A COMPARISON TECHNIQUE
FOR INTEGRAL EQUATIONS'

Maria Meehan & Donal O’Regan

1. Introduction

In this note we survey some results for integral equations on the
infinite interval. We are interested in existence results for non-
linear Volterra integral equations, and in particular, results that
enable us to study aspects of the solution’s behaviour on the inter-
val of existence.

In Section 2 we examine the nonlinear Volterra integral equa-
tion

(L1 y(t) = hit) - / K(t,5)g(5,y(s)) ds, € [0,T)

where 0 < T < 0. Existence results are given which establish a
solution y € C[0,T) of (1.1) and yield functions a, b € C[0,T) such
that a(t) < y(t) < b(t), for t € [0,T). Obviously the behaviour of
a and b on [0,7") will in many cases allow us to extract additional
information on the solution y. It is this fact that we exploit in
Section 3.

Using the results obtained for (1.1) in Section 2, a compar-
ison technique is presented in Section 3 which firstly guarantees
that the solution y € C[0,T) of (1.1) (with T' = 00), is such that
lim; o, y(t) exists, and secondly, allows us to read off what this
limit is. The technique is illustrated with some examples. A result
of Miller [9], which pertains to a special case of (1.1) is included
and discussed for completeness.

!The results of this paper were presented by the first author at the Science
Research Colloquium, I.T. Tallaght, 25-27 May, 1998.
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We conclude this section by stating some definitions which
will be used throughout the paper. Let I be an interval in R.

Definition 1.1: A function g : I x R — R is a L?—Carathéodory
function if the following conditions hold:

(i) the map ¢ — g(t,y) is measurable for all y € R;
(ii) the map y > g(¢,y) is continuous for almost all ¢ € I;

(iii) for any r > 0, there exists u,, € L4(I) such that |y| < r implies
that |g(¢,y)| < pr(t) for almost all t € I.

Definition 1.2: A function ¢ : I x R — R is a locally L?-
Carathéodory function if the conditions in Definition 1.1 hold when
g is restricted to J x R, with J any compact subinterval of 1.

2. Existence results

Before presenting our existence results for

(1)  y(t) = h(t) - / K(t,5)g(5,y(s)) ds, € [0,T)

where 0 < T < oo, we first state the following variation of an
existence principle of Lee and O’Regan [7], which we will require
in this section. For details of the proof we refer the reader to [7,8].

Theorem 2.1. Let 0 < T < oo, and suppose that p and q satisfy
1 <p<ooand+ ¢ =1. Assume that

(2.2) h € C[0,T),

(2.3) 9:[0,T) x R — R is locally L9—Carathéodory
[see Definition 1.2]

(2.4) ki(s) = k(t,s) € LP[0,t] for each t € [0,T)

and for any t, t' € [0,T),
(2.5)

"
/ |kt (s) — ky (s)|Pds — 0 as t — t', where t* = min{t,#'}
0
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hold. Alsolet 0 < t; <ty <...<tp<...,witht, 1 T. Suppose
for eachn =1, 2, ..., that there exists y, € C[0,t,] that solves

un(t) = h(t) - / K(t, $)g(s,yn(s)) ds, £ € 0,4,],

and that there are bounded sets By, C R, for k = 1,2,..., such
that n > k implies y,(t) € By, for each t € [0,t;]. Then (2.1) has
a solution y € C[0,T) such that y(t) € By, for each t € [0, tx].

NOTE: For p = oo, let

T »
( /0 1F(s)|” ds) denote ess-sup,cio 111 (5)].

Our first two existence results for (2.1), which extend the results of
Friedman [3] and Miller [9] in the literature, give conditions under
which (2.1) has a solution y € C[0,T") and is bounded by two func-
tions a,b € C[0,T). Of particular importance is the information
which we can obtain on the positivity of the solution.

Theorem 2.2. Let 1 < p < oo be a constant, and q be such that
% + % = 1. Assume that (2.2) — (2.5) hold. Suppose also that

(2.6) k(t,s) > 0 for almost every 0 < s <t < T

for 0 <tp <ty <T and s € [0, o],
h(t1)
(o)
k‘(to,S) > k‘(tl,S), Ifh(t) = 0, t e [to,tl]

(2.7) k(to, 5) > k(t1, s), if h(to) £ 0

=

(2.8 there exists a nonincreasing function r € C[0,T)
. such that for almost every s € [0,T), g(s,r(s)) =0
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and one of the following holds:
(2.9) h is nondecreasing and h(t) > r(t) > 0,t € [0,T)

(2.10) h is nondecreasing and 0 > h(t) > r(t), t € [0,T)

(2.11) h is nonincreasing and h(t) > 0 > r(t), ¢t € [0,T)

along with

s,u) >0 for h(s) > u > r(s),
(2.12) g9(s,u) = () 2 u>r(s)

and almost every s € [0,T)
and
t
r(0) < lim <h(t) —/ k(t,s)g(s,u(s))ds),

t—0+ 0

(2.13)

for all u € C[0,T) such that
h(s) > u(s) > r(s), 5 € [0,T).

Then there exists a solutiony € C[0,T') of (2.1) with h(t) > y(t) >
r(t), t € C0,T).

Proof: For details of the proof (which relies on Theorem 2.1 and
Schauder’s Fixed Point Theorem) we refer the reader to [8]. m

Remark 2.1. Suppose that the conditions in Theorem 2.2 hold
with » = 0. Then notice from (2.9) and (2.11), that whether A is
nondecreasing or nonincreasing, as long as it is nonnegative, we
have a solution of (2.1). In fact, closer examination reveals that
we can find a solution of (2.1), even if h is not monotonic. We
state the result as the following corollary. See [8] for details of the
proof.

Corollary 2.1. Let 1 < p < oo be a constant, and let ¢ be such
that % + % = 1. Assume that (2.2) — (2.5) hold and suppose that

(2.6),
(2.14) h>0on0,T)
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for 0 <tg <ty <T and s € [0, 1],

(2.15) h(t1)
>
k(t07 S) h(t()) ol k(t17 S)
(2.16) g is such that yg(s,y) >0, for all y € R,
. and almost every s € [0,T)
and

(2.17) 0< lim, (h(t) - /Ot k(t, 5)g(s, u(s)) ds)

for all u € C[0,T) such that h(s) > u(s) >0

hold. Then there exists a solution y € C[0,T) of (2.1) with h(t) >
y(t) >0, fort € [0,T).

Notice that in the hypotheses of Theorem 2.2 we have h(t) > r(¢),
for t € [0,T). If the opposite was true, then we have the following
theorem which we just state. The ideas in the proof are similar to
those in the proof of Theorem 2.2.

Theorem 2.3. Let 1 < p < oo be a constant, and let q be such
that %—F% = 1. Assume that (2.2) — (2.5) hold, and that (2.6) and

(2.7) are true. In addition suppose that

(2.18 there exists a nondecreasing function r € C[0,T)
' such that for almost every s € [0,T), g(s,r(s)) =0

and one of the following holds:

(2.19) h is nonincreasing and r(t) > h(t) > 0, t € [0,T)
(2.20) h is nonincreasing and 0 > r(t) > h(t), t € [0,T)

(2.21) h is nondecreasing and r(t) > 0 > h(t), t € [0,T)
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along with
s,u) <0 for r(s) > u > h(s),
(2.22) g(s,u) < (s) > u > h(s)
and almost every s € [0,T)
and

(2.23) r(0) > lim, (h(t) - /Otk(t,S)g(s,y(s))ds>

for all uw € C[0,T) such that r(s) > u(s) > h(s).

Then there exists a solutiony € C[0,T) of (2.1) with r(t) > y(t) >
h(t), t € [0,T).

NOTE: If r = 0 in Theorem 2.3, a remark analogous to Remark
2.1 can be made for Theorem 2.3.

Remark 2.2. If h(t) = hg and r(t) = ro, where hy and ro are con-
stants, Theorem 2.2 and Theorem 2.3 instantly yield some simple
results.

The first, perhaps obvious one, is that if hg = ro, then immediately
we see that y = hg = rg is a solution of (2.1). Secondly, suppose
g is such that

(y —ro)g(s,y —ro) > 0, for almost every s € [0,T).

Then for any hg, (2.1) has a solution y € C[0,T'). For example,

y(t):ho—/ot%g@ds,te[o,ﬂ

where hy is any constant, 0 < o < 1, and n > 0 is odd.

In fact, if h, k and g satisfy the hypotheses of Theorem 2.2 and g
is odd, that is g(s, —u) = —g(s, u) for almost every s € [0,T'), then
h1, k and g1, where hy = —h, and g; = —g, satisfy the hypotheses
of Theorem 2.3.

Remark 2.3. Since in both Theorem 2.2 and Theorem 2.3, we
have that our solution y € C[0,T) is bounded by two functions
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h,r € C[0,T), we can often extract additional information about
y when given more details about h and r. For example, if h,r €
BCI0,T), then obviously y € BC[0,T). A more interesting result,
and indeed one which leads us on naturally to the final section is
the following;:

Suppose the hypotheses of Theorem 2.2 hold, with » = 0, A nonin-
creasing and h € Cy[0,T). [Here h € Cy[0,T) if h € C[0,T)
and lim;,7 h(t) = 0.] Then we have a solution y € C[0,T)
with 0 < y(t) < h(t). But notice by the Sandwich Theorem that
lim;_, 7 y(t) = 0 also, that is, y € Cp[0,T'). [An analogous remark
can be made for Theorem 2.3.] We give the following example:

Example 2.1. Let n > 0 and consider

(2.24) "(s)ds, t € [0,00).

1 F
0=t -, 7=

Now (2.24) satisfies the hypotheses of Theorem 2.2 with (2.11)
true. Therefore (2.24) has a solution y € C[0, 00) with 0 < y(¢) <

\/tl+717 t e [0:00): and clearly y € 00[0, 00)

3. A comparison technique for integral equations

We’ve already seen in the previous section that if h, k and g satisfy
the hypotheses of Theorem 2.2 or Theorem 2.3, then

(3.1) y(t)zh(t)—/o k(t, $)g(s,y(s)) ds, ¢ € [0,00)

has a solution y € C[0, 00), such that for ¢ € [0, 00), h(t) > y(t) >
r(t) or r(t) > y(t) > h(t), respectively.
The questions which we now ask are:
Under what additional assumptions on h, k and g, will (3.1) have
a solution y such that lim; . y(t) exists? And can we find this
limit?

We have already given one answer to each of these questions
in Remark 2.3. For completeness, we state the result here.



=

K Integral equations 61

Corollary 3.1. Suppose the following are true:

Theorem 2.2 or Theorem 2.3
(3.3) h, r € Ci]0, 00),
where r is as defined in (2.8) and (2.18) respectively.
Then if h(oco) = r(o0), (3.1) has a solution y € Cj[0,00) and
lim;—, 00 y(t) = h(00) = r(00).
Another approach is to use a comparison technique which
we describe in the following theorem.

(3.2) { h, k and g satisfy the hypotheses of either

Theorem 3.1. Suppose that
(3.4) h, k and g satisfy the hypotheses of Theorem 2.2

with the additional assumptions that
(3.5) g(s,u) is nondecreasing in u for almost every s € [0, 00)
(3.6) r € C;[0,00), where r is as defined in (2.8)

k satisfies the following property:

q
loc

2(t) = /0 k(t, s)0(s) — k(t,s)p(s)z(s) ds, t € [0, 00)

has a unique, nonnegative solution z € C[0, 00)

For any nonnegative 8, ¢ € L] [0,00), the equation

(3.7)

hold. Suppose also that
( there exists a function
g:10,00) x R > R, and 7 € C[0, )
such that §(s,7(s)) =0 and g(s,u(s)) < g(s,u(s))
for almost every s € [0, 00)and for all u € C0, c0),
(3.8) that satisfy h(s) > u(s) > 7(s), s € [0, 00).
Suppose also that
t
y(0) =h(t) ~ [ K(t,5)3(5,0(5)) ds, t € [0,00)
has a unique sglution g € C[0,00), such that
L h(t) > §(t) > 7(t), fort € [0,00) and §(o0) = r(o0)
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is true. Then (3.1) has a unique solution y € C;[0, 00), with h(t) >
y(t) > r(t), t € [0,00) and y(o0) = r(c0).

Proof: For details of the proof we refer the reader to [8]. m

The following result which is analogous to Theorem 3.1, we
state without proof.

Theorem 3.2. Suppose that
(3.9) h, k and g satisfy the hypotheses of Theorem 2.3

(3.10) and r € ()[0,00), where r is as defined in (2.18)
hold, along with (3.5) and (3.7). Suppose also that

( there exists a function g : [0,00) x R = R,

and 7 € C[0, 00) such that

9(s,7(s)) = 0 and (s, u(s)) = g(s, u(s))

for almost every s € [0, 00)and for all u € C[0,c0),
that satisfy 7(s) > u(s) > h(s), s € [0, ).

(3.11)
Suppose also that

y(t) = h(t) - / K(t,9)d(s5,y(s)) ds, € [0, 00)

has a unique solution §j € C[0,00), such that
L 7(t) > §(t) > h(t), fort € [0,00) and §(oo0) = r(co)

is true. Then (3.1) has a unique solution y € C;[0, c0) with r(t) >
y(t) > h(t), for t € [0, 00) and y(o0) = r(c0).

Some of the hypotheses in the last two theorems warrant
further discussion. In particular, (3.7), (3.8) and (3.11) need to
be examined. We first look at (3.7).

In [9], Miller proves that if the kernel &k is of convolution
type, that is, k(¢,s) = a(t — s), and the function a(t) satisfies

(3.12) a € L'(0,1)
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(3.13) a is positive, continuous and nondecreasing on (0, 00)

and

t
for any T' > 0, the function L
(3.14) a(t+T)

is a nonincreasing function of ¢ on (0, 00),

then k(t,s) = a(t — s) satisfies (3.7). The proof makes use of
the resolvent kernel and its associated properties when a satisfies
(3.12) — (3.14).
Remark 3.1. It is worth noticing that (3.14) holds if and only if
log(a(t)) is convex.

An example of such a function is a(t) = ¢, where 0 <
a < 1. The singular convolution kernel associated with this a,
which also arises in Abel’s equation, is of interest to us. In par-
ticular, when o = %, we have the kernel which arises in the well
known tautochrone problem, and many satisfactory results can be
obtained.

However, we wish to consider (3.7) for a more general ker-
nel, k. Initially suppose that k satisfies the hypotheses of either
Theorem 2.2 or Theorem 2.3. Letting

t
h*(t) = / k(t,s)8(s) ds and k*(t,s) = k(t, s)d(s),
0
we can rewrite

(3.15) z(t)z/o k(t, $)0(s) ds—/o k(t, $)6(s)2(s) ds, ¢ € [0, 00)

as

(3.16) z(t) = h*(¢) —/0 k*(t,s)z(s)ds, t € [0, 0).
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Note that h* € C]0,00) and for convenience, suppose h*(t) > 0,
for t € [0,00). If, for 0 < g < t; < 00, s € [0, %], we have

(3.17) k*(to, 5) > k*(t1, ),

then by Corollary 2.1, (3.16) has a nonnegative solution z €
C[0,00). Clearly a separable kernel k(¢,s) = a(t)b(s), where
a(t) > 0, b(t) > 0 for all ¢ € [0,00), appropriately defines h* and
kE* (that is, (3.17) is true in this setting). Also for a separable
kernel one can easily verify that the solution z is unique.

In general, if,

in addition to the hypotheses of either Theorem 2.2,
(3.18) Corollary 2.1 or Theorem 2.3, k satisfies
k(v, s)k(t,u) < k(t,s)k(v,u), for s <u<v <t

holds, then (3.15) has a unique, nonnegative solution z € C|0, 00).
To see this, note by definition that k* satisfies (3.18) also. Then
Gripenberg, Londen and Staffans [4, Ch9, p.259], show that k* has
a nonnegative resolvent r* where

r*(t,8) = k*(t,s) —/ E*(t,u)r* (u, s) du
=k*(t,s) —/ r*(t, u)k*(u, s) du,

for almost every (t,s) € [0,00) X [0,%], and r* is strictly positive
almost everywhere on the set where k* is strictly positive. In
addition, (3.16) has a unique solution given by

2(8) = h*(t) — /0 r*(t, 5)h* (s) ds.

Now an argument similar to Miller [9, p.329], shows that z > 0.
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We now turn our attention to (3.8). [Analogous comments
can be made for (3.11).] Condition (3.8) requires us to have previ-
ous knowledge of the existence, uniqueness and asymptotic beha-
vior of a solution ¢ of

(319)  y(t) = h(t) - / K(t,$)3(5,y(s)) ds, t € [0, 00).

At the outset, this may seem like an unreasonable condition
since (3.19) closely resembles (3.1), the equation under examin-
ation. However, information on the solution § to (3.19) is easily
obtained if an appropriate choice of § is made. For examples of
“appropriate” g, we first look to the literature.

As already mentioned, Miller in [9] discusses (3.1) when the
kernel k is of convolution type, that is, k(t,s) = a(t — s) and a
satisfies (3.12) — (3.14). He puts conditions on a and g so that

(3.20) y(t) = —/0 al(t — $)g(s,y(s)) ds, t € [0, 00)

has a unique, nonnegative, nondecreasing solution y € C]0, o)
and then discusses when y(oo) = r(00) < oco. [Here again, r is
such that g(s,r(s)) =0, for almost every s € [0, 0).]

For completeness, we state his result.
Theorem 3.3. Suppose a satisfies (3.12) — (3.14), and g satisfies
(g is measurable in (t,u)
for 0 <t < oo, —00 < u < 00,
continuous and nondecreasing in u for each fixed t,
(3.21) nonincreasing in t for each fixed u,

and bounded on each finite rectangle

L1 Su <y, 0<1E< 1.

there is a function r(t), bounded on each
(3.22) finite subinterval of [0, 00) with r(0) > 0,
such that g(t,r(t)) =0 for allt > 0
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and
(3.23) g(t,y) is locally Lipschitz continuous in y.

Then the solution y(t) of (3.20) is nonnegative and nondecreasing
on 0 <t < oo.

In addition we have the following results:

Suppose that for each 6 > 0, there exists T > 0 and ¢(5) > 0, such
that g(t,y) < ¢(0) ift > T and 0 < y < r(t) — 4. If a # L'(0, 0)
and r(0c0) < oo, then the solution y(t) of (3.20) tends to the limit
r(o0) ast — co.

or

Suppose that g(t,y+r(t)) — 0 as (t,y) = (c0,07). Ifa € L*(0, 00)
and r(o0) < oo, then the solution y(t) of (3.20) tends to a limit
y(o0) < r(o0) ast — oo.

Remark 3.2. Note that by itself, Theorem 3.3 gives another
answer to the two questions we asked at the beginning of this
section.

Even though we can apply Theorem 3.3 in certain cases,
we want to emphasize that Theorem 3.1 and Theorem 3.2 exist
independently of results in the literature. We therefore initially
consider examples when g is a linear function of y, and it is easy
to explicitly find the solution ¢ and in turn §(oco) from first prin-
ciples. For example, we can use Laplace Transforms if we have
a convolution kernel, or use the resolvent kernel if it is easy to
find. Using these examples and Theorem 3.1 and Theorem 3.2, we
can quickly build up a store of results from which we can extract
information for (3.8) and (3.11). In addition, it is easy to construct
examples where our theory applies, but Theorem 3.3 does not.

Example 3.1. Suppose that a € C'[0,00), b € C[0,00) and
a(t) >0, b(t) > 0 for all t € [0,00) and consider

(3.24) y(t) = —a(t) /0 b(s)(y(s) — 1) ds, £ € [0,00).
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By Theorem 2.3, (3.24) has a solution y € C0,00), (in fact y €
C'[0,00)), where 0 < y(t) < 1 for all ¢ € [0, 00). Solving for y we
get

y(t) = a(t)e” /b (s)edo 1= g,

or equivalently,

fOt b(s)efo a(2)b(z) dz ds
K a(s)b(s) ds
e

(3.25) y(t) =

We wish to examine lim;_, o, y(#). One particular case of interest
is when lim;_,, a(t) = 0 and b(¢) is nondecreasing. In this case
(3.25) and L’Hopital’s Rule give

(3.26) lim y(¢) = lim

t—o00 t—00 | — a'(t)

From (3.26) we can easily determine if lim; ,~ y(#) exists, and if
so, what its value is. The family of kernels a(t)b(s) = e~ *(*e5(5)
where a € C[0, 00) with a(t) — oo and 8 € C[0, ) with 3'(t) >
0 for all ¢ € [0, 00), satisfy the above conditions and give

1 li ;
Am y(®) = i e

[For applications of Theorem 3.1 and Theorem 3.2, recall that pos-
itive, separable kernels of the above type satisfy (3.7).]

Example 3.2. Consider

(3.27) A/ (1= Be™) 4
t -5

where A > 0and 0 < B < 1. Here h = 0, r(t) = 1 — Be™®
and g(t,y) = y — 1 + Be~*. Now the conditions of Theorem 2.3
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are satisfied, therefore (3.27) has a solution y € C[0, 0c0) with 0 <
y(t) <1 — Be . Solving for y (see [8] for details) we get

e=A*mtg(t) + A2 fg e=A’msg(s) ds
y(t) = e_AZﬂ.t I

where

#) A/tl_Be_sd A2 /t(1 Be=*)d
= — aS — m — e S.
g o Vt—s 0

Using "Hopital’s Rule, one can see that lim;—,, y(t) = 1.

Example 3.3. Consider

(3.28) y(t)=1- A/o % ds,

where A > 0 and 0 < B < 1. Here h = 1, r(t) = Be* and
g(t,y) = y — Bet. Therefore (3.28) satisfies the conditions of
Theorem 2.2 and has a solution Be ™t < y(t) < 1, where

e~ A’mtg(t) + A2 fg e~ A’ g(s) ds
y(t) = e,AZﬂ.t )

with

t _s
g(t) :=1— A’Br — 24Vt + A’Bret + ABe*t/ £ ds.
0 Vs
It can be shown that lim; o y(t) = 0. We omit the detail.

Equipped with these examples, we now give some applica-
tions of Theorem 3.1 and Theorem 3.2.

Example 3.4. Consider

(3.29) y(t):1—/0t\y/:(__8)sds,t€[0,oo),n€N+.

Here h =1, r =0 and

1
t —Jy", y>0
g(t,y) {0’ ) <0
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satisfy the hypotheses of Theorem 2.2, therefore (3.29) has a solu-
tion y € C[0,00) with 0 < y(¢) < 1.

If we can find a § that satisfies (3.8) when h = 1 and k(¢, s) =
\/tl_—s, then the hypotheses of Theorem 3.1 are satisfied, and it

follows that lim;_, o y(#) exists and y(oco) = 0.

ES
n

Consider g(y) = y. Here 7 = 0. Trivially g(y) =y <y
g(y) for 0 < y <1 and each n € N*. Note also that

(3.30) y(t) =1 - /0 \Z% ds

is in fact (3.28) with A = 1 and B = 0. Therefore from Example
3.3, (3.30) has a solution § € C[0,00), with 0 < §(¢) < 1 and
g(oc0) = 0. (3.8) is therefore satisfied and y(co0) = 0.

Example 3.5. Consider

331) () =—/Ot*”%(:7\/§ds,te [0,50), n € N*.

Since h=0,r =1 and

1

n—1 >0
t,y) = ) y Y=z
9(y) {—1, y<0

we have from Theorem 2.3 that (3.31) has a solution y € C|0, 00)
with 0 < y(t) <1.

We want to find a g that satisfies (3.11). Consider g(y) = L(y—1).
Here 7 = 1. Since for 0 <y < 1,

1 ES 2 n-1 1
y—1=(y" —1) (1+y"+y"+---+y B )Zn(y"—l),
we have that

W)=~ (=1 (yF 1) =gly) for cach n e N*, 0<y < 1.
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Now

¢
(3.32) y(t) = —1/ Y =1 b e 0, 00)
n Jo t—s
is (3.27) with A = L and B = 0. Therefore from Example 3.2,
we have that (3.32) has a solution § € C[0,00) with 0 < g(t) <1
and lim;_,, §(t) = 1. The hypotheses of Theorem 3.2 are satisfied
when g(y) = %(y — 1), therefore y(co0) = 1.

Example 3.6. Consider

(3.33) A/ tl —Be™) s t € 10, 00)
— S

with A >0,0<B<landn>1. Here h=0

_J-AW"-(1-Be™), y=0
9lt.y) = {A(lziBe_t), ) <0

and r(t) = (1—e~*)#. For a comparison equation consider (3.27).
This implies that §(¢,y) = —A(y— (1 —Be %)) and #(t) = 1 —e .
It is easy to check that Theorem 3.2 is satisfied with this choice
of g, therefore (3.33) has a solution y € C[0,00), with 0 < y(t) <
(1 —e %)% and y(oo) = 1.

Example 3.7. Finally consider

(3.34) / A(s (1 = Be Ml 4

t—s

B < 1. Compare (3.34) with (3.33). By Theorem 3.2, (3.34) has

where A € C[0,00) with A(t) > A > 0 for all ¢ € [0,00), 0 <
3).
a solution y € C[0, 00) with 0 < y(t) < (1 — %)% and y(oo) = 1.

Remark 3.3. We could have used Theorem 3.3 in Example 3.2
and Example 3.6, but note that Theorem 3.3 does not apply to
Examples 3.1, 3.3 — 3.5 and 3.7.
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