that � is the

restri
tion of � to A.

The

�

-algebra A is the maximal unital

�

-subalgebra of A

su
h that the restri
tion of the 
o-multipli
ation � to it turns it

into a Hopf

�

-algebra.
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This maximal unital

�

-subalgebra A is 
ertainly 
ontained

in the unital

�

-subalgebra A

m

of A de�ned as the inverse image

�

�1

(A � A) of A � A under �. Also, it 
an be shown that

�(A

m

) � A

m

� A

m

. One 
an prove that if the Haar state is

faithful on A, then A

m

= A, so in this 
ase A

m

is indeed a dense

Hopf

�

-algebra.

If A is 
ommutative, then A 
onsists of the linear spa
e of

the 
oeÆ
ient fun
tions of the �nite-dimensional unitary repres-

entations (i.e. the regular fun
tions) of the underlying 
ompa
t

group. We therefore refer to A in Theorem 3.1.7 as the algebra of

matrix 
oeÆ
ients. This terminology will be justi�ed in the fol-

lowing subse
tion, where we look into the 
o-representation theory

for 
ompa
t quantum groups.

3.2. Finite-Dimensional Co-representations, Tannaka-

Krein Duality and the Peter-Weyl Theorem

Although the proofs of some of the results in this subse
tion

require the notion of an in�nite-dimensional 
o-representation |

in parti
ular, the left regular 
o-representation | whi
h involves

the language of multiplier algebras, the results 
an be formulated

in the setting of �nite-dimensional 
o-representations. This is due

to the quantum analogue of the 
lassi
al result that states that

every strongly-
ontinuous representation of a 
ompa
t group is

de
omposable into irredu
ible �nite-dimensional ones.

We shall need the leg numbering notation to de�ne a


o-representation. Consider a unital C

�

-algebra A and a �nite-

dimensional Hilbert spa
e H . De�ne unital

�

-homomorphisms

A
B(H)!A
A
B(H):p!p

13

and A
B(H)!A
A
B(H):p!p

23

su
h that (a
 x)

13

= a
 1
 x and (a
 x)

23

= 1
 a
 x for all

a 2 A, x 2 B(H). Noti
e that the tensor produ
t 
 is just the

algebrai
 one be
ause H is �nite-dimensional.

For instru
tive purposes, suppose G is a 
ompa
t group.

Let H be a �nite-dimensional Hilbert spa
e. De�ne the lin-

ear mapping � : C(G) 
 B(H) ! C(G;B(H)) su
h that

�(f 
 x)(s) = f(s)x for all s 2 G, f 2 C(G) and x 2 B(H). It is

a

�

-isomorphism and we shall suppress this identi�
ation in the

sequel.
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Let F be a fun
tion in C(G;B(H)). A straightforward 
al-


ulation shows that

(�
 �)(F )(s; t) = F (st); F

13

(s; t) = F (s); F

23

(s; t) = F (t)

for all s; t 2 G. So F is multipli
ative if and only if (�
 �)(F ) =

F

13

F

23

.

Clearly, strong 
ontinuity is equivalent to norm 
ontinuity

for �nite-dimensional representations. Hen
e U is a strongly 
on-

tinuous representation of G on a �nite-dimensional Hilbert spa
e

H if and only if U is an invertible element of the C

�

-algebra

C(G) 
B(H) su
h that (�
 �)(U) = U

13

U

23

.

More generally, a �nite-dimensional 
o-representation of a


ompa
t quantum group (A;�) on a �nite-dimensional Hilbert

spa
e H is by de�nition an invertible element U 2 A
B(H) su
h

that (� 
 �)(U) = U

13

U

23

. We use the term `
o-representation'

derived from Hopf algebra theory to distinguish these obje
ts from

`ordinary' representations of the C

�

-algebraA, whi
h have nothing

to do with representations of the possible underlying group.

The standard notions of group representation theory trans-

fer easily to this setting:

� Let U ,V be �nite-dimensional 
o-representations of (A;�) on

Hilbert spa
es H ,K, respe
tively. An intertwiner T from U to V

is a linear mapping from H to K su
h that V (1
T ) = (1
T )U .

The set of intertwiners will be denoted by Mor(U; V ). The 
o-

representations U and V are equivalent , denoted U

�

=

V , if there

exists an invertible intertwiner from U to V .

� A subspa
eK ofH is 
alled invariant for a �nite-dimensional 
o-

representation U of (A;�) onH if (1
P

K

)U(1
P

K

) = U(1
P

K

),

where P

K

is the orthogonal proje
tion of H onto K. We say that

U is irredu
ible if it has no non-trivial invariant subspa
es.

A �nite-dimensional 
o-representation U of (A;�) on H

is 
alled unitary if it is a unitary element in the unital C

�

-

algebra A
B(H). The following assertion, whi
h requires a

fairly straightforward argument, shows that there is no restri
tion

in working with �nite-dimensional unitary 
o-representations.
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Proposition 3.2.1 Suppose U is a �nite-dimensional 
o-

representation of (A;�) on H , and let h be the Haar state on

(A;�). Put Q = (h 
 �)(U

�

U), whi
h is an invertible positive

operator on H , and de�ne V = (1 
 Q

1

2

)U(1 
 Q

�

1

2

). Then

V is a �nite-dimensional unitary 
o-representation of (A;�)

on H and Q

1

2

2 Mor(U; V ). Thus any �nite-dimensional 
o-

representation of (A;�) is equivalent to a �nite-dimensional

unitary 
o-representation of (A;�).

For any �nite-dimensional 
o-representations U 2 B(H)
A

and V 2 B(K)
 A of (A;�), the set Mor(U; V ) is a subspa
e of

the ve
tor spa
e B(H;K) of all linear operators from H to K.

S
hur's lemma states:

� The 
o-representation U is irredu
ible if and only if Mor(U;U) =

C 1.

� If U and V are irredu
ible, then

Mor(U; V ) =

�

0 if U 6

�

=

V

C F for F invertible 2 B(H;K) if U

�

=

V .

Consider an additional �nite-dimensional 
o-representation

W of (A;�). Given intertwiners S 2 Mor(U; V ) and T 2

Mor(V;W ), the 
omposition T Æ S belongs to Mor(U;W ). If

S is invertible, then S

�1

2 Mor(V; U). Therefore the relation

�

=

is indeed an equivalen
e relation.

If U and V are �nite-dimensional unitary 
o-representations,

then S

�

belongs to Mor(V; U) for S 2 Mor(U; V ). Combining

this with the polar de
omposition of operators between Hilbert

spa
es, we �nd that �nite-dimensional unitary 
o-representations

are equivalent if and only if they are unitarily equivalent (i.e. there

exists a unitary intertwiner).

Consider �nite-dimensional 
o-representations U and V

of (A;�) on H and K respe
tively. We may form the �nite-

dimensional dire
t sum 
o-representation U � V and the �nite-

dimensional tensor produ
t 
o-representation U 
 V of (A;�):

� Using the 
anoni
al embedding (A 
 B(H)) � (A 
 B(K)) =

A
 (B(H)�B(K)) � A
B(H�K), we regard U �V := (U; V )
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as an element in A 
 B(H �K). It is easy to 
he
k that U � V

is a �nite-dimensional 
o-representation of (A;�) on H �K.

� Putting U 
 V = U

12

V

13

, we obtain a �nite-dimensional 
o-

representation of (A;�) on H 
K, where we have used the iden-

ti�
ation B(H)
B(K) = B(H 
K).

It should be noted that we are using a leg notation whi
h

di�ers slightly from the one introdu
ed above. Here we look at

the obvious

�

-homomorphisms:

A
B(H)! A
B(H)
B(K) : p! p

12

and

A
B(K)! A
B(H)
B(K) : p! p

13

:

If U and V are unitary, the 
o-representations U � V and U 
 V

are unitary as well.

Noti
e that the identity element 1 2 A is a 1-dimensional

unitary 
o-representation of (A;�) on C under the identi�
ation

A = A
 C = A
B( C ). It is 
alled the trivial 
o-representation

of (A;�). Obviously, U
1

�

=

1
U

�

=

U for any �nite-dimensional


o-representation U .

We have manufa
tured an example of a 
on
rete tensor C

�

-


ategory (see [19℄). Namely, it is the 
ategory Rep(A;�) whose

obje
ts are the �nite-dimensional unitary 
o-representations of

(A;�). Its morphisms are the intertwiners with 
omposition Æ

and

�

-operation as pres
ribed. The set of morphisms between two

�nite-dimensional 
o-representations is a Bana
h spa
e under the

operator norm, whi
h obviously ful�ls the C

�

-norm property. The

tensor produ
t 
 is an asso
iative bilinear fun
tor from Rep(A;�)

to its produ
t 
ategory with the trivial 
o-representation as the

unit. It 
ommutes with the involutive 
ontravariant

�

-fun
tor a
t-

ing as the identity on obje
ts and as the

�

-operation on morph-

isms.

This 
ategory is 
on
rete in the sense that the obje
ts

are essentially embedded in a 
ategory of �nite-dimensional Hil-

bert spa
es. Stri
t asso
iativity of the tensor produ
t 
 
an be

a
hieved, for example, by taking these Hilbert spa
es to be Hilbert

subspa
es of a given (properly in�nite) von Neumann algebra, so
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that the tensor produ
ts are de�ned using the (stri
t asso
iative)

produ
t in the ambient von Neumann algebra.

Let U be a �nite-dimensional unitary 
o-representation of

(A;�) on a Hilbert spa
eH and suppose thatK is a subspa
e ofH

whi
h is invariant under U . Then the orthogonal 
omplement K

?

of K is also invariant under U . Unlike the 
lassi
al 
ase, the argu-

ment for this is non-trivial in the quantum 
ase. Denote by U

K

the element in A
B(K) obtained by restri
ting U to K and sim-

ilarly, denote by U

K

?
the restri
tion of U to K

?

. They are both

�nite-dimensional unitary 
o-representations, and the dire
t sum


o-representation U

K

� U

K

? is equivalent to U . It is 
lear from

this result that any �nite-dimensional unitary 
o-representation


an be de
omposed into a �nite dire
t sum of irredu
ible ones.

Also, the 
ategory Rep(A;�) has suÆ
ient sub-obje
ts and dire
t

sums in the sense of [19℄.

Another way of seeing �nite-dimensional 
o-representations

is as matri
es over A. Let H be a �nite-dimensional Hilbert

spa
e and �x an orthonormal basis e

1

; : : : ; e

n

for H . Now

de�ne �

ij

2 B(H) by �

ij

(v) = hv; e

j

i e

i

for all v 2 H and

i; j 2 f1; : : : ; ng, where h�; �i denotes the inner produ
t on H .

Then for all i; j; k 2 f1; : : : ; ng, we have

�

ij

�

kl

= Æ

jk

�

il

�

�

ij

= �

ji

n

X

j=1

�

ii

= 1 :

Using this system of matrix units (�

ij

)

n

i;j=1

, we identify

A 
 B(H) and M

n

(A). Thus if U is an element of A 
 B(H),

there exist unique elements U

ij

2 A (i; j = 1; : : : ; n) su
h that

U =

P

n

i;j=1

U

ij


 �

ij

. Moreover, U is a �nite-dimensional 
o-

representation if and only if (U

ij

)

n

i;j=1

is invertible in M

n

(A) and

�(U

ij

) =

P

n

k=1

U

ik


 U

kj

for all i; j 2 f1; : : : ; ng. We 
all the

elements U

ij

(i; j = 1; : : : ; n) the matrix 
oeÆ
ients of U with

respe
t to the basis e

1

; : : : ; e

n

.

An invertible element U 2 M

n

(A) satisfying �(U

ij

) =

P

n

k=1

U

ik


 U

kj

for all i; j = 1; : : : ; n will therefore be 
alled

a matrix 
o-representation of (A;�) of dimension n. By the
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dis
ussion above, the elements U

ij

, i; j 2 f1; :::; ng, are matrix


oeÆ
ients of a 
o-representation.

A 
ompa
t quantum group (A;�) is 
alled a 
ompa
t matrix

pseudo-group, denoted (A;U), if it has a �nite-dimensional matrix


o-representation U su
h that the unital

�

-algebra A generated by

its matrix 
oeÆ
ients U

ij

is dense in the C

�

-algebraA. The matrix


o-representation U is 
alled the fundamental 
o-representation of

(A;U).

Re
all the de�nition of the 
ompa
t quantum group SU

q

(2).

It is a 
ompa
t matrix pseudo-group with the fundamental 
o-

representation U 2M

2

(A

u

) given by

U =

�

� �q 


�


 �

�

�

:

Let us go ba
k to the general 
ompa
t quantum group set-

ting. De�ne the subspa
e A of A as the linear span of the set

fU

ij

j U a matrix 
orepresentation of (A;�); 1 � i; j � dimensionUg

Let (u

�

)

�2I

be a 
omplete set of pairwise inequivalent �nite-

dimensional irredu
ible unitary 
o-representations of (A;�) with

dimensions n

�

(
ompleteness means that every �nite-dimensional

irredu
ible unitary 
o-representation is equivalent to one of these).

By 
onvention, we have a distinguished element in I (whi
h we

denote by 0) su
h that u

0

is the trivial 
o-representation and thus

u

0

11

= 1, the unit in A.

Theorem 3.2.2 The following properties hold for a 
ompa
t

quantum group (A;�):

1. A is a dense unital

�

-subalgebra of A with Hamel basis

(u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) :

2. De�ne the map � : A ! A
A by restri
ting � to A. Then

(A;�) is a Hopf

�

-algebra with 
o-multipli
ation �, 
o-unit

" and antipode S uniquely determined by:

�(u

�

ij

) =

n

�

X

k=1

u

�

ik


 u

�

kj

"(u

�

ij

) = Æ

ij

S(u

�

ij

) = u

�

ji

�

for all � 2 I and i; j = 1; : : : ; n

�

.
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With the knowledge we have a
quired so far, there are only

three statements in this theorem that require proofs:

1. linear independen
e of (u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

),

2. density of A in A,

3.

�

-invarian
e of A.

Assertion 1 
an be proved using purely algebrai
 te
hniques

(see [31℄), but follows more easily from Theorem 3.2.3 stated

below.

Assertion 2 requires the 
onstru
tion of the left (or right)

regular 
o-representation. It is in general an in�nite-dimensional

unitary 
o-representation, and will therefore be dealt with in the

next subse
tion where in�nite-dimensional 
o-representations are

dis
ussed. The de
omposition of the left regular 
o-representation

into irredu
ible �nite-dimensional unitary 
o-representations is

what it takes to get density of A in A. As a 
onsequen
e, the

left regular representation 
ontains 
opies of all �nite-dimensional

irredu
ible unitary 
o-representations (o

urring with multipli
ity

equal to their dimensions).

In the 
lassi
al 
ase, the de
omposition of an in�nite-

dimensional strongly 
ontinuous unitary representation of a 
om-

pa
t group G into �nite-dimensional unitary representations goes

as follows, [26℄: First redu
e to a 
y
li
 strongly 
ontinuous unit-

ary representation U : G ! B(H) : s 7! U

s

by Zorn's lemma.

Denote by z 2 H the 
y
li
 ve
tor for U . Then use the Haar

integral

R

: C(G) ! C to de�ne a new inner produ
t (�; �) on H

by

(x; y) =

Z

hU

s

x; zi hz; U

s

yi ds

for x; y 2 H , where h�; �i is the original inner produ
t on H .

This yields a stri
tly positive operator Q 2 B(H) determined by

hQx; yi = (x; y) for all x; y 2 H . Now use the Bana
h-Steinhaus

Theorem and the Lebesgue Dominated Convergen
e Theorem to


on
lude that Q is 
ompa
t. So by the Hilbert-S
hmidt Theorem,

Q has a de
omposition into eigenspa
es. These �nite-dimensional

spa
es are invariant subspa
es of H for U , be
ause Q is easily seen
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to be an intertwiner of U . Thus we have obtained the desired

de
omposition of U .

The proof for the general 
ompa
t quantum group 
ase is

done likewise (see Se
tion 4). We should point out that for 
om-

pa
t matrix pseudogroups there is no need for the left regular


o-representation in order to manufa
ture suÆ
iently many �nite-

dimensional unitary 
o-representations to get density of A in A.

It is impli
it in the axioms (laid down by Woronowi
z, where he

more or less imposed a Hopf

�

-algebra stru
ture on A ), that

every �nite-dimensional 
o-representation is 
ontained in (higher)

tensor produ
ts of the fundamental 
o-representation U and its


onjugate U (see the de�nition of U below).

Let us enter the dis
ussion about Assertion 3 now. Sup-

pose that U is a �nite-dimensional unitary 
o-representation of

(A;�) on a Hilbert spa
e H for whi
h we �x an orthonormal basis

e

1

; : : : ; e

n

. Write U =

P

n

i;j=1

U

ij


�

ij

, where U

ij

, (i; j = 1; : : : ; n)

all belong to A. Now de�ne V =

P

n

i;j

U

�

ij


 �

ij

2 A 
 B(H).

Then 
learly (� 
 �)(V ) = V

13

V

23

, but it is non-trivial (and to

our knowledge requires the 
onstru
tion of the left regular 
o-

representation) to show that V is invertible. By Proposition 3.2.1,

the �nite-dimensional 
o-representation V is equivalent to a �nite-

dimensional unitary 
o-representation U of (A;�) on H = H (it

depends on the 
hoi
e of the basis, but is uniquely determined up

to equivalen
e).

It 
an be shown (see [36℄) that U and U are 
onjugates in

the tensor C

�

-
ategory Rep(A;�) in the following sense (see [19℄):

There exist R 2 Mor(1; U 
U) and R 2 Mor(1; U 
U) su
h that

(R

�


 1

H

)(1

H


R) = 1

H

and (R

�


 1

H

)(1

H


R) = 1

H

:

Hen
e Rep(A;�) is a 
on
rete stri
t tensor C

�

-
ategory with 
on-

jugation.

As in the 
lassi
al 
ase, every 
ompa
t quantum group

is 
ompletely determined by its �nite-dimensional unitary 
o-

representations. In [36℄, Woronowi
z proved a theorem generaliz-

ing the Tannaka-Krein Theorem for 
ompa
t groups to 
ompa
t

quantum groups. His theorem states that every 
on
rete (embed-

ded) stri
t tensor C

�

-
ategory with 
onjugation is equivalent to



48 IMS Bulletin 43, 1999 �

Rep(A;�) for some 
ompa
t quantum group (A;�), whi
h is

uniquely determined up to isomorphism on the Hopf

�

-algebra

level (A;�). The 
ategory Rep(A;�) is symmetri
 if for any

�nite-dimensional unitary 
o-representations U 2 B(H) 
 A and

V 2 B(K)
A, the 
ip H 
K ! K 
H indu
es an equivalen
e

between U 
 V and V 
 U . In this 
ase A has to be 
ommutat-

ive (see [37℄), so Rep(A;�) is the 
ategory of �nite-dimensional

unitary representations of a 
ompa
t group.

Suppose we are given an abstra
tly-de�ned stri
t tensor C

�

-


ategory T with 
onjugation (see [19℄). It is not automati
 that

T 
an be embedded into a tensor C

�

-
ategory of Hilbert spa
es,

i.e. that there exists a faithful tensor

�

-fun
tor from the 
ategory

T to a tensor C

�

-
ategory of Hilbert spa
es. Su
h an embedding

exists whenever T has a symmetry (i.e. involutive braiding). This

theorem, whi
h is due to S. Dopli
her and J. E. Roberts (see

[6℄), requires a highly non-trivial proof. They 
onstru
ted su
h a

symmetri
 
ategory in the framework of algebrai
 quantum �eld

theory (where no Hilbert spa
es 
ould a priori be atta
hed to the

obje
ts) to produ
e a 
ompa
t group whi
h 
ould be interpreted as

the gauge group asso
iated to the net of observable algebras for the

quantum �eld theory under 
onsideration (see [5℄). The 
ategory

of �nite-dimensional unitary representations of this gauge group

is then equivalent to the symmetri
 
ategory thus 
onstru
ted.

In 
onformal �eld theory, tensor C

�

-
ategories appear whi
h

are braided but not symmetri
, [32℄. The 
ategories 
orrespond

to 
o-representations of quantum groups at root of unity, [15℄,[11℄.

It should be pointed out that the root of unity quantum groups

do not �t into the C

�

-algebrai
 s
heme of quantum groups. In

view of Woronowi
z's Tannaka-Krein Theorem, an abstra
tly-

de�ned stri
t tensor C

�

-
ategory with 
onjugation thus 
annot

be embedded into a tensor C

�

-
ategory of Hilbert spa
es without

further restri
tions. And as the root-of-unity 
ase shows, exist-

en
e of a braiding is not suÆ
ient. In [34℄ it is shown that the


o-representation theory of a quantum group at root of unity

gives rise to an (abstra
t) tensor C

�

-
ategory.

Tensor C

�

-
ategories | in
luding ribbon 
ategories [14℄ |

have proved to be a vital link between quantum �eld theory and
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quantum groups. They also seem to be a meeting point with areas

su
h as knot theory and subfa
tor theory of von Neumann algebras

[13℄. (See [33℄ for 
onstru
tion of subfa
tors from quantum groups,

and [23℄, [18℄ for equality of q-dimension, intrinsi
 dimension and

Jones index.)

Let us go ba
k to the Haar state h on the 
ompa
t quantum

group (A;�) with dense Hopf

�

-algebra (A;�). Clearly, the

restri
tion of h to A is a Haar fun
tional on (A;�) and by

Hopf

�

-algebra theory (see [1℄), it follows that h is faithful on

A. Obviously, h is uniquely determined by its values on the

linear basis appearing in Theorem 3.1.7. A 
ombination of the

identity �(u

�

ij

) =

P

n

�

k=1

u

�

ik


 u

�

kj

, the linear independen
e of

the basis under 
onsideration and the left invarian
e of h, yield

h(u

0

11

) = h(1) = 1 and h(u

�

ij

) = 0 for all � 2 I n f0g and

i; j 2 f1; : : : ; ng.

We are looking at a spe
ial 
ase of the orthogonality rela-

tions for the Haar state. The Peter-Weyl Theorem states that

for the 
ommutative 
ompa
t quantum group (C(G);�), the lin-

ear basis (

p

n

�

u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) forms an orthonormal

basis for L

2

(G). Sin
e h need not be tra
ial in the quantum group


ase, the situation is a bit more 
ompli
ated. The quantum Peter-

Weyl Theorem, formulated and proved by Woronowi
z (see [31℄),

takes the form:

Theorem 3.2.3 For every � 2 I , there exists a unique positive

invertible n

�

�n

�

-matrix F

�

over C with TrF

�

= Tr (F

�

)

�1

su
h

that

h((u

�

ip

)

�

u

�

jq

) =

Æ

��

Æ

pq

F

�

ij

M

�

and h(u

�

ip

(u

�

jq

)

�

) =

Æ

��

Æ

ij

((F

�

)

�1

)

pq

M

�

;

where M

�

= TrF

�

= Tr (F

�

)

�1

.

We shall not give a 
omplete proof but will indi
ate how

S
hur's lemma enters the argument.

Take �; � 2 I . Fix i 2 f1; : : : ; n

�

g and k 2 f1; : : : ; n

�

g

and de�ne the n

�

� n

�

matrix �

ik

over C with matrix elements

�

ik

jl

= h((u

�

ij

)

�

u

�

kl

) for all j 2 f1; : : : ; n

�

g and l 2 f1; : : : ; n

�

g.
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The 
orresponding operator from H to K, also denoted by

�

ik

, is an intertwiner from u

�

to u

�

:

�

ik

jl

1 = (h
 �)�((u

�

ij

)

�

u

�

kl

) =

n

�

X

r=1

n

�

X

s=1

h((u

�

ir

)

�

u

�

ks

) (u

�

rj

)

�

u

�

sl

=

n

�

X

r=1

n

�

X

s=1

(u

�

rj

)

�

�

ik

rs

u

�

sl

;

so 1 
 �

ik

= (u

�

)

�

(1 
 �

ik

)u

�

. By unitarity of u

�

, we 
on
lude

that �

ik

2 Mor(u

�

; u

�

) for all i = 1; : : : ; n

�

and k = 1; : : : ; n

�

.

S
hur's lemma now tells us that

�

ik

=

�

0 if � 6= �

�

ik

1 for some�

ik

2 C if � = � .

When � = �, the matrix F

�

is a res
aling of (�

ik

) su
h that

TrF

�

= Tr (F

�

)

�1

. It should be pointed out however, that it still

takes some work to prove the �nal result from this dis
ussion.

We denote by L

2

(h) the Hilbert spa
e 
ompletion of A with

respe
t to the inner produ
t h�; �i on A given by ha; bi = h(b

�

a)

for all a; b 2 A.

Noti
e that when h is tra
ial (whi
h is true in the 
ommut-

ative, the 
o-
ommutative and the �nite-dimensional 
ase), then

Æ

pq

F

�

ij

= Æ

ij

((F

�

)

�1

)

qp

for i; j; p; q = 1; : : : ; n

�

. Thus F

�

has to

be the identity matrix on M

�

( C ), or equivalently, the 
olle
tion

(

p

M

�

u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) is an orthonormal basis for

L

2

(h).

Although the linear basis (u

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

)

is not orthogonal in general, it 
an be orthonormalized in a

very 
on
rete way (as opposed to the Gram-S
hmidt pro
ed-

ure). De�ne for every � 2 I the n

�

� n

�

-matrix (v

�

ij

) over A

su
h that v

�

ij

=

p

M

�

((F

�

)

�

1

2

)

t

u

�

ij

. A dire
t 
omputation shows

that ( v

�

ij

j � 2 I ; i; j = 1; : : : ; n

�

) forms an orthonormal basis for

L

2

(h).

The fa
t that h is not tra
ial 
an be des
ribed by a

one-parameter family of multipli
ative linear fun
tionals on A.
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Namely, de�ne for every z 2 C a linear fun
tional f

z

on A by

f

z

(u

�

ij

) =

�

(F

�

)

�z

�

ji

, where � 2 I and i; j 2 f1; : : : ; n

�

g. This

de�nition makes sense as F

�

is invertible and positive.

For !; � 2 A

0

and a 2 A, put !�a�� = (����!)�

(2)

(a) 2 A,

where �

(2)

= (�
 �)� = (�
 �)�.

If follows from the quantum Peter-Weyl Theorem that

h(ab) = h(b(f

1

� a � f

1

)) for all a; b 2 A. In fa
t, one may prove

the following additional properties:

1. f

z

is a unital multipli
ative linear fun
tional on A.

2. f

z

(a) = f

�z

(a

�

) and f

z

(S(a)) = f

�z

(a) for all a 2 A.

3. f

0

= " and (f

y

� f

z

)� = f

y+z

for all y; z 2 C .

Another property whi
h is quite surprising is that this

family implements the square of the antipode in the sense that

S

2

(a) = f

�1

�a�f

1

for all a 2 A. This statement follows from the

fa
t that ((F

�

)

�1

)

t

2 Mor(u

�

; (S

2

� �)(u

�

)) for all � 2 I , whi
h

needs some more 
o-representation theory to prove.

We point out that the family (f

z

)

z2 C

of fun
tionals is

uniquely determined by the 
onditions mentioned above and by

an analyti
ity 
ondition (whi
h is immediate from the de�nitions).

The following equivalen
es are easily 
he
ked: The Haar

state h is tra
ial if and only if f

z

= " for all z 2 C , whi
h is

equivalent to S

2

= �. This last 
ondition holds if and only if S is

�

-preserving. The fa
t that h is tra
ial is also equivalent to the

statement that the dual dis
rete quantum group is unimodular.

We shall 
ome ba
k to dis
rete quantum groups in a later se
tion.

What is lurking beneath all this is the presen
e of 
er-

tain one-parameter groups of algebra automorphisms on A. For

instan
e, de�ne a one-parameter group (�

z

)

z2 C

of algebra auto-

morphisms on A by �

z

(a) = f

iz

� a � f

iz

for all a 2 A and

z 2 C . One may prove that h is a KMS-state whenever it is

faithful. Furthermore, the one-parameter group (�

z

)

z2 C

is then

the restri
tion to A of the modular group on the C

�

-algebra A (in

the sense of Tomita-Takasaki theory) for the KMS-state h. These

one-parameter groups play a 
entral role in the theory of lo
ally


ompa
t quantum groups (see Se
tion 7 (part II)).

The following dis
ussion indi
ates how 
losely 
onne
ted
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areas like quantum groups, tensor 
ategories, quantum �eld the-

ories, knot theory and subfa
tors really are. De�ne a fun
tion

d : Rep(A;�) ! h0;1i by the formula Tr(f

1


 �)u for all u 2

Rep(A;�). It is easy to see that the following properties hold:

� d(1) = 1;

� d(u� v) = d(u) + d(v);

� d(u
 v) = d(u)d(v);

� d(u) = d(u);

for all u; v 2 Rep(A;�). These are properties 
hara
teristi
 for a

dimension fun
tion. It is indeed equal to the intrinsi
 dimension

de�ned on the tensor C

�

-
ategory Rep(A;�), (see [23℄), where

its relation to the q-dimension for quantized universal envelop-

ing algebras of Lie algebras and to the quantum dimension for

ribbon 
ategories is also established. The intrinsi
 dimension is

de�ned 
anoni
ally in any tensor C

�

-
ategory with 
onjugation,

[19℄. Longo's work (see [18℄) has shown how its square root 
an

be interpreted as the Jones index of subfa
tors of von Neumann

algebras. One may prove that d(u) is larger than the ordinary

dimension of the �nite-dimensional unitary 
o-representation u.

Another important 
onsequen
e of the `semi-tra
ial' prop-

erty of the Haar state h is that its left kernel fa 2 A jh(a

�

a) = 0 g

is a 
losed two-sided

�

-ideal of A. Hen
e we may form the quo-

tient C

�

-algebra A

r

= A=N

h

, where N

h

denotes the left kernel

of h. Let � : A ! A

r

be the quotient map. It is easy to see

that the map (� 
 �)� fa
tors through the quotient A

r

and that

(� 
 �)�(A

r

) � A

r


 A

r

. We denote the resulting map from

A

r

! A

r


 A

r

by �

r

. Clearly (A

r

;�

r

) is a 
ompa
t quantum

group with faithful Haar measure h

r

determined by h

r

� = h. Its

dense unital

�

-algebra A

r

is of 
ourse �(A). Sin
e h is faithful

on A, it is 
lear that � is inje
tive on A, so the Hopf

�

-algebra

(A

r

;�

r

) is isomorphi
 to (A;�). Hen
e, one may always redu
e

to 
ompa
t quantum groups with faithful Haar state.

Re
all now the de�nition of the 
o-
ommutative 
ompa
t

quantum groups (C

�

(G);

^

�

u

) and (C

�

r

(G);

^

�

r

), where G is a dis-


rete group. The Haar state

^

h

r

on (C

�

r

(G);

^

�

r

) is always faith-

ful, whereas the Haar state

^

h

u

on (C

�

(G);

^

�

u

) is faithful if and
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only if G is amenable. We de�ned a unital

�

-isomorphism �

u

from C

�

(G) to C

�

r

(G) with the property that

^

h

u

=

^

h

r

�

u

. Thus

N

^

h

u

= ker�

u

and � = �

u

. Therefore, with (A;�) = (C

�

(G);

^

�

u

),

we get (A

r

;�

r

) = (C

�

r

(G);

^

�

r

). Here A

r

= A = C [G℄.

The dual spa
e A

0

of the Hopf �-algebra (A;�) 
onsisting of

all linear fun
tionals on A, is a unital

�

-algebra with produ
t and

�

-operation de�ned by !�(a) = (!
�)�(a) and !

�

(a) = !(S(a)

�

)

for all !; � 2 A

0

and a 2 A. The unit of A is the 
o-unit "

of (A;�). Sin
e the in
lusion A

0

� A

0

� (A � A)

0

is surje
tive

if, and only if, A is �nite-dimensional, there is no hope that the

formula

^

�(!)(x 
 y) = !(xy) for all ! 2 A

0

and x; y 2 A, whi
h

de�nes an element

^

�(!) 2 (A � A)

0

, gives a 
o-multipli
ation

^

�(!). Indeed, it follows from the quantum Peter{Weyl Theorem

that �(h) 2 A

0

�A

0

if and only if A is �nite-dimensional, where

h is the Haar state on (A;�).

Let U be a �nite-dimensional unitary 
o-representation of

(A;�) on a Hilbert spa
e H . The formula (!� �)(U) makes sense

for any fun
tional ! 2 A

0

, and it 
an be shown that the map-

ping �

U

: A

0

! B(H) : ! 7! (! 
 �)(U) is a �nite-dimensional

weak

�

-
ontinuous unital

�

-representation of A

0

on H . The 
or-

responden
e U 7! �

U

is a bije
tion between �nite-dimensional

unitary 
o-representations of (A;�) and �nite-dimensional weak

�

-
ontinuous unital

�

-representations of A

0

. All the notions 
on-


erning the 
o-representation theory of (A;�) and the represent-

ation theory of A

0

(intertwiners, irredu
ibility, ...) transform nat-

urally under this bije
tion.

Suppose that the 
ompa
t quantum group (A;�) is 
o-


ommutative and let U be a �nite-dimensional irredu
ible unitary


o-representation of (A;�). Then A

0

is 
ommutative and there-

fore the irredu
ible representation �

U

has to be 1-dimensional.

This implies that the matrix 
o-representation asso
iated to U is

nothing but a unitary element u in A su
h that �(u) = u 
 u.

De�ne G to be the subgroup of the unitary group of A 
onsisting

of all group{like elements. It is now easy to see that the Hopf

�

-algebras (A;�) and (C [G℄;

^

�) are isomorphi
. If h is faith-

ful, then (A;�) is thus isomorphi
 to (C

�

r

(G);

^

�

r

). Of 
ourse,
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the quantum Peter-Weyl Theorem is a triviality here be
ause

h(Æ

�

s

Æ

t

) = h(Æ

s

�1

t

), whi
h by de�nition is 1 if s = t and 0 oth-

erwise.

4. Left Regular Co-representations and Multi-

pli
ative Unitaries

We shall need multiplier algebras in order to formulate the notion

of in�nite-dimensional 
o-representations of 
ompa
t quantum

groups. They are also an indispensable tool for the study of non-


ompa
t quantum groups and multiplier Hopf

�

-algebras. For this

reason, we give a slightly more general de�nition of a multiplier

algebra than is 
ustomary.

De�nition 4.1 Consider a

�

-algebra A satisfying the Frobenius

property. Denote by End(A) the unital algebra of linear maps

from A to A. De�ne the set M(A) to be

fT 2 End(A) j 9S 2 End(A) su
h that T(a)

�

b = a

�

S(b) 8a; b 2 A g :

Then M(A) is a unital subalgebra of End(A). The linear map

S asso
iated to a given T 2 M(A) is uniquely determined by the

Frobenius property and we denote it by T

�

. M(A) is a unital

�

-algebra with T 7! T

�

as

�

-operation, .

For a 2 A, de�ne L

a

2 M(A) by L

a

(b) = ab for all b 2 A.

By the Frobenius property, the map A ! M(A), a 7! L

a

, is an

inje
tive

�

-homomorphism, and its image, whi
h we shall identify

with A, is a two-sided

�

-ideal in M(A). Moreover, the ideal A is

essential in the following sense: An element x 2 M(A) satisfying

xa = 0 for all a 2 A, has to be equal to zero. It is 
lear that

M(A) = A if, and only if, A is unital.

Let A, B be two

�

-algebras having the Frobenius property.

The formula (S 
 T )

�

a 
 b

�

= S(a) 
 T (b) for all a 2 A, b 2 B,

S 2M(A) and T 2M(B) de�nes an embedding ofM(A)
M(B)

into M(A
B). In general it is not surje
tive.

When A is a C

�

-algebra, the Closed Graph Theorem implies

that M(A) 
onsists of bounded operators. Also, M(A) is a unital

C

�

-algebra with the operator norm. We give two basi
 examples

of multiplier algebras:
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� Let X be a lo
ally 
ompa
t, Hausdor� spa
e. Denote by C

0

(X)

the C

�

-algebra of 
ontinuous fun
tions on X that vanish at in�n-

ity. Then M(C

0

(G)) is the C

�

-algebra of all bounded 
ontinuous

fun
tions on X . Hen
eM(C

0

(G)) is

�

-isomorphi
 to C(

~

X), where

~

X is the Stone-Ce
h 
ompa
ti�
ation of X .

� Let B

0

(H) be the C

�

-algebra of 
ompa
t operators on a Hilbert

spa
e H . Then M(B

0

(H)) is

�

-isomorphi
 to B(H).

Suppose we are given two C

�

-algebras A and B and a

�

-homomorphism � : A ! M(B). We 
all � non-degenerate

if the linear span of the set f�(a)b j a 2 A; b 2 B g is

dense in B. It is possible to show that every non-degenerate

�

-homomorphism � : A!M(B) has a unique extension to a

unital

�

-homomorphism � : M(A)!M(B). We denote � by the

same symbol � in the sequel.

Again we need the leg numbering notation. In de�ning it,

we have to be more 
autious in the present setting. Take three

C

�

-algebras A, B, C. It 
an be shown that there exists a non-

degenerate

�

-homomorphism �

13

: A
 C ! M(A 
 B 
 C) su
h

that �

13

(a 
 
) = a 
 1 
 
 for all a 2 A, 
 2 C. Thus, it

has a unique extension to M(A 
 C). Set x

13

= �

13

(x) for all

x 2M(A
C). The other variants of the leg numbering notation

are de�ned similarly.

Take two C

�

-algebras A, B and x 2M(A
B). For ! 2 A

�

,

the element (! 
 �)(x) of M(B) is de�ned in the following way:

It 
an be shown (see [27℄) that ! � � : A � B ! B has a

unique extension to a 
ontinuous linear map ! 
 � : A
 B ! B.

The next step is to extend the map !
 � to M(A
B). It 
an be

shown (see [20℄) that !
 � has a unique bounded linear extension

!
� :M(A
B)!M(B) su
h that b (!
�)(X) = (!
�)((1
b)X)

and (!
�)(X) b = (!
�)(X(1 
 b)) for all b in M(A) and X in

M(A 
 B). Now put (! 
 �)(x) := (!
�)(x) for x 2 M(A 
 B).

Of 
ourse, a similar 
onstru
tion produ
es the element (�
 �)(x)

of M(A) for any � 2 B

�

and x 2M(A
B).

Suppose G is a 
ompa
t group and 
onsider a map U fromG

to B(H), where H is a (not ne
essarily �nite-dimensional) Hilbert

spa
e. Identify C(G;B

0

(H)) with C(G)
B

0

(H). De�ne a linear
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map

~

U from C(G) 
 B

0

(H) to the set of all fun
tions from G

to B

0

(H) by

~

U(F )(s) = U

s

F (s) for all F 2 C(G;B

0

(H)) and

s 2 G. Then U is bounded and strongly

�

-
ontinuous if and

only if

~

U 2 M(C(G) 
 B

0

(H)). Thus arguing as in the �nite-

dimensional 
ase, we see that U is a strongly-
ontinuous unitary

representation of G on H if, and only if,

~

U is a unitary element

of the multiplier C

�

-algebra M(C(G)
B

0

(H)) and

(�
 �)

~

U =

~

U

13

~

U

23

:

Here we have extended the non-degenerate

�

-homomorphism �
�

to the multiplier algebra M(C(G) 
B

0

(H)) as explained above.

Noti
e that requiring

~

U to belong toM(C(G))
M(B

0

(H))

amounts to requiring that U be norm-
ontinuous, whi
h in general

is a too strong 
ondition. For instan
e, the left regular represent-

ation is norm-
ontinuous if, and only if, it is represented on a

�nite-dimensional Hilbert spa
e.

De�nition 4.2 Let (A;�) be a 
ompa
t quantum group and H

a Hilbert spa
e. A unitary element U 2 M(A 
B

0

(H)) is 
alled

a unitary 
o-representation of (A;�) if (�
 �)(U) = U

13

U

23

.

We will not look at the tensor 
ategory of all (in�nite-

dimensional) unitary 
o-representations of a 
ompa
t quantum

group, but will just mention some results relating to �nite-

dimensional unitary 
o-representations and the Hopf

�

-algebra

(A;�).

However, let us see how intertwiners and invariant subspa
es

are de�ned in the in�nite-dimensional setting:

� Let U and V be unitary 
o-representations of (A;�) on Hilbert

spa
es H and K, respe
tively, and suppose T 2 B(H;K). We say

that T is an intertwiner from U to V if (!
�)(V )T = T (!
�)(U)

for all ! 2 A

�

� A 
losed subspa
e K of H is said to be invariant under U if

(! 
 �)(U)K � K for all ! 2 A

�

.

The theorem below implies that the orthogonal 
omplementK

?

of

K is invariant under U if K is. As a 
onsequen
e, the restri
tions

of U to K and K

?

are unitary 
o-representations with dire
t sum
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equivalent to U (i.e. there exists a unitary intertwiner between

them).

The terminology (irredu
ibility, tensor produ
ts,...) used

for �nite-dimensional unitary 
o-representations is now easily gen-

eralized to in�nite-dimensional unitary 
o-representations.

Let U be a unitary 
o-representation of (A;�) on Hilbert

spa
es H . De�ne the subspa
e B of B(H) to be the 
losure of the

set f (ha
 �)U

�

j a 2 A g . The importan
e of B is revealed in the

following theorem:

Theorem 4.3 Let the notation be as above. The following prop-

erties hold:

� B is a non-degenerate C

�

-subalgebra of B(H),

� U 2M(A
B),

� (1
 T )U = U(1
 T ) , T 2 B

0

for all T 2 B(H) .

Here B

0

is the 
ommutant of B in B(H), and so it is a von

Neumann algebra. Clearly, we have regarded 1
T for T 2 B(H)

as an element in M(A 
 B

0

(H)). It 
an be shown that T inter-

twines U with itself if, and only if, U satis�es the last 
ondition

in the theorem. From this and the

�

-invariant property of B, it

follows that orthogonal 
omplements of U -invariant subspa
es are

U -invariant.

Theorem 4.4 Every irredu
ible unitary 
o-representation of a


ompa
t quantum group (A;�) is �nite-dimensional. Any unit-

ary 
o-representation U of (A;�) on a Hilbert spa
e H 
an be

de
omposed into a dire
t sum of �nite-dimensional unitary 
o-

representations. More pre
isely, there exists a family of mutually

orthogonal �nite-dimensional subspa
es (H

i

)

i2I

of H su
h that

H = �

i2I

H

i

and ea
h H

i

is invariant under U and the restri
tion

U

i

of U to H

i

is a �nite-dimensional unitary 
o-representation of

(A;�). In this 
ase we write U = �

i2I

U

i

.

We sket
h the proof (see [31℄ for more details). The �rst

statement is immediate from the se
ond one. De�ne for v 2 H ,

the rank-one operator �

v;v

on H by �

v;v

(w) = hw; viv for w 2 H .

Next, putQ

v

= (h
�)(U

�

(1
�

v;v

)U), where h is the Haar state on

(A;�). The element U

�

(1
�

v;v

)U obviously belongs to A
B

0

(H)
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(remember that A is unital), so Q

v

is a positive 
ompa
t operator

on H . A straightforward 
al
ulation shows that U and 1 
 Q

v


ommute in M(A
B

0

(H)).

By taking an orthonormal basis (e

i

)

i2I

, we get a family

of rank-one proje
tions (�

e

i

;e

i

)

i2I

whi
h sum up to the identity

operator on H in the strong topology. Using stri
t 
ontinuity

arguments, one sees that the family (Q

e

i

)

i2I

is strongly summable

and that the sum equals the identity operator on H . In parti
ular

Q

e

j

6= 0 for some j 2 I . Sin
e Q

e

j

is 
ompa
t and non-zero, it

has a �nite-dimensional eigenspa
e (
orresponding to any stri
tly

positive eigenvalue). Clearly, this eigenspa
e is invariant under

U . The restri
tion of U to the orthogonal 
omplement is again a

unitary 
o-representation (here this is obvious). Applying Zorn's

lemma it is not diÆ
ult to see that we get the desired orthogonal

de
omposition of H into �nite-dimensional U -invariant subspa
es.

Using �nite-dimensional 
o-representation theory, any unitary 
o-

representation 
an therefore be de
omposed into a dire
t sum of

�nite-dimensional irredu
ible unitary 
o-representations.

We now pro
eed to de�ne the most important unitary


o-representation, the left regular one, whi
h in
orporates the


o-produ
t of the quantum group. Let (H; �;
) be a GNS-

representation for the Haar state h, i.e. H is a Hilbert spa
e,

� : A ! B(H) is a unital

�

-homomorphism and 
 is an element

in H su
h that �(A)
 = H and h(a) = h�(a)
;
i for all a 2 A.

Pi
k a faithful unital

�

-representation � of A on a Hilbert

spa
e K. Let a

1

; : : : ; a

n

2 A and v

1

; : : : ; v

n

2 K. Then the left

invarian
e of h implies that

k

P

n

i=1

(� 
 �)(�(a

i

))(v

i


 
) k

2

=

P

n

i;j=1

(!

v

i

;v

j


 ')(�(a

�

j

a

i

))

=

P

n

i=1

hv

i

; v

j

i h�(a

i

)
; �(a

j

)
i = k

P

n

i=1

v

i


 �(a

i

)
k

2

:

From this we 
on
lude that we have a well-de�ned isometry U 2

B(K 
 H) su
h that U(v 
 �(a)
) = (� 
 �)(�(a))(v 
 
) for

all a 2 A and v 2 K. The density of �(A)(A 
 1) in A 
 A

implies that U has dense range and is therefore unitary. In fa
t,

the following proposition holds.

Proposition 4.5 There exists a unique unitary element V of

M(A
B

0

(H)) su
h that V

�

(v 
 �(a)
) = (� 
 �)(�(a))(v 

)
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for all a 2 A and v 2 K. Moreover, the element V is a unitary


o-representation of (A;�).

Proof: The formula

V

�

(1
 �

�(a)
;v

) = (� 
 �)(�(a))(�(a))(1 
 �


;v

)

for all a 2 A and v 2 K, implies that V

�

(A
B

0

(H)) = A
B

0

(H).

Invoking the unitarity of V , we get V (A
B

0

(H)) = A
B

0

(H).

So we 
an regard V as an element in End(A 
 B

0

(H)) and it is

easy to see that its adjoint in the sense of De�nition 4.1 is V

�

,

regarded as an element in End(A
B

0

(H)). Consequently, V 
an

be 
onsidered as an element in M(A
B

0

(H)).

The 
o-representation property follows from the identity

(! 
 �)(V

�

)�(a)
 = �((! 
 �)�(a))


for all ! 2 A

�

, 
ombined with the 
oasso
iativity of �. �

The 
o-representation V is that whi
h is 
alled the left reg-

ular 
o-representation of the 
ompa
t quantum group (A;�). We

have, for all a; b 2 A, that

(�
 !

�(a)
;�(b)


)(V ) = (�
 h)(�(b

�

)(1
 a)) :

Now de
ompose V a

ording to Theorem 4.4 into a dire
t sum

�

i2I

V

i

of �nite-dimensional 
o-representations of (A;�). Clearly,

(� 
 !

v

i

;w

i

)(V

i

) 2 A for all i 2 I and v

i

; w

i

2 H

i

. Therefore

(�
!

�(a)
;�(b)


)(V ) and thus (�
h)(�(b

�

)(1
a)) belongs to the


losure ofA for all a; b 2 A. Sin
e f (�
h)(�(b

�

)(1
a)) j a; b 2 A g

is a dense subset of A, we 
on
lude that A is dense in A, whi
h

proves Theorem 3.1.7.

De�nition 4.6 De�ne the unitary element W 2 B(H 
H) by

W = (� 
 �)(V ). Then W

�

(v 
 �(a)
) = (� 
 �)(�(a))(v 
 
)

for all a 2 A and v 2 H . The operator W is 
alled the multipli
-

ative unitary of the 
ompa
t quantum group (A;�). It satis�es

the pentagonal equation: W

12

W

13

W

23

= W

23

W

12

(this is a 
on-

sequen
e of the 
o-asso
iativity of �).

The following properties hold:
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� �(A) is the 
losure of the set f (� 
 !)(W ) j ! 2 B

0

(H) g in

B(H).

� (� 
 �)�(a) =W

�

(1
 �(a))W for all a 2 A.

Hen
e the 
o-multipli
ation is essentially en
oded in W .

These 
onsiderations lead to the work of Baaj & Skandalis

[3℄, who study multipli
ative unitaries in their own right (in that

they are not ne
essarily 
onstru
ted from a pres
ribed quantum

group). These authors 
onstru
t quantum-group-like obje
ts with


o-multipli
ation from multipli
ative unitaries.

De�nition 4.7 Consider a Hilbert spa
e H and a unitary ele-

ment W 2 B(H 
 H) satisfying the pentagonal equation (so

W

12

W

13

W

23

= W

23

W

12

). We 
all W a multipli
ative unitary

on H .

As in the 
ase of a 
ompa
t quantum group, one introdu
es:

1. The 
losed subspa
es A=[(�
 !)(W ) j ! 2 B

0

(H)

�

℄ and

^

A = [ (! 
 �)(W ) j ! 2 B

0

(H)

�

℄ of B(H).

2. Linear maps � : A ! B(H 
H) and

^

� :

^

A ! B(H 
H)

given by �(x) = W

�

(1 
 x)W for all x 2 A and

^

�(x) =

W (x
 1)W

�

for all x 2

^

A.

Here [ ℄ denotes the 
losed linear span of the elements under 
on-

sideration.

Baaj and Skandalis formulated a 
ertain regularity 
ondi-

tion for multipli
ative unitaries and proved that ifW satis�es this

regularity 
ondition, then:

� A and

^

A are non-degenerate C

�

-subalgebras of B(H),

� (�
 �)� = (�
�)� and (

^

�
 �)

^

� = (� 


^

�)

^

�,

� �(A)(A 
 1) and �(A)(1 
A) are dense subspa
es of A
A,

�

^

�(

^

A)(

^

A 
 1) and

^

�(

^

A)(1


^

A) are dense subspa
es of

^

A


^

A.

However, the regularity 
ondition turned out to be not very

suitable for the general framework of quantum groups. Baaj him-

self pointed out (see [2℄) that the multipli
ative unitary asso
iated

to the quantum group E(2) does not satisfy the regularity 
ondi-

tion.
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Later Woronowi
z (see [35℄) introdu
ed the notion of man-

ageability for multipli
ative unitaries. This probably 
overs the

general 
ase. Assuming this 
ondition, he was able to prove

the same properties for (A;�) and (

^

A;

^

�) as Baaj and Skan-

dalis proved using their regularity 
ondition. Woronowi
z also


onstru
ted an antipode-like obje
t that admitted a polar de
om-

position (under the assumption of his manageability 
ondition).

The obje
ts (A;�) and (

^

A;

^

�) are to be thought of as dual

to ea
h other. For instan
e, one of them is a 
ompa
t quantum

group if and only if the other one is a dis
rete quantum group.
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